OpenSubdiv/opensubdiv/far/patchTable.cpp
Takahito Tejima 4e807a776d Add Far::PatchTable::ComputeLocalPointValues() to compute endcap patch points.
To encapsulate endcap functions from public API, add methods to
tell the number of patch points needed (GetNumLocalPoints()) and
to compute those patch points as a result of change of basis from
the refined vertices (ComputeLocalPointValues()).

ComputeLocalPointValues takes contiguous source data of all levels
including level0 control vertices.
2015-05-29 12:41:22 -07:00

544 lines
18 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/patchTable.h"
#include "../far/patchBasis.h"
#include <cstring>
#include <cstdio>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
PatchTable::PatchTable(int maxvalence) :
_maxValence(maxvalence),
_localPointStencils(NULL),
_localPointVaryingStencils(NULL) {
}
// Copy constructor
// XXXX manuelk we need to eliminate this constructor (C++11 smart pointers)
PatchTable::PatchTable(PatchTable const & src) :
_maxValence(src._maxValence),
_numPtexFaces(src._numPtexFaces),
_patchArrays(src._patchArrays),
_patchVerts(src._patchVerts),
_paramTable(src._paramTable),
_quadOffsetsTable(src._quadOffsetsTable),
_vertexValenceTable(src._vertexValenceTable),
_localPointStencils(NULL),
_localPointVaryingStencils(NULL),
_fvarChannels(src._fvarChannels),
_sharpnessIndices(src._sharpnessIndices),
_sharpnessValues(src._sharpnessValues) {
if (src._localPointStencils) {
_localPointStencils =
new StencilTable(*src._localPointStencils);
}
if (src._localPointVaryingStencils) {
_localPointVaryingStencils =
new StencilTable(*src._localPointVaryingStencils);
}
}
PatchTable::~PatchTable() {
delete _localPointStencils;
delete _localPointVaryingStencils;
}
//
// PatchArrays
//
struct PatchTable::PatchArray {
PatchArray(PatchDescriptor d, int np, Index v, Index p, Index qo) :
desc(d), numPatches(np), vertIndex(v),
patchIndex(p), quadOffsetIndex (qo) { }
void print() const;
PatchDescriptor desc; // type of patches in the array
int numPatches; // number of patches in the array
Index vertIndex, // index to the first control vertex
patchIndex, // index of the first patch in the array
quadOffsetIndex; // index of the first quad offset entry
};
// debug helper
void
PatchTable::PatchArray::print() const {
desc.print();
printf(" numPatches=%d vertIndex=%d patchIndex=%d "
"quadOffsetIndex=%d\n", numPatches, vertIndex, patchIndex,
quadOffsetIndex);
}
inline PatchTable::PatchArray &
PatchTable::getPatchArray(Index arrayIndex) {
assert(arrayIndex<(Index)GetNumPatchArrays());
return _patchArrays[arrayIndex];
}
inline PatchTable::PatchArray const &
PatchTable::getPatchArray(Index arrayIndex) const {
assert(arrayIndex<(Index)GetNumPatchArrays());
return _patchArrays[arrayIndex];
}
void
PatchTable::reservePatchArrays(int numPatchArrays) {
_patchArrays.reserve(numPatchArrays);
}
//
// FVarPatchChannel
//
// Stores a record for each patch in the primitive :
//
// - Each patch in the PatchTable has a corresponding patch in each
// face-varying patch channel. Patch vertex indices are sorted in the same
// patch-type order as PatchTable::PTables. Face-varying data for a patch
// can therefore be quickly accessed by using the patch primitive ID as
// index into patchValueOffsets to locate the face-varying control vertex
// indices.
//
// - Face-varying channels can have a different interpolation modes
//
// - Unlike "vertex" PatchTable, there are no "transition" patterns required
// for face-varying patches.
//
// - No transition patterns means vertex indices of face-varying patches can
// be pre-rotated in the factory, so we do not store patch rotation
//
// - Face-varying patches still special variants for boundary and corner cases
//
// - currently most patches with sharp boundaries but smooth interiors have
// to be isolated to level 10 : we need a special type of bicubic patch
// similar to single-crease to resolve this condition without requiring
// isolation if possible
//
struct PatchTable::FVarPatchChannel {
// Channel interpolation mode
Sdc::Options::FVarLinearInterpolation interpolation;
// Patch type
//
// Note : in bilinear interpolation modes, all patches are of the same type,
// so we only need a single type (patchesType). In bi-cubic modes, each
// patch requires its own type (patchTypes).
PatchDescriptor::Type patchesType;
std::vector<PatchDescriptor::Type> patchTypes;
// Patch points values
std::vector<Index> patchValuesOffsets; // offset to the first value of each patch
std::vector<Index> patchValues; // point values for each patch
};
inline PatchTable::FVarPatchChannel &
PatchTable::getFVarPatchChannel(int channel) {
assert(channel<(int)_fvarChannels.size());
return _fvarChannels[channel];
}
inline PatchTable::FVarPatchChannel const &
PatchTable::getFVarPatchChannel(int channel) const {
assert(channel<(int)_fvarChannels.size());
return _fvarChannels[channel];
}
void
PatchTable::allocateFVarPatchChannels(int numChannels) {
_fvarChannels.resize(numChannels);
}
void
PatchTable::allocateChannelValues(int channel,
int numPatches, int numVerticesTotal) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
if (c.interpolation==Sdc::Options::FVAR_LINEAR_ALL) {
// Allocate bi-linear channels (allows uniform topology to be populated
// in a single traversal)
c.patchValues.resize(numVerticesTotal);
} else {
// Allocate per-patch type and offset vectors for bi-cubic patches
//
// Note : c.patchValues cannot be allocated pre-emptively since we do
// not know the type (and size) of each patch yet. These channels
// require an extra step to compact the value indices and generate
// offsets
c.patchesType = PatchDescriptor::NON_PATCH;
c.patchTypes.resize(numPatches);
}
}
void
PatchTable::setFVarPatchChannelLinearInterpolation(int channel,
Sdc::Options::FVarLinearInterpolation interpolation) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
c.interpolation = interpolation;
}
void
PatchTable::setFVarPatchChannelPatchesType(int channel, PatchDescriptor::Type type) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
c.patchesType = type;
}
void
PatchTable::setBicubicFVarPatchChannelValues(int channel, int patchSize,
std::vector<Index> const & values) {
// This method populates the sparse array of values held in the patch
// table from a non-sparse array of value indices generated during
// the second traversal of an adaptive TopologyRefiner.
// It is assumed that the patch types have been stored in the channel's
// 'patchTypes' vector during the first traversal.
FVarPatchChannel & c = getFVarPatchChannel(channel);
assert(c.interpolation!=Sdc::Options::FVAR_LINEAR_ALL and
c.patchTypes.size()*patchSize==values.size());
int npatches = (int)c.patchTypes.size(),
nverts = 0;
// Generate offsets and count vertices
c.patchValuesOffsets.resize(npatches);
for (int patch=0; patch<npatches; ++patch) {
int nv = PatchDescriptor::GetNumFVarControlVertices(c.patchTypes[patch]);
c.patchValuesOffsets[patch] = nverts;
nverts += nv;
}
// Populate values
Index const * srcValues = &values[0];
c.patchValues.resize(nverts);
Index * dstValues = &c.patchValues[0];
for (int patch=0; patch<npatches; ++patch) {
int nv = PatchDescriptor::GetNumFVarControlVertices(c.patchTypes[patch]);
memcpy(dstValues, srcValues, nv * sizeof(Index));
srcValues += patchSize;
dstValues += nv;
}
}
//
// PatchTable
//
inline int
getPatchSize(PatchDescriptor desc) {
return desc.GetNumControlVertices();
}
void
PatchTable::pushPatchArray(PatchDescriptor desc, int npatches,
Index * vidx, Index * pidx, Index * qoidx) {
if (npatches>0) {
_patchArrays.push_back(PatchArray(
desc, npatches, *vidx, *pidx, qoidx ? *qoidx : 0));
int nverts = getPatchSize(desc);
*vidx += npatches * nverts;
*pidx += npatches;
if (qoidx) {
*qoidx += (desc.GetType() == PatchDescriptor::GREGORY) ?
npatches*nverts : 0;
}
}
}
int
PatchTable::getPatchIndex(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert(patchIndex<pa.numPatches);
return pa.patchIndex + patchIndex;
}
Index *
PatchTable::getSharpnessIndices(int arrayIndex) {
return &_sharpnessIndices[getPatchArray(arrayIndex).patchIndex];
}
float *
PatchTable::getSharpnessValues(int arrayIndex) {
return &_sharpnessValues[getPatchArray(arrayIndex).patchIndex];
}
PatchDescriptor
PatchTable::GetPatchDescriptor(PatchHandle const & handle) const {
return getPatchArray(handle.arrayIndex).desc;
}
PatchDescriptor
PatchTable::GetPatchArrayDescriptor(int arrayIndex) const {
return getPatchArray(arrayIndex).desc;
}
int
PatchTable::GetNumPatchArrays() const {
return (int)_patchArrays.size();
}
int
PatchTable::GetNumPatches(int arrayIndex) const {
return getPatchArray(arrayIndex).numPatches;
}
int
PatchTable::GetNumPatchesTotal() const {
// there is one PatchParam record for each patch in the mesh
return (int)_paramTable.size();
}
int
PatchTable::GetNumControlVertices(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
return pa.numPatches * getPatchSize(pa.desc);
}
Index
PatchTable::findPatchArray(PatchDescriptor desc) {
for (int i=0; i<(int)_patchArrays.size(); ++i) {
if (_patchArrays[i].desc==desc)
return i;
}
return Vtr::INDEX_INVALID;
}
IndexArray
PatchTable::getPatchArrayVertices(int arrayIndex) {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert(pa.vertIndex<(Index)_patchVerts.size());
return IndexArray(&_patchVerts[pa.vertIndex], pa.numPatches * size);
}
ConstIndexArray
PatchTable::GetPatchArrayVertices(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert(pa.vertIndex<(Index)_patchVerts.size());
return ConstIndexArray(&_patchVerts[pa.vertIndex], pa.numPatches * size);
}
ConstIndexArray
PatchTable::GetPatchVertices(PatchHandle const & handle) const {
PatchArray const & pa = getPatchArray(handle.arrayIndex);
Index vert = pa.vertIndex + handle.vertIndex;
return ConstIndexArray(&_patchVerts[vert], getPatchSize(pa.desc));
}
ConstIndexArray
PatchTable::GetPatchVertices(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert((pa.vertIndex + patchIndex*size)<(Index)_patchVerts.size());
return ConstIndexArray(&_patchVerts[pa.vertIndex + patchIndex*size], size);
}
PatchParam
PatchTable::GetPatchParam(PatchHandle const & handle) const {
assert(handle.patchIndex < (Index)_paramTable.size());
return _paramTable[handle.patchIndex];
}
PatchParam
PatchTable::GetPatchParam(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert((pa.patchIndex + patchIndex) < (int)_paramTable.size());
return _paramTable[pa.patchIndex + patchIndex];
}
PatchParamArray
PatchTable::getPatchParams(int arrayIndex) {
PatchArray const & pa = getPatchArray(arrayIndex);
return PatchParamArray(&_paramTable[pa.patchIndex], pa.numPatches);
}
ConstPatchParamArray const
PatchTable::GetPatchParams(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
return ConstPatchParamArray(&_paramTable[pa.patchIndex], pa.numPatches);
}
float
PatchTable::GetSingleCreasePatchSharpnessValue(PatchHandle const & handle) const {
assert((handle.patchIndex) < (int)_sharpnessIndices.size());
Index index = _sharpnessIndices[handle.patchIndex];
if (index == Vtr::INDEX_INVALID) {
return 0.0f;
}
assert(index < (Index)_sharpnessValues.size());
return _sharpnessValues[index];
}
float
PatchTable::GetSingleCreasePatchSharpnessValue(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert((pa.patchIndex + patchIndex) < (int)_sharpnessIndices.size());
Index index = _sharpnessIndices[pa.patchIndex + patchIndex];
if (index == Vtr::INDEX_INVALID) {
return 0.0f;
}
assert(index < (Index)_sharpnessValues.size());
return _sharpnessValues[index];
}
int
PatchTable::GetNumLocalPoints() const {
return _localPointStencils ? _localPointStencils->GetNumStencils() : 0;
}
PatchTable::ConstQuadOffsetsArray
PatchTable::GetPatchQuadOffsets(PatchHandle const & handle) const {
PatchArray const & pa = getPatchArray(handle.arrayIndex);
return Vtr::ConstArray<unsigned int>(&_quadOffsetsTable[pa.quadOffsetIndex + handle.vertIndex], 4);
}
bool
PatchTable::IsFeatureAdaptive() const {
// XXX:
// revisit this function, since we'll add uniform cubic patches later.
for (int i=0; i<GetNumPatchArrays(); ++i) {
PatchDescriptor const & desc = _patchArrays[i].desc;
if (desc.GetType()>=PatchDescriptor::REGULAR and
desc.GetType()<=PatchDescriptor::GREGORY_BASIS) {
return true;
}
}
return false;
}
int
PatchTable::GetNumFVarChannels() const {
return (int)_fvarChannels.size();
}
Sdc::Options::FVarLinearInterpolation
PatchTable::GetFVarChannelLinearInterpolation(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
return c.interpolation;
}
Vtr::Array<PatchDescriptor::Type>
PatchTable::getFVarPatchTypes(int channel) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
return Vtr::Array<PatchDescriptor::Type>(&c.patchTypes[0],
(int)c.patchTypes.size());
}
Vtr::ConstArray<PatchDescriptor::Type>
PatchTable::GetFVarPatchTypes(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
if (c.patchesType!=PatchDescriptor::NON_PATCH) {
return Vtr::ConstArray<PatchDescriptor::Type>(&c.patchesType, 1);
} else {
return Vtr::ConstArray<PatchDescriptor::Type>(&c.patchTypes[0],
(int)c.patchTypes.size());
}
}
ConstIndexArray
PatchTable::GetFVarPatchesValues(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
return ConstIndexArray(&c.patchValues[0], (int)c.patchValues.size());
}
IndexArray
PatchTable::getFVarPatchesValues(int channel) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
return IndexArray(&c.patchValues[0], (int)c.patchValues.size());
}
PatchDescriptor::Type
PatchTable::getFVarPatchType(int channel, int patch) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
PatchDescriptor::Type type;
if (c.patchesType!=PatchDescriptor::NON_PATCH) {
assert(c.patchTypes.empty());
type = c.patchesType;
} else {
assert(patch<(int)c.patchTypes.size());
type = c.patchTypes[patch];
}
return type;
}
PatchDescriptor::Type
PatchTable::GetFVarPatchType(int channel, PatchHandle const & handle) const {
return getFVarPatchType(channel, handle.patchIndex);
}
PatchDescriptor::Type
PatchTable::GetFVarPatchType(int channel, int arrayIndex, int patchIndex) const {
return getFVarPatchType(channel, getPatchIndex(arrayIndex, patchIndex));
}
ConstIndexArray
PatchTable::getFVarPatchValues(int channel, int patch) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
if (c.patchValuesOffsets.empty()) {
int ncvs = PatchDescriptor::GetNumFVarControlVertices(c.patchesType);
return ConstIndexArray(&c.patchValues[patch * ncvs], ncvs);
} else {
assert(patch<(int)c.patchValuesOffsets.size() and
patch<(int)c.patchTypes.size());
return ConstIndexArray(&c.patchValues[c.patchValuesOffsets[patch]],
PatchDescriptor::GetNumFVarControlVertices(c.patchTypes[patch]));
}
}
ConstIndexArray
PatchTable::GetFVarPatchValues(int channel, PatchHandle const & handle) const {
return getFVarPatchValues(channel, handle.patchIndex);
}
ConstIndexArray
PatchTable::GetFVarPatchValues(int channel, int arrayIndex, int patchIndex) const {
return getFVarPatchValues(channel, getPatchIndex(arrayIndex, patchIndex));
}
void
PatchTable::print() const {
printf("patchTable (0x%p)\n", this);
printf(" numPatches = %d\n", GetNumPatchesTotal());
for (int i=0; i<GetNumPatchArrays(); ++i) {
printf(" patchArray %d:\n", i);
PatchArray const & pa = getPatchArray(i);
pa.print();
}
}
//
// Evaluate basis functions for position and first derivatives at (s,t):
//
void
PatchTable::EvaluateBasis(PatchHandle const & handle, float s, float t,
float wP[], float wDs[], float wDt[]) const {
PatchDescriptor::Type patchType = GetPatchArrayDescriptor(handle.arrayIndex).GetType();
PatchParam::BitField const & patchBits = _paramTable[handle.patchIndex].bitField;
if (patchType == PatchDescriptor::REGULAR) {
internal::GetBSplineWeights(patchBits, s, t, wP, wDs, wDt);
} else if (patchType == PatchDescriptor::GREGORY_BASIS) {
internal::GetGregoryWeights(patchBits, s, t, wP, wDs, wDt);
} else if (patchType == PatchDescriptor::QUADS) {
internal::GetBilinearWeights(patchBits, s, t, wP, wDs, wDt);
} else {
assert(0);
}
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv