OpenSubdiv/opensubdiv/osd/cpuKernel.cpp
2013-08-14 16:41:35 -07:00

304 lines
12 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License
// and the following modification to it: Section 6 Trademarks.
// deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the
// trade names, trademarks, service marks, or product names of the
// Licensor and its affiliates, except as required for reproducing
// the content of the NOTICE file.
//
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
// either express or implied. See the License for the specific
// language governing permissions and limitations under the
// License.
//
#include "../osd/cpuKernel.h"
#include "../osd/vertexDescriptor.h"
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
void OsdCpuComputeFace(
OsdVertexDescriptor const &vdesc, float * vertex, float * varying,
const int *F_IT, const int *F_ITa, int vertexOffset, int tableOffset,
int start, int end) {
if(vdesc.numVertexElements == 4 && varying == NULL) {
ComputeFaceKernel<4>
(vertex, F_IT, F_ITa, vertexOffset, tableOffset, start, end);
} else if(vdesc.numVertexElements == 8 && varying == NULL) {
ComputeFaceKernel<8>
(vertex, F_IT, F_ITa, vertexOffset, tableOffset, start, end);
}
else {
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = F_ITa[2*i];
int n = F_ITa[2*i+1];
float weight = 1.0f/n;
// XXX: should use local vertex struct variable instead of
// accumulating directly into global memory.
int dstIndex = i + vertexOffset - tableOffset;
vdesc.Clear(vertex, varying, dstIndex);
for (int j = 0; j < n; ++j) {
int index = F_IT[h+j];
vdesc.AddWithWeight(vertex, dstIndex, index, weight);
vdesc.AddVaryingWithWeight(varying, dstIndex, index, weight);
}
}
}
}
void OsdCpuComputeEdge(
OsdVertexDescriptor const &vdesc, float *vertex, float *varying,
const int *E_IT, const float *E_W, int vertexOffset, int tableOffset,
int start, int end) {
if(vdesc.numVertexElements == 4 && varying == NULL) {
ComputeEdgeKernel<4>(vertex, E_IT, E_W, vertexOffset, tableOffset,
start, end);
}
else if(vdesc.numVertexElements == 8 && varying == NULL) {
ComputeEdgeKernel<8>(vertex, E_IT, E_W, vertexOffset, tableOffset,
start, end);
}
else {
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int eidx0 = E_IT[4*i+0];
int eidx1 = E_IT[4*i+1];
int eidx2 = E_IT[4*i+2];
int eidx3 = E_IT[4*i+3];
float vertWeight = E_W[i*2+0];
int dstIndex = i + vertexOffset - tableOffset;
vdesc.Clear(vertex, varying, dstIndex);
vdesc.AddWithWeight(vertex, dstIndex, eidx0, vertWeight);
vdesc.AddWithWeight(vertex, dstIndex, eidx1, vertWeight);
if (eidx2 != -1) {
float faceWeight = E_W[i*2+1];
vdesc.AddWithWeight(vertex, dstIndex, eidx2, faceWeight);
vdesc.AddWithWeight(vertex, dstIndex, eidx3, faceWeight);
}
vdesc.AddVaryingWithWeight(varying, dstIndex, eidx0, 0.5f);
vdesc.AddVaryingWithWeight(varying, dstIndex, eidx1, 0.5f);
}
}
}
void OsdCpuComputeVertexA(
OsdVertexDescriptor const &vdesc, float *vertex, float *varying,
const int *V_ITa, const float *V_W, int vertexOffset, int tableOffset,
int start, int end, int pass) {
if(vdesc.numVertexElements == 4 && varying == NULL) {
ComputeVertexAKernel<4>(vertex, V_ITa, V_W, vertexOffset, tableOffset,
start, end, pass);
}
else if (vdesc.numVertexElements == 8 && varying == NULL) {
ComputeVertexAKernel<8>(vertex, V_ITa, V_W, vertexOffset, tableOffset,
start, end, pass);
}
else {
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
int eidx0 = V_ITa[5*i+3];
int eidx1 = V_ITa[5*i+4];
float weight = (pass == 1) ? V_W[i] : 1.0f - V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight > 0.0f && weight < 1.0f && n > 0)
weight = 1.0f - weight;
int dstIndex = i + vertexOffset - tableOffset;
if (not pass)
vdesc.Clear(vertex, varying, dstIndex);
if (eidx0 == -1 || (pass == 0 && (n == -1))) {
vdesc.AddWithWeight(vertex, dstIndex, p, weight);
} else {
vdesc.AddWithWeight(vertex, dstIndex, p, weight * 0.75f);
vdesc.AddWithWeight(vertex, dstIndex, eidx0, weight * 0.125f);
vdesc.AddWithWeight(vertex, dstIndex, eidx1, weight * 0.125f);
}
if (not pass)
vdesc.AddVaryingWithWeight(varying, dstIndex, p, 1.0f);
}
}
}
void OsdCpuComputeVertexB(
OsdVertexDescriptor const &vdesc, float *vertex, float *varying,
const int *V_ITa, const int *V_IT, const float *V_W,
int vertexOffset, int tableOffset, int start, int end) {
if(vdesc.numVertexElements == 4 && varying == NULL) {
ComputeVertexBKernel<4>(vertex, V_ITa, V_IT, V_W,
vertexOffset, tableOffset, start, end);
}
else if(vdesc.numVertexElements == 8 && varying == NULL) {
ComputeVertexBKernel<8>(vertex, V_ITa, V_IT, V_W,
vertexOffset, tableOffset, start, end);
}
else {
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = V_ITa[5*i];
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
float weight = V_W[i];
float wp = 1.0f/static_cast<float>(n*n);
float wv = (n-2.0f) * n * wp;
int dstIndex = i + vertexOffset - tableOffset;
vdesc.Clear(vertex, varying, dstIndex);
vdesc.AddWithWeight(vertex, dstIndex, p, weight * wv);
for (int j = 0; j < n; ++j) {
vdesc.AddWithWeight(vertex, dstIndex, V_IT[h+j*2], weight * wp);
vdesc.AddWithWeight(vertex, dstIndex, V_IT[h+j*2+1], weight * wp);
}
vdesc.AddVaryingWithWeight(varying, dstIndex, p, 1.0f);
}
}
}
void OsdCpuComputeLoopVertexB(
OsdVertexDescriptor const &vdesc, float *vertex, float *varying,
const int *V_ITa, const int *V_IT, const float *V_W,
int vertexOffset, int tableOffset, int start, int end) {
if(vdesc.numVertexElements == 4 && varying == NULL) {
ComputeLoopVertexBKernel<4>(vertex, V_ITa, V_IT, V_W, vertexOffset,
tableOffset, start, end);
}
else if(vdesc.numVertexElements == 8 && varying == NULL) {
ComputeLoopVertexBKernel<8>(vertex, V_ITa, V_IT, V_W, vertexOffset,
tableOffset, start, end);
}
else {
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = V_ITa[5*i];
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
float weight = V_W[i];
float wp = 1.0f/static_cast<float>(n);
float beta = 0.25f * cosf(static_cast<float>(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
int dstIndex = i + vertexOffset - tableOffset;
vdesc.Clear(vertex, varying, dstIndex);
vdesc.AddWithWeight(vertex, dstIndex, p, weight * (1.0f - (beta * n)));
for (int j = 0; j < n; ++j)
vdesc.AddWithWeight(vertex, dstIndex, V_IT[h+j], weight * beta);
vdesc.AddVaryingWithWeight(varying, dstIndex, p, 1.0f);
}
}
}
void OsdCpuComputeBilinearEdge(
OsdVertexDescriptor const &vdesc, float *vertex, float *varying,
const int *E_IT, int vertexOffset, int tableOffset, int start, int end) {
if(vdesc.numVertexElements == 4 && varying == NULL) {
ComputeBilinearEdgeKernel<4>(vertex, E_IT, vertexOffset, tableOffset,
start, end);
}
else if(vdesc.numVertexElements == 8 && varying == NULL) {
ComputeBilinearEdgeKernel<8>(vertex, E_IT, vertexOffset, tableOffset,
start, end);
}
else {
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int eidx0 = E_IT[2*i+0];
int eidx1 = E_IT[2*i+1];
int dstIndex = i + vertexOffset - tableOffset;
vdesc.Clear(vertex, varying, dstIndex);
vdesc.AddWithWeight(vertex, dstIndex, eidx0, 0.5f);
vdesc.AddWithWeight(vertex, dstIndex, eidx1, 0.5f);
vdesc.AddVaryingWithWeight(varying, dstIndex, eidx0, 0.5f);
vdesc.AddVaryingWithWeight(varying, dstIndex, eidx1, 0.5f);
}
}
}
void OsdCpuComputeBilinearVertex(
OsdVertexDescriptor const &vdesc, float *vertex, float *varying,
const int *V_ITa, int vertexOffset, int tableOffset, int start, int end) {
int numVertexElements = vdesc.numVertexElements;
int numVaryingElements = vdesc.numVaryingElements;
float *src, *des;
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int p = V_ITa[i];
int dstIndex = i + vertexOffset - tableOffset;
src = vertex + p * numVertexElements;
des = vertex + dstIndex * numVertexElements;
memcpy(des, src, sizeof(float)*numVertexElements);
if(varying) {
src = varying + p * numVaryingElements;
des = varying + dstIndex * numVaryingElements;
memcpy(des, src, sizeof(float)*numVaryingElements);
}
}
}
void OsdCpuEditVertexAdd(
OsdVertexDescriptor const &vdesc, float *vertex,
int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset,
int start, int end,
const unsigned int *editIndices, const float *editValues) {
for (int i = start+tableOffset; i < end+tableOffset; i++) {
vdesc.ApplyVertexEditAdd(vertex,
primVarOffset,
primVarWidth,
editIndices[i] + vertexOffset,
&editValues[i*primVarWidth]);
}
}
void OsdCpuEditVertexSet(
OsdVertexDescriptor const &vdesc, float *vertex,
int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset,
int start, int end,
const unsigned int *editIndices, const float *editValues) {
for (int i = start+tableOffset; i < end+tableOffset; i++) {
vdesc.ApplyVertexEditSet(vertex,
primVarOffset,
primVarWidth,
editIndices[i] + vertexOffset,
&editValues[i*primVarWidth]);
}
}
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv