OpenSubdiv/opensubdiv/osd/cpuEvalLimitKernel.cpp

1082 lines
39 KiB
C++

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#include "../osd/cpuEvalLimitKernel.h"
#include <math.h>
#include <cstdio>
#include <cstdlib>
#include <string.h>
#include <algorithm>
#include <vector>
#include <cassert>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
inline void
evalCubicBSpline(float u, float B[4], float BU[4])
{
float t = u;
float s = 1.0f - u;
float A0 = s * (0.5f * s);
float A1 = t * (s + 0.5f * t) + s * (0.5f * s + t);
float A2 = t * ( 0.5f * t);
B[0] = 1.f/3.f * s * A0;
B[1] = (2.f/3.f * s + t) * A0 + (2.f/3.f * s + 1.f/3.f * t) * A1;
B[2] = (1.f/3.f * s + 2.f/3.f * t) * A1 + ( s + 2.f/3.f * t) * A2;
B[3] = 1.f/3.f * t * A2;
if (BU) {
BU[0] = - A0;
BU[1] = A0 - A1;
BU[2] = A1 - A2;
BU[3] = A2;
}
}
void
evalBSpline(float u, float v,
unsigned int const * vertexIndices,
OsdVertexBufferDescriptor const & inDesc,
float const * inQ,
OsdVertexBufferDescriptor const & outDesc,
float * outQ,
float * outDQU,
float * outDQV ) {
// make sure that we have enough space to store results
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
bool evalDeriv = (outDQU or outDQV);
float B[4], D[4],
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
memset(BU, 0, inDesc.length*4*sizeof(float));
memset(DU, 0, inDesc.length*4*sizeof(float));
evalCubicBSpline(u, B, evalDeriv ? D : 0);
float const * inOffset = inQ + inDesc.offset;
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
float const * in = inOffset + vertexIndices[i+j*4]*inDesc.stride;
for (int k=0; k<inDesc.length; ++k) {
BU[i*inDesc.length+k] += in[k] * B[j];
if (evalDeriv)
DU[i*inDesc.length+k] += in[k] * D[j];
}
}
}
evalCubicBSpline(v, B, evalDeriv ? D : 0);
float * Q = outQ + outDesc.offset,
* dQU = outDQU + outDesc.offset,
* dQV = outDQV + outDesc.offset;
// clear result
memset(Q, 0, inDesc.length*sizeof(float));
if (evalDeriv) {
memset(dQU, 0, inDesc.length*sizeof(float));
memset(dQV, 0, inDesc.length*sizeof(float));
}
for (int i=0; i<4; ++i) {
for (int k=0; k<inDesc.length; ++k) {
Q[k] += BU[inDesc.length*i+k] * B[i];
if (evalDeriv) {
dQU[k] += DU[inDesc.length*i+k] * B[i];
dQV[k] += BU[inDesc.length*i+k] * D[i];
}
}
}
}
void
evalBoundary(float u, float v,
unsigned int const * vertexIndices,
OsdVertexBufferDescriptor const & inDesc,
float const * inQ,
OsdVertexBufferDescriptor const & outDesc,
float * outQ,
float * outDQU,
float * outDQV ) {
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
bool evalDeriv = (outDQU or outDQV);
float B[4], D[4],
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
memset(BU, 0, inDesc.length*4*sizeof(float));
memset(DU, 0, inDesc.length*4*sizeof(float));
evalCubicBSpline(u, B, evalDeriv ? D : 0);
float const * inOffset = inQ + inDesc.offset;
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- v3 M : mirrored
// |.....|.....|.....|
// |.....|.....|.....|
// v4 -- v5 -- v6 -- v7 v : original Cv
// |.....|.....|.....|
// |.....|.....|.....|
// v8 -- v9 -- v10-- v11
float *M = (float*)alloca(inDesc.length*4*sizeof(float));
float const *v0 = inOffset + vertexIndices[0]*inDesc.stride,
*v1 = inOffset + vertexIndices[1]*inDesc.stride,
*v2 = inOffset + vertexIndices[2]*inDesc.stride,
*v3 = inOffset + vertexIndices[3]*inDesc.stride,
*v4 = inOffset + vertexIndices[4]*inDesc.stride,
*v5 = inOffset + vertexIndices[5]*inDesc.stride,
*v6 = inOffset + vertexIndices[6]*inDesc.stride,
*v7 = inOffset + vertexIndices[7]*inDesc.stride;
for (int k=0; k<inDesc.stride; ++k) {
M[0*inDesc.length+k] = 2.0f*v0[k] - v4[k]; // M0 = 2*v0 - v3
M[1*inDesc.length+k] = 2.0f*v1[k] - v5[k]; // M0 = 2*v1 - v4
M[2*inDesc.length+k] = 2.0f*v2[k] - v6[k]; // M1 = 2*v2 - v5
M[3*inDesc.length+k] = 2.0f*v3[k] - v7[k]; // M4 = 2*v2 - v1
}
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
// swap the missing row of verts with our mirrored ones
float const * in = j==0 ? &M[i*inDesc.stride] :
inOffset + vertexIndices[i+(j-1)*4]*inDesc.stride;
for (int k=0; k<inDesc.length; ++k) {
BU[i*inDesc.length+k] += in[k] * B[j];
if (evalDeriv)
DU[i*inDesc.length+k] += in[k] * D[j];
}
}
}
evalCubicBSpline(v, B, evalDeriv ? D : 0);
float * Q = outQ + outDesc.offset,
* dQU = outDQU + outDesc.offset,
* dQV = outDQV + outDesc.offset;
// clear result
memset(Q, 0, inDesc.length*sizeof(float));
if (evalDeriv) {
memset(dQU, 0, inDesc.length*sizeof(float));
memset(dQV, 0, inDesc.length*sizeof(float));
}
for (int i=0; i<4; ++i) {
for (int k=0; k<inDesc.length; ++k) {
Q[k] += BU[inDesc.length*i+k] * B[i];
if (evalDeriv) {
dQU[k] += DU[inDesc.length*i+k] * B[i];
dQV[k] += BU[inDesc.length*i+k] * D[i];
}
}
}
}
void
evalCorner(float u, float v,
unsigned int const * vertexIndices,
OsdVertexBufferDescriptor const & inDesc,
float const * inQ,
OsdVertexBufferDescriptor const & outDesc,
float * outQ,
float * outDQU,
float * outDQV ) {
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
int length = inDesc.length;
bool evalDeriv = (outDQU or outDQV);
float B[4], D[4],
*BU=(float*)alloca(length*4*sizeof(float)),
*DU=(float*)alloca(length*4*sizeof(float));
memset(BU, 0, length*4*sizeof(float));
memset(DU, 0, length*4*sizeof(float));
evalCubicBSpline(u, B, evalDeriv ? D : 0);
float const *inOffset = inQ + inDesc.offset;
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- M4 M : mirrored
// |.....|.....| |
// |.....|.....| |
// v3.--.v4.--.v5 -- M5 v : original Cv
// |.....|.....| |
// |.....|.....| |
// v6 -- v7 -- v8 -- M6
float *M = (float*)alloca(length*7*sizeof(float));
float const *v0 = inOffset + vertexIndices[0]*inDesc.stride,
*v1 = inOffset + vertexIndices[1]*inDesc.stride,
*v2 = inOffset + vertexIndices[2]*inDesc.stride,
*v3 = inOffset + vertexIndices[3]*inDesc.stride,
*v4 = inOffset + vertexIndices[4]*inDesc.stride,
*v5 = inOffset + vertexIndices[5]*inDesc.stride,
*v7 = inOffset + vertexIndices[7]*inDesc.stride,
*v8 = inOffset + vertexIndices[8]*inDesc.stride;
for (int k=0; k<inDesc.stride; ++k) {
M[0*length+k] = 2.0f*v0[k] - v3[k]; // M0 = 2*v0 - v3
M[1*length+k] = 2.0f*v1[k] - v4[k]; // M0 = 2*v1 - v4
M[2*length+k] = 2.0f*v2[k] - v5[k]; // M1 = 2*v2 - v5
M[4*length+k] = 2.0f*v2[k] - v1[k]; // M4 = 2*v2 - v1
M[5*length+k] = 2.0f*v5[k] - v4[k]; // M5 = 2*v5 - v4
M[6*length+k] = 2.0f*v8[k] - v7[k]; // M6 = 2*v8 - v7
// M3 = 2*M2 - M1
M[3*length+k] = 2.0f*M[2*length+k] - M[1*length+k];
}
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
float const * in = NULL;
if (j==0) { // (2)
in = &M[i*inDesc.stride];
} else if (i==3) {
in = &M[(j+3)*inDesc.stride];
} else {
in = inOffset + vertexIndices[i+(j-1)*3]*inDesc.stride;
}
assert(in);
for (int k=0; k<length; ++k) {
BU[i*length+k] += in[k] * B[j];
if (evalDeriv)
DU[i*length+k] += in[k] * D[j];
}
}
}
evalCubicBSpline(v, B, evalDeriv ? D : 0);
float * Q = outQ + outDesc.offset,
* dQU = outDQU + outDesc.offset,
* dQV = outDQV + outDesc.offset;
// clear result
memset(Q, 0, length*sizeof(float));
if (evalDeriv) {
memset(dQU, 0, length*sizeof(float));
memset(dQV, 0, length*sizeof(float));
}
for (int i=0; i<4; ++i) {
for (int k=0; k<length; ++k) {
Q[k] += BU[length*i+k] * B[i];
if (evalDeriv) {
dQU[k] += DU[length*i+k] * B[i];
dQV[k] += BU[length*i+k] * D[i];
}
}
}
}
static float ef_small[7] = {
0.813008f, 0.500000f, 0.363636f, 0.287505f,
0.238692f, 0.204549f, 0.179211f };
/*
static float ef_large[27] = {
0.812816f, 0.500000f, 0.363644f, 0.287514f,
0.238688f, 0.204544f, 0.179229f, 0.159657f,
0.144042f, 0.131276f, 0.120632f, 0.111614f,
0.103872f, 0.09715f, 0.0912559f, 0.0860444f,
0.0814022f, 0.0772401f, 0.0734867f, 0.0700842f,
0.0669851f, 0.0641504f, 0.0615475f, 0.0591488f,
0.0569311f, 0.0548745f, 0.0529621f
};
*/
inline void
univar4x4(float u, float B[4], float D[4])
{
float t = u;
float s = 1.0f - u;
float A0 = s * s;
float A1 = 2 * s * t;
float A2 = t * t;
B[0] = s * A0;
B[1] = t * A0 + s * A1;
B[2] = t * A1 + s * A2;
B[3] = t * A2;
if (D) {
D[0] = - A0;
D[1] = A0 - A1;
D[2] = A1 - A2;
D[3] = A2;
}
}
inline float
csf(unsigned int n, unsigned int j)
{
if (j%2 == 0) {
return cosf((2.0f * float(M_PI) * float(float(j-0)/2.0f))/(float(n)+3.0f));
} else {
return sinf((2.0f * float(M_PI) * float(float(j-1)/2.0f))/(float(n)+3.0f));
}
}
void
evalGregory(float u, float v,
unsigned int const * vertexIndices,
int const * vertexValenceBuffer,
unsigned int const * quadOffsetBuffer,
int maxValence,
OsdVertexBufferDescriptor const & inDesc,
float const * inQ,
OsdVertexBufferDescriptor const & outDesc,
float * outQ,
float * outDQU,
float * outDQV )
{
// vertex
// make sure that we have enough space to store results
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
bool evalDeriv = (outDQU or outDQV);
int valences[4], length=inDesc.length;
float const * inOffset = inQ + inDesc.offset;
float *r = (float*)alloca((maxValence+2)*4*length*sizeof(float)), *rp,
*e0 = r + maxValence*4*length,
*e1 = e0 + 4*length;
memset(r, 0, (maxValence+2)*4*length*sizeof(float));
float *f=(float*)alloca(maxValence*length*sizeof(float)),
*pos=(float*)alloca(length*sizeof(float)),
*opos=(float*)alloca(length*4*sizeof(float));
memset(opos, 0, length*4*sizeof(float));
for (int vid=0; vid < 4; ++vid) {
int vertexID = vertexIndices[vid];
const int *valenceTable = vertexValenceBuffer + vertexID * (2*maxValence+1);
int valence = abs(*valenceTable);
assert(valence<=maxValence);
valences[vid] = valence;
memcpy(pos, inOffset + vertexID*inDesc.stride, length*sizeof(float));
rp=r+vid*maxValence*length;
int vofs = vid*length;
for (int i=0; i<valence; ++i) {
unsigned int im = (i+valence-1)%valence,
ip = (i+1)%valence;
int idx_neighbor = valenceTable[2*i + 0 + 1];
int idx_diagonal = valenceTable[2*i + 1 + 1];
int idx_neighbor_p = valenceTable[2*ip + 0 + 1];
int idx_neighbor_m = valenceTable[2*im + 0 + 1];
int idx_diagonal_m = valenceTable[2*im + 1 + 1];
float const * neighbor = inOffset + idx_neighbor * inDesc.stride;
float const * diagonal = inOffset + idx_diagonal * inDesc.stride;
float const * neighbor_p = inOffset + idx_neighbor_p * inDesc.stride;
float const * neighbor_m = inOffset + idx_neighbor_m * inDesc.stride;
float const * diagonal_m = inOffset + idx_diagonal_m * inDesc.stride;
float *fp = f+i*length;
for (int k=0; k<length; ++k) {
fp[k] = (pos[k]*float(valence) + (neighbor_p[k]+neighbor[k])*2.0f + diagonal[k])/(float(valence)+5.0f);
opos[vofs+k] += fp[k];
rp[i*length+k] =(neighbor_p[k]-neighbor_m[k])/3.0f + (diagonal[k]-diagonal_m[k])/6.0f;
}
}
for (int k=0; k<length; ++k) {
opos[vofs+k] /= valence;
}
for (int i=0; i<valence; ++i) {
int im = (i+valence-1)%valence;
for (int k=0; k<length; ++k) {
float e = 0.5f*(f[i*length+k]+f[im*length+k]);
e0[vofs+k] += csf(valence-3, 2*i) * e;
e1[vofs+k] += csf(valence-3, 2*i+1) * e;
}
}
for (int k=0; k<length; ++k) {
e0[vofs+k] *= ef_small[valence-3];
e1[vofs+k] *= ef_small[valence-3];
}
}
// tess control
// Control Vertices based on :
// "Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation"
// Loop, Schaefer, Ni, Castafio (ACM ToG Siggraph Asia 2009)
//
// P3 e3- e2+ E2
// O--------O--------O--------O
// | | | |
// | | | |
// | | f3- | f2+ |
// | O O |
// e3+ O------O O------O e2-
// | f3+ f2- |
// | |
// | |
// | f0- f1+ |
// e0- O------O O------O e1+
// | O O |
// | | f0+ | f1- |
// | | | |
// | | | |
// O--------O--------O--------O
// P0 e0+ e1- E1
//
float *Ep=(float*)alloca(length*4*sizeof(float)),
*Em=(float*)alloca(length*4*sizeof(float)),
*Fp=(float*)alloca(length*4*sizeof(float)),
*Fm=(float*)alloca(length*4*sizeof(float));
for (int vid=0; vid<4; ++vid) {
int ip = (vid+1)%4;
int im = (vid+3)%4;
int n = valences[vid];
unsigned int const *quadOffsets = quadOffsetBuffer;
int start = quadOffsets[vid] & 0x00ff;
int prev = (quadOffsets[vid] & 0xff00) / 256;
for (int k=0, ofs=vid*length; k<length; ++k, ++ofs) {
Ep[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*start) + e1[ofs]*csf(n-3, 2*start +1);
Em[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*prev ) + e1[ofs]*csf(n-3, 2*prev + 1);
}
unsigned int np = valences[ip],
nm = valences[im];
unsigned int prev_p = (quadOffsets[ip] & 0xff00) / 256,
start_m = quadOffsets[im] & 0x00ff;
float *Em_ip=(float*)alloca(length*sizeof(float)),
*Ep_im=(float*)alloca(length*sizeof(float));
for (int k=0, ipofs=ip*length, imofs=im*length; k<length; ++k, ++ipofs, ++imofs) {
Em_ip[k] = opos[ipofs] + e0[ipofs]*csf(np-3, 2*prev_p) + e1[ipofs]*csf(np-3, 2*prev_p+1);
Ep_im[k] = opos[imofs] + e0[imofs]*csf(nm-3, 2*start_m) + e1[imofs]*csf(nm-3, 2*start_m+1);
}
float s1 = 3.0f - 2.0f*csf(n-3,2)-csf(np-3,2),
s2 = 2.0f*csf(n-3,2),
s3 = 3.0f -2.0f*cosf(2.0f*float(M_PI)/float(n)) - cosf(2.0f*float(M_PI)/float(nm));
rp = r + vid*maxValence*length;
for (int k=0, ofs=vid*length; k<length; ++k, ++ofs) {
Fp[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
Fm[ofs] = (csf(nm-3,2)*opos[ofs] + s3*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
}
}
float * p[20];
for (int i=0, ofs=0; i<4; ++i, ofs+=length) {
p[i*5+0] = opos + ofs;
p[i*5+1] = Ep + ofs;
p[i*5+2] = Em + ofs;
p[i*5+3] = Fp + ofs;
p[i*5+4] = Fm + ofs;
}
float U = 1-u, V=1-v;
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
float *q=(float*)alloca(length*16*sizeof(float));
for (int k=0; k<length; ++k) {
q[ 5*length+k] = (u*p[ 3][k] + v*p[ 4][k])/d11;
q[ 6*length+k] = (U*p[ 9][k] + v*p[ 8][k])/d12;
q[ 9*length+k] = (u*p[19][k] + V*p[18][k])/d21;
q[10*length+k] = (U*p[13][k] + V*p[14][k])/d22;
}
memcpy(q+ 0*length, p[ 0], length*sizeof(float));
memcpy(q+ 1*length, p[ 1], length*sizeof(float));
memcpy(q+ 2*length, p[ 7], length*sizeof(float));
memcpy(q+ 3*length, p[ 5], length*sizeof(float));
memcpy(q+ 4*length, p[ 2], length*sizeof(float));
memcpy(q+ 7*length, p[ 6], length*sizeof(float));
memcpy(q+ 8*length, p[16], length*sizeof(float));
memcpy(q+11*length, p[12], length*sizeof(float));
memcpy(q+12*length, p[15], length*sizeof(float));
memcpy(q+13*length, p[17], length*sizeof(float));
memcpy(q+14*length, p[11], length*sizeof(float));
memcpy(q+15*length, p[10], length*sizeof(float));
float B[4], D[4],
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
memset(BU, 0, inDesc.length*4*sizeof(float));
memset(DU, 0, inDesc.length*4*sizeof(float));
univar4x4(u, B, evalDeriv ? D : 0);
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
float const * in = q + (i+j*4)*length;
for (int k=0; k<inDesc.length; ++k) {
BU[i*inDesc.length+k] += in[k] * B[j];
if (evalDeriv)
DU[i*inDesc.length+k] += in[k] * D[j];
}
}
}
univar4x4(v, B, evalDeriv ? D : 0);
float * Q = outQ + outDesc.offset;
float * dQU = outDQU + outDesc.offset;
float * dQV = outDQV + outDesc.offset;
// clear result
memset(Q, 0, outDesc.length*sizeof(float));
if (evalDeriv) {
memset(dQU, 0, outDesc.length*sizeof(float));
memset(dQV, 0, outDesc.length*sizeof(float));
}
for (int i=0; i<4; ++i) {
for (int k=0; k<inDesc.length; ++k) {
Q[k] += BU[inDesc.length*i+k] * B[i];
if (evalDeriv) {
dQU[k] += DU[inDesc.length*i+k] * B[i];
dQV[k] += BU[inDesc.length*i+k] * D[i];
}
}
}
}
void
evalGregoryBoundary(float u, float v,
unsigned int const * vertexIndices,
int const * vertexValenceBuffer,
unsigned int const * quadOffsetBuffer,
int maxValence,
OsdVertexBufferDescriptor const & inDesc,
float const * inQ,
OsdVertexBufferDescriptor const & outDesc,
float * outQ,
float * outDQU,
float * outDQV )
{
// vertex
// make sure that we have enough space to store results
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
bool evalDeriv = (outDQU or outDQV);
int valences[4], zerothNeighbors[4], length=inDesc.length;
float const * inOffset = inQ + inDesc.offset;
float *r = (float*)alloca((maxValence+2)*4*length*sizeof(float)), *rp,
*e0 = r + maxValence*4*length,
*e1 = e0 + 4*length;
memset(r, 0, (maxValence+2)*4*length*sizeof(float));
float *f=(float*)alloca(maxValence*length*sizeof(float)),
*org=(float*)alloca(length*4*sizeof(float)),
*opos=(float*)alloca(length*4*sizeof(float));
memset(opos, 0, length*4*sizeof(float));
for (int vid=0; vid < 4; ++vid) {
int vertexID = vertexIndices[vid];
const int *valenceTable = vertexValenceBuffer + vertexID * (2*maxValence+1);
int valence = *valenceTable,
ivalence = abs(valence);
assert(ivalence<=maxValence);
valences[vid] = valence;
int vofs = vid * length;
float *pos=org + vofs;
memcpy(pos, inOffset + vertexID*inDesc.stride, length*sizeof(float));
int boundaryEdgeNeighbors[2];
unsigned int currNeighbor = 0,
ibefore=0,
zerothNeighbor=0;
rp=r+vid*maxValence*length;
for (int i=0; i<ivalence; ++i) {
unsigned int im = (i+ivalence-1)%ivalence,
ip = (i+1)%ivalence;
bool isBoundaryNeighbor = false;
int idx_neighbor = valenceTable[2*i + 0 + 1];
int idx_diagonal = valenceTable[2*i + 1 + 1];
int idx_neighbor_p = valenceTable[2*ip + 0 + 1];
int idx_neighbor_m = valenceTable[2*im + 0 + 1];
int idx_diagonal_m = valenceTable[2*im + 1 + 1];
int valenceNeighbor = vertexValenceBuffer[idx_neighbor * (2*maxValence+1)];
if (valenceNeighbor < 0) {
isBoundaryNeighbor = true;
boundaryEdgeNeighbors[currNeighbor++] = idx_neighbor;
if (currNeighbor == 1) {
ibefore = i;
zerothNeighbor = i;
} else {
if (i-ibefore == 1) {
int tmp = boundaryEdgeNeighbors[0];
boundaryEdgeNeighbors[0] = boundaryEdgeNeighbors[1];
boundaryEdgeNeighbors[1] = tmp;
zerothNeighbor = i;
}
}
}
float const * neighbor = inOffset + idx_neighbor * inDesc.stride;
float const * diagonal = inOffset + idx_diagonal * inDesc.stride;
float const * neighbor_p = inOffset + idx_neighbor_p * inDesc.stride;
float const * neighbor_m = inOffset + idx_neighbor_m * inDesc.stride;
float const * diagonal_m = inOffset + idx_diagonal_m * inDesc.stride;
float *fp = f+i*length;
for (int k=0; k<length; ++k) {
fp[k] = (pos[k]*float(ivalence) + (neighbor_p[k]+neighbor[k])*2.0f + diagonal[k])/(float(ivalence)+5.0f);
opos[vofs+k] += fp[k];
rp[i*length+k] =(neighbor_p[k]-neighbor_m[k])/3.0f + (diagonal[k]-diagonal_m[k])/6.0f;
}
}
for (int k=0; k<length; ++k) {
opos[vofs+k] /= ivalence;
}
zerothNeighbors[vid] = zerothNeighbor;
if (currNeighbor == 1) {
boundaryEdgeNeighbors[1] = boundaryEdgeNeighbors[0];
}
for (int i=0; i<ivalence; ++i) {
unsigned int im = (i+ivalence-1)%ivalence;
for (int k=0; k<length; ++k) {
float e = 0.5f*(f[i*length+k]+f[im*length+k]);
e0[vofs+k] += csf(ivalence-3, 2*i ) * e;
e1[vofs+k] += csf(ivalence-3, 2*i+1) * e;
}
}
for (int k=0; k<length; ++k) {
e0[vofs+k] *= ef_small[ivalence-3];
e1[vofs+k] *= ef_small[ivalence-3];
}
if (valence<0) {
if (ivalence>2) {
for (int k=0; k<length; ++k) {
opos[vofs+k] = (inOffset[boundaryEdgeNeighbors[0]*inDesc.stride+k] +
inOffset[boundaryEdgeNeighbors[1]*inDesc.stride+k] + 4.0f*pos[k])/6.0f;
}
} else {
memcpy(opos, pos, length*sizeof(float));
}
float k = float(float(ivalence) - 1.0f); //k is the number of faces
float c = cosf(float(M_PI)/k);
float s = sinf(float(M_PI)/k);
float gamma = -(4.0f*s)/(3.0f*k+c);
float alpha_0k = -((1.0f+2.0f*c)*sqrtf(1.0f+c))/((3.0f*k+c)*sqrtf(1.0f-c));
float beta_0 = s/(3.0f*k + c);
int idx_diagonal = valenceTable[2*zerothNeighbor + 1 + 1];
assert(idx_diagonal>0);
float const * diagonal = inOffset + idx_diagonal * inDesc.stride;
for (int k=0; k<length; ++k) {
e0[vofs+k] = (inOffset[boundaryEdgeNeighbors[0]*inDesc.stride+k] -
inOffset[boundaryEdgeNeighbors[1]*inDesc.stride+k])/6.0f;
e1[vofs+k] = gamma * pos[k] + beta_0 * diagonal[k] +
(inOffset[boundaryEdgeNeighbors[0]*inDesc.stride+k] +
inOffset[boundaryEdgeNeighbors[1]*inDesc.stride+k]) * alpha_0k;
}
for (int x=1; x<ivalence-1; ++x) {
unsigned int curri = ((x + zerothNeighbor)%ivalence);
float alpha = (4.0f*sinf((float(M_PI) * float(x))/k))/(3.0f*k+c);
float beta = (sinf((float(M_PI) * float(x))/k) + sinf((float(M_PI) * float(x+1))/k))/(3.0f*k+c);
int idx_neighbor = valenceTable[2*curri + 0 + 1],
idx_diagonal = valenceTable[2*curri + 1 + 1];
assert( idx_neighbor>0 and idx_diagonal>0 );
float const * neighbor = inOffset + idx_neighbor * inDesc.stride,
* diagonal = inOffset + idx_diagonal * inDesc.stride;
for (int k=0; k<length; ++k) {
e1[vofs+k] += alpha*neighbor[k] + beta*diagonal[k];
}
}
for (int k=0; k<length; ++k) {
e1[vofs+k] /= 3.0f;
}
}
}
// tess control
// Control Vertices based on :
// "Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation"
// Loop, Schaefer, Ni, Castafio (ACM ToG Siggraph Asia 2009)
//
// P3 e3- e2+ E2
// O--------O--------O--------O
// | | | |
// | | | |
// | | f3- | f2+ |
// | O O |
// e3+ O------O O------O e2-
// | f3+ f2- |
// | |
// | |
// | f0- f1+ |
// e0- O------O O------O e1+
// | O O |
// | | f0+ | f1- |
// | | | |
// | | | |
// O--------O--------O--------O
// P0 e0+ e1- E1
//
float *Ep=(float*)alloca(length*4*sizeof(float)),
*Em=(float*)alloca(length*4*sizeof(float)),
*Fp=(float*)alloca(length*4*sizeof(float)),
*Fm=(float*)alloca(length*4*sizeof(float));
for (int vid=0; vid<4; ++vid) {
unsigned int ip = (vid+1)%4,
im = (vid+3)%4,
n = abs(valences[vid]),
ivalence = n;
const unsigned int *quadOffsets = quadOffsetBuffer;
int vofs = vid * length;
unsigned int start = quadOffsets[vid] & 0x00ff,
prev = (quadOffsets[vid] & 0xff00) / 256,
np = abs(valences[ip]),
nm = abs(valences[im]),
start_m = quadOffsets[im] & 0x00ff,
prev_p = (quadOffsets[ip] & 0xff00) / 256;
float *Em_ip=(float*)alloca(length*sizeof(float)),
*Ep_im=(float*)alloca(length*sizeof(float));
if (valences[ip]<-2) {
unsigned int j = (np + prev_p - zerothNeighbors[ip]) % np;
for (int k=0, ipofs=ip*length; k<length; ++k, ++ipofs) {
Em_ip[k] = opos[ipofs] + cosf((float(M_PI)*j)/float(np-1))*e0[ipofs] + sinf((float(M_PI)*j)/float(np-1))*e1[ipofs];
}
} else {
for (int k=0, ipofs=ip*length; k<length; ++k, ++ipofs) {
Em_ip[k] = opos[ipofs] + e0[ipofs]*csf(np-3,2*prev_p) + e1[ipofs]*csf(np-3,2*prev_p+1);
}
}
if (valences[im]<-2) {
unsigned int j = (nm + start_m - zerothNeighbors[im]) % nm;
for (int k=0, imofs=im*length; k<length; ++k, ++imofs) {
Ep_im[k] = opos[imofs] + cosf((float(M_PI)*j)/float(nm-1))*e0[imofs] + sinf((float(M_PI)*j)/float(nm-1))*e1[imofs];
}
} else {
for (int k=0, imofs=im*length; k<length; ++k, ++imofs) {
Ep_im[k] = opos[imofs] + e0[imofs]*csf(nm-3,2*start_m) + e1[imofs]*csf(nm-3,2*start_m+1);
}
}
if (valences[vid] < 0) {
n = (n-1)*2;
}
if (valences[im] < 0) {
nm = (nm-1)*2;
}
if (valences[ip] < 0) {
np = (np-1)*2;
}
rp=r+vid*maxValence*length;
if (valences[vid] > 2) {
float s1 = 3.0f - 2.0f*csf(n-3,2)-csf(np-3,2),
s2 = 2.0f*csf(n-3,2),
s3 = 3.0f -2.0f*cosf(2.0f*float(M_PI)/float(n)) - cosf(2.0f*float(M_PI)/float(nm));
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
Ep[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*start) + e1[ofs]*csf(n-3, 2*start +1);
Em[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*prev ) + e1[ofs]*csf(n-3, 2*prev + 1);
Fp[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
Fm[ofs] = (csf(nm-3,2)*opos[ofs] + s3*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
}
} else if (valences[vid] < -2) {
unsigned int jp = (ivalence + start - zerothNeighbors[vid]) % ivalence,
jm = (ivalence + prev - zerothNeighbors[vid]) % ivalence;
float s1 = 3-2*csf(n-3,2)-csf(np-3,2),
s2 = 2*csf(n-3,2),
s3 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
Ep[ofs] = opos[ofs] + cosf((float(M_PI)*jp)/float(ivalence-1))*e0[ofs] + sinf((float(M_PI)*jp)/float(ivalence-1))*e1[ofs];
Em[ofs] = opos[ofs] + cosf((float(M_PI)*jm)/float(ivalence-1))*e0[ofs] + sinf((float(M_PI)*jm)/float(ivalence-1))*e1[ofs];
Fp[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
Fm[ofs] = (csf(nm-3,2)*opos[ofs] + s3*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
}
if (valences[im]<0) {
float s1=3-2*csf(n-3,2)-csf(np-3,2);
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
Fp[ofs] = Fm[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
}
} else if (valences[ip]<0) {
float s1 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
Fm[ofs] = Fp[ofs] = (csf(nm-3,2)*opos[ofs] + s1*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
}
}
} else if (valences[vid]==-2) {
for (int k=0, ofs=vofs, ipofs=ip*length, imofs=im*length; k<length; ++k, ++ofs, ++ipofs, ++imofs) {
Ep[ofs] = (2.0f * org[ofs] + org[ipofs])/3.0f;
Em[ofs] = (2.0f * org[ofs] + org[imofs])/3.0f;
Fp[ofs] = Fm[ofs] = (4.0f * org[ofs] + org[((vid+2)%n)*inDesc.stride+k] + 2.0f * org[ipofs] + 2.0f * org[imofs])/9.0f;
}
}
}
float * p[20];
for (int vid=0, ofs=0; vid<4; ++vid, ofs+=length) {
p[vid*5+0] = opos + ofs;
p[vid*5+1] = Ep + ofs;
p[vid*5+2] = Em + ofs;
p[vid*5+3] = Fp + ofs;
p[vid*5+4] = Fm + ofs;
}
float U = 1-u, V=1-v;
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
float *q=(float*)alloca(length*16*sizeof(float));
for (int k=0; k<length; ++k) {
q[ 5*length+k] = (u*p[ 3][k] + v*p[ 4][k])/d11;
q[ 6*length+k] = (U*p[ 9][k] + v*p[ 8][k])/d12;
q[ 9*length+k] = (u*p[19][k] + V*p[18][k])/d21;
q[10*length+k] = (U*p[13][k] + V*p[14][k])/d22;
}
memcpy(q+ 0*length, p[ 0], length*sizeof(float));
memcpy(q+ 1*length, p[ 1], length*sizeof(float));
memcpy(q+ 2*length, p[ 7], length*sizeof(float));
memcpy(q+ 3*length, p[ 5], length*sizeof(float));
memcpy(q+ 4*length, p[ 2], length*sizeof(float));
memcpy(q+ 7*length, p[ 6], length*sizeof(float));
memcpy(q+ 8*length, p[16], length*sizeof(float));
memcpy(q+11*length, p[12], length*sizeof(float));
memcpy(q+12*length, p[15], length*sizeof(float));
memcpy(q+13*length, p[17], length*sizeof(float));
memcpy(q+14*length, p[11], length*sizeof(float));
memcpy(q+15*length, p[10], length*sizeof(float));
float B[4], D[4],
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
memset(BU, 0, inDesc.length*4*sizeof(float));
memset(DU, 0, inDesc.length*4*sizeof(float));
univar4x4(u, B, evalDeriv ? D : 0);
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
float const * in = q + (i+j*4)*length;
for (int k=0; k<inDesc.length; ++k) {
BU[i*inDesc.length+k] += in[k] * B[j];
if (evalDeriv)
DU[i*inDesc.length+k] += in[k] * D[j];
}
}
}
univar4x4(v, B, evalDeriv ? D : 0);
float * Q = outQ + outDesc.offset;
float * dQU = outDQU + outDesc.offset;
float * dQV = outDQV + outDesc.offset;
// clear result
memset(Q, 0, outDesc.length*sizeof(float));
if (evalDeriv) {
memset(dQU, 0, outDesc.length*sizeof(float));
memset(dQV, 0, outDesc.length*sizeof(float));
}
for (int i=0; i<4; ++i) {
for (int k=0; k<inDesc.length; ++k) {
Q[k] += BU[inDesc.length*i+k] * B[i];
if (evalDeriv) {
dQU[k] += DU[inDesc.length*i+k] * B[i];
dQV[k] += BU[inDesc.length*i+k] * D[i];
}
}
}
}
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv