OpenSubdiv/opensubdiv/osd/tbbKernel.cpp
2013-08-14 10:43:48 -07:00

665 lines
26 KiB
C++

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#include "../osd/cpuKernel.h"
#include "../osd/tbbKernel.h"
#include "../osd/vertexDescriptor.h"
#include <math.h>
#include <tbb/parallel_for.h>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
#define grain_size 200
class TBBFaceKernel {
const OsdVertexDescriptor *vdesc;
float *vertex;
float *varying;
const int *F_IT;
const int *F_ITa;
int vertexOffset;
int tableOffset;
public:
void operator() (const tbb::blocked_range<int> &r) const {
if(vdesc->numVertexElements == 4 && varying == NULL) {
ComputeFaceKernel<4>
(vertex, F_IT, F_ITa, vertexOffset, tableOffset, r.begin(), r.end());
} else if(vdesc->numVertexElements == 8 && varying == NULL) {
ComputeFaceKernel<8>
(vertex, F_IT, F_ITa, vertexOffset, tableOffset, r.begin(), r.end());
}
else {
for (int i = r.begin() + tableOffset; i < r.end() + tableOffset; i++) {
int h = F_ITa[2*i];
int n = F_ITa[2*i+1];
float weight = 1.0f/n;
// XXX: should use local vertex struct variable instead of
// accumulating directly into global memory.
int dstIndex = i + vertexOffset - tableOffset;
vdesc->Clear(vertex, varying, dstIndex);
for (int j = 0; j < n; ++j) {
int index = F_IT[h+j];
vdesc->AddWithWeight(vertex, dstIndex, index, weight);
vdesc->AddVaryingWithWeight(varying, dstIndex, index, weight);
}
}
}
}
TBBFaceKernel(const TBBFaceKernel &other)
{
this->vdesc = other.vdesc;
this->vertex = other.vertex;
this->varying= other.varying;
this->F_IT = other.F_IT;
this->F_ITa = other.F_ITa;
this->vertexOffset = other.vertexOffset;
this->tableOffset = other.tableOffset;
}
TBBFaceKernel(const OsdVertexDescriptor *vdesc_in,
float *vertex_in,
float *varying_in,
const int *F_IT_in,
const int *F_ITa_in,
int vertexOffset_in,
int tableOffset_in) :
vdesc (vdesc_in),
vertex (vertex_in),
varying(varying_in),
F_IT (F_IT_in),
F_ITa (F_ITa_in),
vertexOffset(vertexOffset_in),
tableOffset(tableOffset_in)
{};
};
void OsdTbbComputeFace(
const OsdVertexDescriptor *vdesc, float * vertex, float * varying,
const int *F_IT, const int *F_ITa, int vertexOffset, int tableOffset,
int start, int end) {
TBBFaceKernel kernel(vdesc, vertex, varying, F_IT, F_ITa,
vertexOffset, tableOffset);
tbb::blocked_range<int> range(start, end, grain_size);
tbb::parallel_for(range, kernel);
}
class TBBEdgeKernel {
const OsdVertexDescriptor *vdesc;
float *vertex;
float *varying;
const int *E_IT;
const float *E_W;
int vertexOffset;
int tableOffset;
public:
void operator() (const tbb::blocked_range<int> &r) const {
if(vdesc->numVertexElements == 4 && varying == NULL) {
ComputeEdgeKernel<4>(vertex, E_IT, E_W, vertexOffset, tableOffset,
r.begin(), r.end());
}
else if(vdesc->numVertexElements == 8 && varying == NULL) {
ComputeEdgeKernel<8>(vertex, E_IT, E_W, vertexOffset, tableOffset,
r.begin(), r.end());
}
else {
for (int i = r.begin() + tableOffset; i < r.end() + tableOffset; i++) {
int eidx0 = E_IT[4*i+0];
int eidx1 = E_IT[4*i+1];
int eidx2 = E_IT[4*i+2];
int eidx3 = E_IT[4*i+3];
float vertWeight = E_W[i*2+0];
int dstIndex = i + vertexOffset - tableOffset;
vdesc->Clear(vertex, varying, dstIndex);
vdesc->AddWithWeight(vertex, dstIndex, eidx0, vertWeight);
vdesc->AddWithWeight(vertex, dstIndex, eidx1, vertWeight);
if (eidx2 != -1) {
float faceWeight = E_W[i*2+1];
vdesc->AddWithWeight(vertex, dstIndex, eidx2, faceWeight);
vdesc->AddWithWeight(vertex, dstIndex, eidx3, faceWeight);
}
vdesc->AddVaryingWithWeight(varying, dstIndex, eidx0, 0.5f);
vdesc->AddVaryingWithWeight(varying, dstIndex, eidx1, 0.5f);
}
}
}
TBBEdgeKernel(const TBBEdgeKernel &other)
{
this->vdesc = other.vdesc;
this->vertex = other.vertex;
this->varying= other.varying;
this->E_IT = other.E_IT;
this->E_W = other.E_W;
this->vertexOffset = other.vertexOffset;
this->tableOffset = other.tableOffset;
}
TBBEdgeKernel(const OsdVertexDescriptor *vdesc_in,
float *vertex_in,
float *varying_in,
const int *E_IT_in,
const float *E_W_in,
int vertexOffset_in,
int tableOffset_in) :
vdesc (vdesc_in),
vertex (vertex_in),
varying(varying_in),
E_IT (E_IT_in),
E_W (E_W_in),
vertexOffset(vertexOffset_in),
tableOffset(tableOffset_in)
{};
};
void OsdTbbComputeEdge(
const OsdVertexDescriptor *vdesc, float *vertex, float *varying,
const int *E_IT, const float *E_W, int vertexOffset, int tableOffset,
int start, int end) {
tbb::blocked_range<int> range(start, end, grain_size);
TBBEdgeKernel kernel(vdesc, vertex, varying, E_IT, E_W,
vertexOffset, tableOffset);
tbb::parallel_for(range, kernel);
}
class TBBVertexKernelA {
const OsdVertexDescriptor *vdesc;
float *vertex;
float *varying;
const int *V_ITa;
const float *V_W;
int vertexOffset;
int tableOffset;
int pass;
public:
void operator() (const tbb::blocked_range<int> &r) const {
if(vdesc->numVertexElements == 4 && varying == NULL) {
ComputeVertexAKernel<4>(vertex, V_ITa, V_W, vertexOffset, tableOffset,
r.begin(), r.end(), pass);
}
else if (vdesc->numVertexElements == 8 && varying == NULL) {
ComputeVertexAKernel<8>(vertex, V_ITa, V_W, vertexOffset, tableOffset,
r.begin(), r.end(), pass);
}
else {
for (int i = r.begin() + tableOffset; i < r.end() + tableOffset; i++) {
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
int eidx0 = V_ITa[5*i+3];
int eidx1 = V_ITa[5*i+4];
float weight = (pass == 1) ? V_W[i] : 1.0f - V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight > 0.0f && weight < 1.0f && n > 0)
weight = 1.0f - weight;
int dstIndex = i + vertexOffset - tableOffset;
if (not pass)
vdesc->Clear(vertex, varying, dstIndex);
if (eidx0 == -1 || (pass == 0 && (n == -1))) {
vdesc->AddWithWeight(vertex, dstIndex, p, weight);
} else {
vdesc->AddWithWeight(vertex, dstIndex, p, weight * 0.75f);
vdesc->AddWithWeight(vertex, dstIndex, eidx0, weight * 0.125f);
vdesc->AddWithWeight(vertex, dstIndex, eidx1, weight * 0.125f);
}
if (not pass)
vdesc->AddVaryingWithWeight(varying, dstIndex, p, 1.0f);
}
}
}
TBBVertexKernelA(const TBBVertexKernelA &other)
{
this->vdesc = other.vdesc;
this->vertex = other.vertex;
this->varying= other.varying;
this->V_ITa = other.V_ITa;
this->V_W = other.V_W;
this->vertexOffset = other.vertexOffset;
this->tableOffset = other.tableOffset;
this->pass = other.pass;
}
TBBVertexKernelA(const OsdVertexDescriptor *vdesc_in,
float *vertex_in,
float *varying_in,
const int *V_ITa_in,
const float *V_W_in,
int vertexOffset_in,
int tableOffset_in,
int pass_in) :
vdesc (vdesc_in),
vertex (vertex_in),
varying(varying_in),
V_ITa (V_ITa_in),
V_W (V_W_in),
vertexOffset(vertexOffset_in),
tableOffset(tableOffset_in),
pass(pass_in)
{};
};
void OsdTbbComputeVertexA(
const OsdVertexDescriptor *vdesc, float *vertex, float *varying,
const int *V_ITa, const float *V_W, int vertexOffset, int tableOffset,
int start, int end, int pass) {
tbb::blocked_range<int> range(start, end, grain_size);
TBBVertexKernelA kernel(vdesc, vertex, varying, V_ITa, V_W,
vertexOffset, tableOffset, pass);
tbb::parallel_for(range, kernel);
}
class TBBVertexKernelB {
const OsdVertexDescriptor *vdesc;
float *vertex;
float *varying;
const int *V_ITa;
const int *V_IT;
const float *V_W;
int vertexOffset;
int tableOffset;
int pass;
public:
void operator() (const tbb::blocked_range<int> &r) const {
if(vdesc->numVertexElements == 4 && varying == NULL) {
ComputeVertexBKernel<4>(vertex, V_ITa, V_IT, V_W,
vertexOffset, tableOffset, r.begin(), r.end());
}
else if(vdesc->numVertexElements == 8 && varying == NULL) {
ComputeVertexBKernel<8>(vertex, V_ITa, V_IT, V_W,
vertexOffset, tableOffset, r.begin(), r.end());
}
else {
for (int i = r.begin() + tableOffset; i < r.end() + tableOffset; i++) {
int h = V_ITa[5*i];
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
float weight = V_W[i];
float wp = 1.0f/static_cast<float>(n*n);
float wv = (n-2.0f) * n * wp;
int dstIndex = i + vertexOffset - tableOffset;
vdesc->Clear(vertex, varying, dstIndex);
vdesc->AddWithWeight(vertex, dstIndex, p, weight * wv);
for (int j = 0; j < n; ++j) {
vdesc->AddWithWeight(vertex, dstIndex, V_IT[h+j*2], weight * wp);
vdesc->AddWithWeight(vertex, dstIndex, V_IT[h+j*2+1], weight * wp);
}
vdesc->AddVaryingWithWeight(varying, dstIndex, p, 1.0f);
}
}
}
TBBVertexKernelB(const TBBVertexKernelB &other)
{
this->vdesc = other.vdesc;
this->vertex = other.vertex;
this->varying= other.varying;
this->V_ITa = other.V_ITa;
this->V_IT = other.V_IT;
this->V_W = other.V_W;
this->vertexOffset = other.vertexOffset;
this->tableOffset = other.tableOffset;
this->pass = other.pass;
}
TBBVertexKernelB(const OsdVertexDescriptor *vdesc_in,
float *vertex_in,
float *varying_in,
const int *V_IT_in,
const int *V_ITa_in,
const float *V_W_in,
int vertexOffset_in,
int tableOffset_in) :
vdesc (vdesc_in),
vertex (vertex_in),
varying(varying_in),
V_IT (V_IT_in),
V_ITa (V_ITa_in),
V_W (V_W_in),
vertexOffset(vertexOffset_in),
tableOffset(tableOffset_in)
{};
};
void OsdTbbComputeVertexB(
const OsdVertexDescriptor *vdesc, float *vertex, float *varying,
const int *V_ITa, const int *V_IT, const float *V_W,
int vertexOffset, int tableOffset, int start, int end) {
tbb::blocked_range<int> range(start, end, grain_size);
TBBVertexKernelB kernel(vdesc, vertex, varying, V_IT, V_ITa, V_W,
vertexOffset, tableOffset);
tbb::parallel_for(range, kernel);
}
class TBBLoopVertexKernelB {
const OsdVertexDescriptor *vdesc;
float *vertex;
float *varying;
const int *V_ITa;
const int *V_IT;
const float *V_W;
int vertexOffset;
int tableOffset;
public:
void operator() (const tbb::blocked_range<int> &r) const {
if(vdesc->numVertexElements == 4 && varying == NULL) {
ComputeLoopVertexBKernel<4>(vertex, V_ITa, V_IT, V_W, vertexOffset,
tableOffset, r.begin(), r.end());
}
else if(vdesc->numVertexElements == 8 && varying == NULL) {
ComputeLoopVertexBKernel<8>(vertex, V_ITa, V_IT, V_W, vertexOffset,
tableOffset, r.begin(), r.end());
}
else {
for (int i = r.begin() + tableOffset; i < r.end() + tableOffset; i++) {
int h = V_ITa[5*i];
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
float weight = V_W[i];
float wp = 1.0f/static_cast<float>(n);
float beta = 0.25f * cosf(static_cast<float>(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
int dstIndex = i + vertexOffset - tableOffset;
vdesc->Clear(vertex, varying, dstIndex);
vdesc->AddWithWeight(vertex, dstIndex, p, weight * (1.0f - (beta * n)));
for (int j = 0; j < n; ++j)
vdesc->AddWithWeight(vertex, dstIndex, V_IT[h+j], weight * beta);
vdesc->AddVaryingWithWeight(varying, dstIndex, p, 1.0f);
}
}
}
TBBLoopVertexKernelB(const TBBLoopVertexKernelB &other)
{
this->vdesc = other.vdesc;
this->vertex = other.vertex;
this->varying= other.varying;
this->V_ITa = other.V_ITa;
this->V_IT = other.V_IT;
this->V_W = other.V_W;
this->vertexOffset = other.vertexOffset;
this->tableOffset = other.tableOffset;
}
TBBLoopVertexKernelB(const OsdVertexDescriptor *vdesc_in,
float *vertex_in,
float *varying_in,
const int *V_ITa_in,
const int *V_IT_in,
const float *V_W_in,
int vertexOffset_in,
int tableOffset_in) :
vdesc (vdesc_in),
vertex (vertex_in),
varying(varying_in),
V_ITa (V_ITa_in),
V_IT (V_IT_in),
V_W (V_W_in),
vertexOffset(vertexOffset_in),
tableOffset(tableOffset_in)
{};
};
void OsdTbbComputeLoopVertexB(
const OsdVertexDescriptor *vdesc, float *vertex, float *varying,
const int *V_ITa, const int *V_IT, const float *V_W,
int vertexOffset, int tableOffset, int start, int end) {
tbb::blocked_range<int> range(start, end, grain_size);
TBBLoopVertexKernelB kernel(vdesc, vertex, varying, V_ITa, V_IT, V_W,
vertexOffset, tableOffset);
tbb::parallel_for(range, kernel);
}
class TBBBilinearEdgeKernel {
const OsdVertexDescriptor *vdesc;
float *vertex;
float *varying;
const int *E_IT;
int vertexOffset;
int tableOffset;
public:
void operator() (const tbb::blocked_range<int> &r) const {
if(vdesc->numVertexElements == 4 && varying == NULL) {
ComputeBilinearEdgeKernel<4>(vertex, E_IT, vertexOffset, tableOffset,
r.begin(), r.end());
}
else if(vdesc->numVertexElements == 8 && varying == NULL) {
ComputeBilinearEdgeKernel<8>(vertex, E_IT, vertexOffset, tableOffset,
r.begin(), r.end());
}
else {
for (int i = r.begin() + tableOffset; i < r.end() + tableOffset; i++) {
int eidx0 = E_IT[2*i+0];
int eidx1 = E_IT[2*i+1];
int dstIndex = i + vertexOffset - tableOffset;
vdesc->Clear(vertex, varying, dstIndex);
vdesc->AddWithWeight(vertex, dstIndex, eidx0, 0.5f);
vdesc->AddWithWeight(vertex, dstIndex, eidx1, 0.5f);
vdesc->AddVaryingWithWeight(varying, dstIndex, eidx0, 0.5f);
vdesc->AddVaryingWithWeight(varying, dstIndex, eidx1, 0.5f);
}
}
}
TBBBilinearEdgeKernel(const TBBBilinearEdgeKernel &other)
{
this->vdesc = other.vdesc;
this->vertex = other.vertex;
this->varying= other.varying;
this->E_IT = other.E_IT;
this->vertexOffset = other.vertexOffset;
this->tableOffset = other.tableOffset;
}
TBBBilinearEdgeKernel(const OsdVertexDescriptor *vdesc_in,
float *vertex_in,
float *varying_in,
const int *E_IT_in,
int vertexOffset_in,
int tableOffset_in) :
vdesc (vdesc_in),
vertex (vertex_in),
varying(varying_in),
E_IT (E_IT_in),
vertexOffset(vertexOffset_in),
tableOffset(tableOffset_in)
{};
};
void OsdTbbComputeBilinearEdge(
const OsdVertexDescriptor *vdesc, float *vertex, float *varying,
const int *E_IT, int vertexOffset, int tableOffset, int start, int end) {
tbb::blocked_range<int> range(start, end, grain_size);
TBBBilinearEdgeKernel kernel(vdesc, vertex, varying, E_IT, vertexOffset, tableOffset);
tbb::parallel_for(range, kernel);
}
class TBBBilinearVertexKernel {
const OsdVertexDescriptor *vdesc;
float *vertex;
float *varying;
const int *V_ITa;
int vertexOffset;
int tableOffset;
public:
void operator() (const tbb::blocked_range<int> &r) const {
int numVertexElements = vdesc->numVertexElements;
int numVaryingElements = vdesc->numVaryingElements;
float *src, *des;
for (int i = r.begin() + tableOffset; i < r.end() + tableOffset; i++) {
int p = V_ITa[i];
int dstIndex = i + vertexOffset - tableOffset;
src = vertex + p * numVertexElements;
des = vertex + dstIndex * numVertexElements;
memcpy(des, src, sizeof(float)*numVertexElements);
if(varying) {
src = varying + p * numVaryingElements;
des = varying + dstIndex * numVaryingElements;
memcpy(des, src, sizeof(float)*numVaryingElements);
}
}
}
TBBBilinearVertexKernel(const TBBBilinearVertexKernel &other)
{
this->vdesc = other.vdesc;
this->vertex = other.vertex;
this->varying= other.varying;
this->V_ITa = other.V_ITa;
this->vertexOffset = other.vertexOffset;
this->tableOffset = other.tableOffset;
}
TBBBilinearVertexKernel(const OsdVertexDescriptor *vdesc_in,
float *vertex_in,
float *varying_in,
const int *V_ITa_in,
int vertexOffset_in,
int tableOffset_in) :
vdesc (vdesc_in),
vertex (vertex_in),
varying(varying_in),
V_ITa (V_ITa_in),
vertexOffset(vertexOffset_in),
tableOffset(tableOffset_in)
{};
};
void OsdTbbComputeBilinearVertex(
const OsdVertexDescriptor *vdesc, float *vertex, float *varying,
const int *V_ITa, int vertexOffset, int tableOffset, int start, int end) {
tbb::blocked_range<int> range(start, end, grain_size);
TBBBilinearVertexKernel kernel(vdesc, vertex, varying, V_ITa, vertexOffset, tableOffset);
tbb::parallel_for(range, kernel);
}
void OsdTbbEditVertexAdd(
const OsdVertexDescriptor *vdesc, float *vertex,
int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset,
int start, int end,
const unsigned int *editIndices, const float *editValues) {
for (int i = start+tableOffset; i < end+tableOffset; i++) {
vdesc->ApplyVertexEditAdd(vertex,
primVarOffset,
primVarWidth,
editIndices[i] + vertexOffset,
&editValues[i*primVarWidth]);
}
}
void OsdTbbEditVertexSet(
const OsdVertexDescriptor *vdesc, float *vertex,
int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset,
int start, int end,
const unsigned int *editIndices, const float *editValues) {
for (int i = start+tableOffset; i < end+tableOffset; i++) {
vdesc->ApplyVertexEditSet(vertex,
primVarOffset,
primVarWidth,
editIndices[i] + vertexOffset,
&editValues[i*primVarWidth]);
}
}
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv