OpenSubdiv/opensubdiv/vtr/refinement.cpp
barfowl 8cb4a1c8ad Fixed issues with refined topology not correctly oriented around vertices:
- Refinement methods to populate relations updated to order correctly
    - updated topology validation method in Level
2014-09-23 17:37:33 -07:00

2295 lines
91 KiB
C++

//
// Copyright 2014 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../sdc/crease.h"
#include "../sdc/catmarkScheme.h"
#include "../sdc/bilinearScheme.h"
#include "../vtr/types.h"
#include "../vtr/level.h"
#include "../vtr/refinement.h"
#include "../vtr/fvarLevel.h"
#include "../vtr/fvarRefinement.h"
#include "../vtr/maskInterfaces.h"
#include <cassert>
#include <cstdio>
#include <utility>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Vtr {
//
// Simple constructor and destructor -- consider inline if they remain simple...
//
Refinement::Refinement() :
_parent(0),
_child(0),
_schemeType(Sdc::TYPE_CATMARK),
_schemeOptions(),
_quadSplit(true),
_childFaceFromFaceCount(0),
_childEdgeFromFaceCount(0),
_childEdgeFromEdgeCount(0),
_childVertFromFaceCount(0),
_childVertFromEdgeCount(0),
_childVertFromVertCount(0) {
}
Refinement::~Refinement() {
for (int i = 0; i < (int)_fvarChannels.size(); ++i) {
delete _fvarChannels[i];
}
}
void
Refinement::initialize(Level& parent, Level& child) {
// Make sure we are getting a fresh child...
assert((child.getDepth() == 0) && (child.getNumVertices() == 0));
//
// Do we want anything more here for "initialization", e.g. the subd scheme,
// options, etc. -- or will those be specified/assigned on refinement?
//
_parent = &parent;
_child = &child;
child._depth = 1 + parent.getDepth();
}
void
Refinement::setScheme(Sdc::Type const& schemeType, Sdc::Options const& schemeOptions) {
_schemeType = schemeType;
_schemeOptions = schemeOptions;
}
//
// Methods for preparing for refinement:
//
void
Refinement::allocateParentToChildMapping() {
//
// Initialize the vectors of indices mapping parent components to those child components
// that will originate from each.
//
// There is some history here regarding whether to initialize all entries or not, and if
// so, what default value to use (marking for sparse refinement):
//
int faceChildFaceCount;
int faceChildEdgeCount;
int edgeChildEdgeCount;
int faceChildVertCount;
int edgeChildVertCount;
int vertChildVertCount;
if (_quadSplit) {
faceChildFaceCount = (int) _parent->_faceVertIndices.size();
faceChildEdgeCount = (int) _parent->_faceEdgeIndices.size();
edgeChildEdgeCount = (int) _parent->_edgeVertIndices.size();
faceChildVertCount = _parent->getNumFaces();
edgeChildVertCount = _parent->getNumEdges();
vertChildVertCount = _parent->getNumVertices();
} else {
assert("Non-quad splitting not yet supported\n" == 0);
faceChildFaceCount = _parent->getNumFaces() * 4;
faceChildEdgeCount = (int) _parent->_faceEdgeIndices.size();
edgeChildEdgeCount = (int) _parent->_edgeVertIndices.size();
faceChildVertCount = 0;
edgeChildVertCount = _parent->getNumEdges();
vertChildVertCount = _parent->getNumVertices();
}
//
// Given we will be ignoring initial values with uniform refinement and assigning all
// directly, initializing here is a waste...
//
Index initValue = 0;
_faceChildFaceIndices.resize(faceChildFaceCount, initValue);
_faceChildEdgeIndices.resize(faceChildEdgeCount, initValue);
_edgeChildEdgeIndices.resize(edgeChildEdgeCount, initValue);
_faceChildVertIndex.resize(faceChildVertCount, initValue);
_edgeChildVertIndex.resize(edgeChildVertCount, initValue);
_vertChildVertIndex.resize(vertChildVertCount, initValue);
}
void
Refinement::printParentToChildMapping() const {
printf("Parent-to-child component mapping:\n");
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
printf(" Face %d:\n", pFace);
printf(" Child vert: %d\n", _faceChildVertIndex[pFace]);
printf(" Child faces: ");
IndexArray const childFaces = getFaceChildFaces(pFace);
for (int i = 0; i < childFaces.size(); ++i) {
printf(" %d", childFaces[i]);
}
printf("\n");
printf(" Child edges: ");
IndexArray const childEdges = getFaceChildEdges(pFace);
for (int i = 0; i < childEdges.size(); ++i) {
printf(" %d", childEdges[i]);
}
printf("\n");
}
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
printf(" Edge %d:\n", pEdge);
printf(" Child vert: %d\n", _edgeChildVertIndex[pEdge]);
IndexArray const childEdges = getEdgeChildEdges(pEdge);
printf(" Child edges: %d %d\n", childEdges[0], childEdges[1]);
}
for (Index pVert = 0; pVert < _parent->getNumVertices(); ++pVert) {
printf(" Vert %d:\n", pVert);
printf(" Child vert: %d\n", _vertChildVertIndex[pVert]);
}
}
namespace {
inline bool isSparseIndexMarked(Index index) { return index != 0; }
inline int
sequenceSparseIndexVector(IndexVector& indexVector, int baseValue = 0) {
int validCount = 0;
for (int i = 0; i < (int) indexVector.size(); ++i) {
indexVector[i] = isSparseIndexMarked(indexVector[i])
? (baseValue + validCount++) : INDEX_INVALID;
}
return validCount;
}
inline int
sequenceFullIndexVector(IndexVector& indexVector, int baseValue = 0) {
int indexCount = (int) indexVector.size();
for (int i = 0; i < indexCount; ++i) {
indexVector[i] = baseValue++;
}
return indexCount;
}
}
void
Refinement::initializeSparseSelectionTags() {
_parentFaceTag.resize(_parent->getNumFaces());
_parentEdgeTag.resize(_parent->getNumEdges());
_parentVertexTag.resize(_parent->getNumVertices());
}
void
Refinement::populateParentToChildMapping() {
allocateParentToChildMapping();
if (_uniform) {
//
// We should be able to replace this separate initialization and sequencing in one
// iteration -- we just need to separate the allocation and initialization that are
// currently combined in the following initialization method:
//
// child faces:
_childFaceFromFaceCount = sequenceFullIndexVector(_faceChildFaceIndices);
// child edges:
_childEdgeFromFaceCount = sequenceFullIndexVector(_faceChildEdgeIndices);
_childEdgeFromEdgeCount = sequenceFullIndexVector(_edgeChildEdgeIndices, _childEdgeFromFaceCount);
// child vertices:
_childVertFromFaceCount = sequenceFullIndexVector(_faceChildVertIndex);
_childVertFromEdgeCount = sequenceFullIndexVector(_edgeChildVertIndex, _childVertFromFaceCount);
_childVertFromVertCount = sequenceFullIndexVector(_vertChildVertIndex, _childVertFromFaceCount +
_childVertFromEdgeCount);
} else {
//
// Since the parent-to-child mapping is not sparse, we initialize it and then mark
// child components that are required from the parent components selected, or the
// neighborhoods around them to support their limit.
//
// Make sure the selection was non-empty -- currently unsupported...
if (_parentVertexTag.size() == 0) {
assert("Unsupported empty sparse refinement detected in Refinement" == 0);
}
markSparseChildComponents();
//
// Assign the sequences of child components by inspecting what was marked:
//
// Note that for vertices (and edges) the sequence is assembled from three source vectors
// for vertices originating from faces, edges and vertices:
//
// child faces:
_childFaceFromFaceCount = sequenceSparseIndexVector(_faceChildFaceIndices);
// child edges:
_childEdgeFromFaceCount = sequenceSparseIndexVector(_faceChildEdgeIndices);
_childEdgeFromEdgeCount = sequenceSparseIndexVector(_edgeChildEdgeIndices, _childEdgeFromFaceCount);
// child vertices:
_childVertFromFaceCount = sequenceSparseIndexVector(_faceChildVertIndex);
_childVertFromEdgeCount = sequenceSparseIndexVector(_edgeChildVertIndex, _childVertFromFaceCount);
_childVertFromVertCount = sequenceSparseIndexVector(_vertChildVertIndex, _childVertFromFaceCount +
_childVertFromEdgeCount);
}
}
void
Refinement::createChildComponents() {
//
// Assign the child's component counts/inventory based on the child components identified:
//
_child->_faceCount = _childFaceFromFaceCount;
_child->_edgeCount = _childEdgeFromFaceCount + _childEdgeFromEdgeCount;
_child->_vertCount = _childVertFromFaceCount + _childVertFromEdgeCount + _childVertFromVertCount;
}
//
// Before we can refine the topological relations, we want to have the vectors
// sized appropriately so that we can (potentially) distribute the computation
// over chunks of these vectors.
//
// This is non-trivial in the case of sparse subdivision, but there are still
// some opportunities for concurrency within these...
//
// We will know the maximal size of each relation based on the origin of the
// child component -- so we could over-allocate. If the refinement is very
// sparse the greatest savings will come from the small number of components
// and the overhead in the relations of each should be miminal (there should
// be a mix between maximal and minimal size given the mix of both interior
// and exterior components when sparse).
//
// Is it worth populating the counts concurrently, then making a single
// pass through them to assemble the offsets?
//
void
Refinement::initializeFaceVertexCountsAndOffsets() {
Level& child = *_child;
//
// Be aware of scheme-specific decisions here, e.g. the current use
// of 4 for quads for Catmark -- must adjust for Loop, Bilinear and
// account for possibility of both quads and tris...
//
child._faceVertCountsAndOffsets.resize(child.getNumFaces() * 2);
for (int i = 0; i < child.getNumFaces(); ++i) {
child._faceVertCountsAndOffsets[i*2 + 0] = 4;
child._faceVertCountsAndOffsets[i*2 + 1] = i << 2;
}
}
void
Refinement::initializeEdgeFaceCountsAndOffsets() {
//
// Be aware of scheme-specific decisions here, e.g.:
// - inspection of sparse child faces for edges from faces
// - no guaranteed "neighborhood" around Bilinear verts from verts
//
// If uniform subdivision, face count of a child edge will be:
// - 2 for edges from parent faces
// - same as parent edge for edges from parent edges
// If sparse subdivision, face count of a child edge will be:
// - 1 or 2 depending on child faces in parent face
// - requires inspection if not all child faces present
// ? same as parent edge for edges from parent edges
// - given end vertex must have its full set of child faces
// - not for Bilinear -- only if neighborhood is non-zero
//
}
void
Refinement::initializeVertexFaceCountsAndOffsets() {
//
// Be aware of scheme-specific decisions here, e.g.:
// - no verts from parent faces for Loop
// - more interior edges and faces for verts from parent edges for Loop
// - no guaranteed "neighborhood" around Bilinear verts from verts
//
// If uniform subdivision, vert-face count will be:
// - 4 for verts from parent faces (for catmark)
// - 2x number in parent edge for verts from parent edges
// - same as parent vert for verts from parent verts
// If sparse subdivision, vert-face count will be:
// - the number of child faces in parent face
// - 1 or 2x number in parent edge for verts from parent edges
// - where the 1 or 2 is number of child edges of parent edge
// - same as parent vert for verts from parent verts (catmark)
//
}
void
Refinement::initializeVertexEdgeCountsAndOffsets() {
//
// Be aware of scheme-specific decisions here, e.g.:
// - no verts from parent faces for Loop
// - more interior edges and faces for verts from parent edges for Loop
// - no guaranteed "neighborhood" around Bilinear verts from verts
//
// If uniform subdivision, vert-edge count will be:
// - 4 for verts from parent faces (for catmark)
// - 2 + N faces incident parent edge for verts from parent edges
// - same as parent vert for verts from parent verts
// If sparse subdivision, vert-edge count will be:
// - non-trivial function of child faces in parent face
// - 1 child face will always result in 2 child edges
// * 2 child faces can mean 3 or 4 child edges
// - 3 child faces will always result in 4 child edges
// - 1 or 2 + N faces incident parent edge for verts from parent edges
// - where the 1 or 2 is number of child edges of parent edge
// - any end vertex will require all N child faces (catmark)
// - same as parent vert for verts from parent verts (catmark)
//
}
//
// Face-vert and face-edge topology propagation -- faces only originate from faces:
//
void
Refinement::populateFaceVerticesFromParentFaces() {
//
// Algorithm:
// - iterate through parent face-child-face vector (could use back-vector)
// - use parent components incident the parent face:
// - use the interior face-vert, corner vert-vert and two edge-verts
//
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
IndexArray const pFaceVerts = _parent->getFaceVertices(pFace);
IndexArray const pFaceEdges = _parent->getFaceEdges(pFace);
IndexArray const pFaceChildren = getFaceChildFaces(pFace);
int pFaceVertCount = pFaceVerts.size();
for (int j = 0; j < pFaceVertCount; ++j) {
Index cFace = pFaceChildren[j];
if (IndexIsValid(cFace)) {
int jPrev = j ? (j - 1) : (pFaceVertCount - 1);
Index cVertOfFace = _faceChildVertIndex[pFace];
Index cVertOfEPrev = _edgeChildVertIndex[pFaceEdges[jPrev]];
Index cVertOfVert = _vertChildVertIndex[pFaceVerts[j]];
Index cVertOfENext = _edgeChildVertIndex[pFaceEdges[j]];
IndexArray cFaceVerts = _child->getFaceVertices(cFace);
// Note orientation wrt parent face -- quad vs non-quad...
if (pFaceVertCount == 4) {
int jOpp = jPrev ? (jPrev - 1) : 3;
int jNext = jOpp ? (jOpp - 1) : 3;
cFaceVerts[j] = cVertOfVert;
cFaceVerts[jNext] = cVertOfENext;
cFaceVerts[jOpp] = cVertOfFace;
cFaceVerts[jPrev] = cVertOfEPrev;
} else {
cFaceVerts[0] = cVertOfVert;
cFaceVerts[1] = cVertOfENext;
cFaceVerts[2] = cVertOfFace;
cFaceVerts[3] = cVertOfEPrev;
}
}
}
}
}
void
Refinement::populateFaceEdgesFromParentFaces() {
//
// Algorithm:
// - iterate through parent face-child-face vector (could use back-vector)
// - use parent components incident the parent face:
// - use the two interior face-edges and the two boundary edge-edges
//
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
IndexArray const pFaceVerts = _parent->getFaceVertices(pFace);
IndexArray const pFaceEdges = _parent->getFaceEdges(pFace);
IndexArray const pFaceChildFaces = getFaceChildFaces(pFace);
IndexArray const pFaceChildEdges = getFaceChildEdges(pFace);
int pFaceVertCount = pFaceVerts.size();
for (int j = 0; j < pFaceVertCount; ++j) {
Index cFace = pFaceChildFaces[j];
if (IndexIsValid(cFace)) {
IndexArray cFaceEdges = _child->getFaceEdges(cFace);
int jPrev = j ? (j - 1) : (pFaceVertCount - 1);
//
// We have two edges that are children of parent edges, and two child
// edges perpendicular to these from the interior of the parent face:
//
// Identifying the former should be simpler -- after identifying the two
// parent edges, we have to identify which child-edge corresponds to this
// vertex. This may be ambiguous with a degenerate edge (DEGEN) if tested
// this way, and may warrant higher level inspection of the parent face...
//
// EDGE_IN_FACE -- having the edge-in-face local index would help to
// remove the ambiguity and simplify this.
//
Index pCornerVert = pFaceVerts[j];
Index pPrevEdge = pFaceEdges[jPrev];
IndexArray const pPrevEdgeVerts = _parent->getEdgeVertices(pPrevEdge);
Index pNextEdge = pFaceEdges[j];
IndexArray const pNextEdgeVerts = _parent->getEdgeVertices(pNextEdge);
int cornerInPrevEdge = (pPrevEdgeVerts[0] != pCornerVert);
int cornerInNextEdge = (pNextEdgeVerts[0] != pCornerVert);
Index cEdgeOfEdgePrev = getEdgeChildEdges(pPrevEdge)[cornerInPrevEdge];
Index cEdgeOfEdgeNext = getEdgeChildEdges(pNextEdge)[cornerInNextEdge];
Index cEdgePerpEdgePrev = pFaceChildEdges[jPrev];
Index cEdgePerpEdgeNext = pFaceChildEdges[j];
// Note orientation wrt parent face -- quad vs non-quad...
if (pFaceVertCount == 4) {
int jOpp = jPrev ? (jPrev - 1) : 3;
int jNext = jOpp ? (jOpp - 1) : 3;
cFaceEdges[j] = cEdgeOfEdgeNext;
cFaceEdges[jNext] = cEdgePerpEdgeNext;
cFaceEdges[jOpp] = cEdgePerpEdgePrev;
cFaceEdges[jPrev] = cEdgeOfEdgePrev;
} else {
cFaceEdges[0] = cEdgeOfEdgeNext;
cFaceEdges[1] = cEdgePerpEdgeNext;
cFaceEdges[2] = cEdgePerpEdgePrev;
cFaceEdges[3] = cEdgeOfEdgePrev;
}
}
}
}
}
//
// Edge-vert topology propagation -- two functions for face or edge origin:
//
void
Refinement::populateEdgeVerticesFromParentFaces() {
//
// For each parent face's edge-children:
// - identify parent face's vert-child (note it is shared by all)
// - identify parent edge perpendicular to face's child edge:
// - identify parent edge's vert-child
//
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
IndexArray const pFaceEdges = _parent->getFaceEdges(pFace);
IndexArray const pFaceChildEdges = getFaceChildEdges(pFace);
for (int j = 0; j < pFaceEdges.size(); ++j) {
Index cEdge = pFaceChildEdges[j];
if (IndexIsValid(cEdge)) {
IndexArray cEdgeVerts = _child->getEdgeVertices(cEdge);
cEdgeVerts[0] = _faceChildVertIndex[pFace];
cEdgeVerts[1] = _edgeChildVertIndex[pFaceEdges[j]];
}
}
}
}
void
Refinement::populateEdgeVerticesFromParentEdges() {
//
// For each parent edge's edge-children:
// - identify parent edge's vert-child (potentially shared by both)
// - identify parent vert at end of child edge:
// - identify parent vert's vert-child
//
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
IndexArray const pEdgeVerts = _parent->getEdgeVertices(pEdge);
IndexArray const pEdgeChildren = getEdgeChildEdges(pEdge);
// May want to unroll this trivial loop of 2...
for (int j = 0; j < 2; ++j) {
Index cEdge = pEdgeChildren[j];
if (IndexIsValid(cEdge)) {
IndexArray cEdgeVerts = _child->getEdgeVertices(cEdge);
cEdgeVerts[0] = _edgeChildVertIndex[pEdge];
cEdgeVerts[1] = _vertChildVertIndex[pEdgeVerts[j]];
}
}
}
}
//
// Edge-face topology propagation -- two functions for face or edge origin:
//
void
Refinement::populateEdgeFacesFromParentFaces() {
//
// Note -- the edge-face counts/offsets vector is not known
// ahead of time and is populated incrementally, so we cannot
// thread this yet...
//
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
IndexArray const pFaceChildFaces = getFaceChildFaces(pFace);
IndexArray const pFaceChildEdges = getFaceChildEdges(pFace);
int pFaceValence = _parent->getFaceVertices(pFace).size();
for (int j = 0; j < pFaceValence; ++j) {
Index cEdge = pFaceChildEdges[j];
if (IndexIsValid(cEdge)) {
//
// Reserve enough edge-faces, populate and trim as needed:
//
_child->resizeEdgeFaces(cEdge, 2);
IndexArray cEdgeFaces = _child->getEdgeFaces(cEdge);
// One or two child faces may be assigned:
int jNext = ((j + 1) < pFaceValence) ? (j + 1) : 0;
int cEdgeFaceCount = 0;
if (IndexIsValid(pFaceChildFaces[j])) {
cEdgeFaces[cEdgeFaceCount++] = pFaceChildFaces[j];
}
if (IndexIsValid(pFaceChildFaces[jNext])) {
cEdgeFaces[cEdgeFaceCount++] = pFaceChildFaces[jNext];
}
_child->trimEdgeFaces(cEdge, cEdgeFaceCount);
}
}
}
}
void
Refinement::populateEdgeFacesFromParentEdges() {
//
// Note -- the edge-face counts/offsets vector is not known
// ahead of time and is populated incrementally, so we cannot
// thread this yet...
//
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
IndexArray const pEdgeVerts = _parent->getEdgeVertices(pEdge);
IndexArray const pEdgeFaces = _parent->getEdgeFaces(pEdge);
IndexArray const pEdgeChildEdges = getEdgeChildEdges(pEdge);
for (int j = 0; j < 2; ++j) {
Index cEdge = pEdgeChildEdges[j];
if (!IndexIsValid(cEdge)) continue;
//
// Reserve enough edge-faces, populate and trim as needed:
//
_child->resizeEdgeFaces(cEdge, pEdgeFaces.size());
IndexArray cEdgeFaces = _child->getEdgeFaces(cEdge);
//
// Each parent face may contribute an incident child face:
//
// EDGE_IN_FACE:
// This is awkward, and would be greatly simplified by storing the
// "edge in face" for each edge-face (as we do for "vert in face" of
// the vert-faces, etc.). For each incident face we then immediately
// know the two child faces that are associated with the two child
// edges -- we just need to identify how to pair them based on the
// edge direction.
//
// Note also here, that we could identify the pairs of child faces
// once for the parent before dealing with each child edge (we do the
// "find edge in face search" twice here as a result). We will
// generally have 2 or 1 incident face to the parent edge so we
// can put the child-pairs on the stack.
//
// Here's a more promising alternative -- instead of iterating
// through the child edges to "pull" data from the parent, iterate
// through the parent edges' faces and apply valid child faces to
// the appropriate child edge. We should be able to use end-verts
// of the parent edge to get the corresponding child face for each,
// but we can't avoid a vert-in-face search and a subsequent parity
// test of the end-vert.
//
int cEdgeFaceCount = 0;
for (int i = 0; i < pEdgeFaces.size(); ++i) {
Index pFace = pEdgeFaces[i];
IndexArray const pFaceEdges = _parent->getFaceEdges(pFace);
IndexArray const pFaceVerts = _parent->getFaceVertices(pFace);
IndexArray const pFaceChildren = getFaceChildFaces(pFace);
int pFaceValence = pFaceVerts.size();
// EDGE_IN_FACE -- want to remove this search...
int edgeInFace = 0;
for ( ; pFaceEdges[edgeInFace] != pEdge; ++edgeInFace) ;
// Inspect either this child of the face or the next:
int childInFace = edgeInFace + (pFaceVerts[edgeInFace] != pEdgeVerts[j]);
if (childInFace == pFaceValence) childInFace = 0;
if (IndexIsValid(pFaceChildren[childInFace])) {
cEdgeFaces[cEdgeFaceCount++] = pFaceChildren[childInFace];
}
}
_child->trimEdgeFaces(cEdge, cEdgeFaceCount);
}
}
}
//
// Vert-face topology propagation -- three functions for face, edge or vert origin:
//
// Remember for these that the corresponding counts/offsets for each component are
// not yet known and so are also populated by these functions. This does impose an
// ordering requirement here and inhibits concurrency.
//
void
Refinement::populateVertexFacesFromParentFaces() {
const Level& parent = *this->_parent;
Level& child = *this->_child;
for (int fIndex = 0; fIndex < parent.getNumFaces(); ++fIndex) {
int cVertIndex = this->_faceChildVertIndex[fIndex];
if (!IndexIsValid(cVertIndex)) continue;
//
// Inspect the parent face first:
//
int pFaceVertCount = parent.getFaceVertices(fIndex).size();
IndexArray const pFaceChildren = this->getFaceChildFaces(fIndex);
//
// Reserve enough vert-faces, populate and trim to the actual size:
//
child.resizeVertexFaces(cVertIndex, pFaceVertCount);
IndexArray cVertFaces = child.getVertexFaces(cVertIndex);
LocalIndexArray cVertInFace = child.getVertexFaceLocalIndices(cVertIndex);
int cVertFaceCount = 0;
for (int j = 0; j < pFaceVertCount; ++j) {
if (IndexIsValid(pFaceChildren[j])) {
// Note orientation wrt parent face -- quad vs non-quad...
LocalIndex vertInFace =
(LocalIndex)((pFaceVertCount == 4) ? ((j+2) & 3) : 2);
cVertFaces[cVertFaceCount] = pFaceChildren[j];
cVertInFace[cVertFaceCount] = vertInFace;
cVertFaceCount++;
}
}
child.trimVertexFaces(cVertIndex, cVertFaceCount);
}
}
void
Refinement::populateVertexFacesFromParentEdges() {
const Level& parent = *this->_parent;
Level& child = *this->_child;
for (int pEdgeIndex = 0; pEdgeIndex < parent.getNumEdges(); ++pEdgeIndex) {
int cVertIndex = this->_edgeChildVertIndex[pEdgeIndex];
if (!IndexIsValid(cVertIndex)) continue;
//
// Inspect the parent edge first:
//
IndexArray const pEdgeFaces = parent.getEdgeFaces(pEdgeIndex);
//
// Reserve enough vert-faces, populate and trim to the actual size:
//
child.resizeVertexFaces(cVertIndex, 2 * pEdgeFaces.size());
IndexArray cVertFaces = child.getVertexFaces(cVertIndex);
LocalIndexArray cVertInFace = child.getVertexFaceLocalIndices(cVertIndex);
int cVertFaceCount = 0;
for (int i = 0; i < pEdgeFaces.size(); ++i) {
//
// EDGE_IN_FACE:
// Identify the parent edge within this parent face -- this is where
// augmenting the edge-face relation with the "child index" is useful:
//
Index pFaceIndex = pEdgeFaces[i];
IndexArray const pFaceEdges = parent.getFaceEdges(pFaceIndex);
IndexArray const pFaceChildren = this->getFaceChildFaces(pFaceIndex);
//
// Identify the corresponding two child faces for this parent face and
// assign those of the two that are valid:
//
int pFaceEdgeCount = pFaceEdges.size();
int faceChild0 = 0;
for ( ; pFaceEdges[faceChild0] != pEdgeIndex; ++faceChild0) ;
int faceChild1 = faceChild0 + 1;
if (faceChild1 == pFaceEdgeCount) faceChild1 = 0;
// For counter-clockwise ordering of faces, consider the second face first:
//
// Note orientation wrt incident parent faces -- quad vs non-quad...
if (IndexIsValid(pFaceChildren[faceChild1])) {
cVertFaces[cVertFaceCount] = pFaceChildren[faceChild1];
cVertInFace[cVertFaceCount] = (LocalIndex)((pFaceEdgeCount == 4) ? faceChild0 : 3);
cVertFaceCount++;
}
if (IndexIsValid(pFaceChildren[faceChild0])) {
cVertFaces[cVertFaceCount] = pFaceChildren[faceChild0];
cVertInFace[cVertFaceCount] = (LocalIndex)((pFaceEdgeCount == 4) ? faceChild1 : 1);
cVertFaceCount++;
}
}
child.trimVertexFaces(cVertIndex, cVertFaceCount);
}
}
void
Refinement::populateVertexFacesFromParentVertices() {
const Level& parent = *this->_parent;
Level& child = *this->_child;
for (int vIndex = 0; vIndex < parent.getNumVertices(); ++vIndex) {
int cVertIndex = this->_vertChildVertIndex[vIndex];
if (!IndexIsValid(cVertIndex)) continue;
//
// Inspect the parent vert's faces:
//
IndexArray const pVertFaces = parent.getVertexFaces(vIndex);
LocalIndexArray const pVertInFace = parent.getVertexFaceLocalIndices(vIndex);
//
// Reserve enough vert-faces, populate and trim to the actual size:
//
child.resizeVertexFaces(cVertIndex, pVertFaces.size());
IndexArray cVertFaces = child.getVertexFaces(cVertIndex);
LocalIndexArray cVertInFace = child.getVertexFaceLocalIndices(cVertIndex);
int cVertFaceCount = 0;
for (int i = 0; i < pVertFaces.size(); ++i) {
Index pFace = pVertFaces[i];
LocalIndex pFaceChild = pVertInFace[i];
Index cFace = this->getFaceChildFaces(pFace)[pFaceChild];
if (IndexIsValid(cFace)) {
// Note orientation wrt incident parent faces -- quad vs non-quad...
int pFaceCount = parent.getFaceVertices(pFace).size();
cVertFaces[cVertFaceCount] = cFace;
cVertInFace[cVertFaceCount] = (LocalIndex)((pFaceCount == 4) ? pFaceChild : 0);
cVertFaceCount++;
}
}
child.trimVertexFaces(cVertIndex, cVertFaceCount);
}
}
//
// Vert-edge topology propagation -- three functions for face, edge or vert origin:
//
void
Refinement::populateVertexEdgesFromParentFaces() {
const Level& parent = *this->_parent;
Level& child = *this->_child;
for (int fIndex = 0; fIndex < parent.getNumFaces(); ++fIndex) {
int cVertIndex = this->_faceChildVertIndex[fIndex];
if (!IndexIsValid(cVertIndex)) continue;
//
// Inspect the parent face first:
//
IndexArray const pFaceVerts = parent.getFaceVertices(fIndex);
IndexArray const pFaceChildEdges = this->getFaceChildEdges(fIndex);
//
// Reserve enough vert-edges, populate and trim to the actual size:
//
child.resizeVertexEdges(cVertIndex, pFaceVerts.size());
IndexArray cVertEdges = child.getVertexEdges(cVertIndex);
LocalIndexArray cVertInEdge = child.getVertexEdgeLocalIndices(cVertIndex);
//
// Need to ensure correct ordering here when complete -- we want the "leading"
// edge of each child face first. The child vert is in the center of a new
// face to boundaries only occur when incomplete...
//
int cVertEdgeCount = 0;
for (int j = 0; j < pFaceVerts.size(); ++j) {
int jLeadingEdge = j ? (j - 1) : (pFaceVerts.size() - 1);
if (IndexIsValid(pFaceChildEdges[jLeadingEdge])) {
cVertEdges[cVertEdgeCount] = pFaceChildEdges[jLeadingEdge];
cVertInEdge[cVertEdgeCount] = 0;
cVertEdgeCount++;
}
}
child.trimVertexEdges(cVertIndex, cVertEdgeCount);
}
}
void
Refinement::populateVertexEdgesFromParentEdges() {
const Level& parent = *this->_parent;
Level& child = *this->_child;
for (int eIndex = 0; eIndex < parent.getNumEdges(); ++eIndex) {
int cVertIndex = this->_edgeChildVertIndex[eIndex];
if (!IndexIsValid(cVertIndex)) continue;
//
// First inspect the parent edge -- its parent faces then its child edges:
//
IndexArray const pEdgeFaces = parent.getEdgeFaces(eIndex);
IndexArray const pEdgeChildEdges = this->getEdgeChildEdges(eIndex);
//
// Reserve enough vert-edges, populate and trim to the actual size:
//
child.resizeVertexEdges(cVertIndex, pEdgeFaces.size() + 2);
IndexArray cVertEdges = child.getVertexEdges(cVertIndex);
LocalIndexArray cVertInEdge = child.getVertexEdgeLocalIndices(cVertIndex);
//
// We need to order the incident edges around the vertex appropriately:
// - one child edge of the parent edge ("leading" in face 0)
// - child edge of face 0
// - the other child edge of the parent edge ("trailing" in face 0)
// - child edges of all remaining faces
// This is a bit awkward with the current implmentation -- given the way
// the child edge of a face is indentified. Until we clean it up, deal
// with the two child edges of the parent edge first followed by all faces
// then swap the second child of the parent with the child of the first
// face.
//
// Also be careful to place the child edges of the parent edge correctly.
// As edges are not directed their orientation may vary.
//
int cVertEdgeCount = 0;
if (IndexIsValid(pEdgeChildEdges[0])) {
cVertEdges[cVertEdgeCount] = pEdgeChildEdges[0];
cVertInEdge[cVertEdgeCount] = 0;
cVertEdgeCount++;
}
if (IndexIsValid(pEdgeChildEdges[1])) {
cVertEdges[cVertEdgeCount] = pEdgeChildEdges[1];
cVertInEdge[cVertEdgeCount] = 0;
cVertEdgeCount++;
}
bool swapChildEdgesOfParent = false;
bool swapChildEdgeAndFace0Edge = false;
for (int i = 0; i < pEdgeFaces.size(); ++i) {
Index pFace = pEdgeFaces[i];
IndexArray const pFaceEdges = parent.getFaceEdges(pFace);
IndexArray const pFaceChildEdges = this->getFaceChildEdges(pFace);
//
// EDGE_IN_FACE:
// Identify the parent edge within this parent face -- this is where
// augmenting the edge-face relation with the "local index" is useful:
//
int edgeInFace = 0;
for ( ; pFaceEdges[edgeInFace] != eIndex; ++edgeInFace) ;
if ((i == 0) && (cVertEdgeCount == 2)) {
swapChildEdgeAndFace0Edge = IndexIsValid(pFaceChildEdges[edgeInFace]);
if (swapChildEdgeAndFace0Edge) {
swapChildEdgesOfParent = (parent.getFaceVertices(pFace)[edgeInFace] ==
parent.getEdgeVertices(eIndex)[0]);
}
}
if (IndexIsValid(pFaceChildEdges[edgeInFace])) {
cVertEdges[cVertEdgeCount] = pFaceChildEdges[edgeInFace];
cVertInEdge[cVertEdgeCount] = 1;
cVertEdgeCount++;
}
}
// Now swap the child edges of the parent as needed:
if (swapChildEdgeAndFace0Edge) {
if (swapChildEdgesOfParent) {
std::swap(cVertEdges[0], cVertEdges[1]);
// both local indices 0 -- no need to swap
}
std::swap(cVertEdges[1], cVertEdges[2]);
std::swap(cVertInEdge[1], cVertInEdge[2]);
}
child.trimVertexEdges(cVertIndex, cVertEdgeCount);
}
}
void
Refinement::populateVertexEdgesFromParentVertices() {
const Level& parent = *this->_parent;
Level& child = *this->_child;
for (int vIndex = 0; vIndex < parent.getNumVertices(); ++vIndex) {
int cVertIndex = this->_vertChildVertIndex[vIndex];
if (!IndexIsValid(cVertIndex)) continue;
//
// Inspect the parent vert's edges first:
//
IndexArray const pVertEdges = parent.getVertexEdges(vIndex);
LocalIndexArray const pVertInEdge = parent.getVertexEdgeLocalIndices(vIndex);
//
// Reserve enough vert-edges, populate and trim to the actual size:
//
child.resizeVertexEdges(cVertIndex, pVertEdges.size());
IndexArray cVertEdges = child.getVertexEdges(cVertIndex);
LocalIndexArray cVertInEdge = child.getVertexEdgeLocalIndices(cVertIndex);
int cVertEdgeCount = 0;
for (int i = 0; i < pVertEdges.size(); ++i) {
Index pEdgeIndex = pVertEdges[i];
LocalIndex pEdgeVert = pVertInEdge[i];
Index pEdgeChildIndex = this->getEdgeChildEdges(pEdgeIndex)[pEdgeVert];
if (IndexIsValid(pEdgeChildIndex)) {
cVertEdges[cVertEdgeCount] = pEdgeChildIndex;
cVertInEdge[cVertEdgeCount] = 1;
cVertEdgeCount++;
}
}
child.trimVertexEdges(cVertIndex, cVertEdgeCount);
}
}
//
// The main refinement method...
//
// Note the kinds of child components that are generated:
// - faces generate child faces, edges and verts
// - edges generate child edges and verts
// - verts generate child verts only
//
// The general approach here will be as follows:
// - mark incident child components to be generated:
// - assume all for now but need this for holes, adaptive, etc.
// - unclear what strategy of child component marking is best:
// - beginning with a set of parent faces, hole markers, etc.
// - need to mark children of all parent faces, but also all/some
// of the adjacent parent faces
// - marking of child faces needs to also identify/mark child edges
// - marking of child faces needs to also identify/mark child verts
// - take inventory of what is marked to resize child vectors
// ? new members to retain these counts for other purposes:
// - mFaceChildFaceCount
// - mFaceChildEdgeCount
// - mFaceChildVertCount
// - mEdgeChildEdgeCount
// - mEdgeChildVertCount
// - mVertChildVertCount
// - child components the sum of the above:
// - new face count = face-faces
// - new edge count = face-edges + edge-edges
// - new vert count = face-verts + edge-verts + vert-verts
// - generate/identify child components between parent and child level:
// - child vertices from all parent faces
// - child vertices from all parent edges
// - child vertices from all parent vertices
// - child edges from all parent edges
// - child edges from all parent faces
// - child faces from all parent faces
// - populate topology relations:
// - iterate through each child of each parent component
// - populate "uninherited" relations directly
// - includes face-vert, edge-vert, face-edge
// - these will always be completely defined
// - populate "inherited" relations by mapping parent->child
// - includes vert-face, vert-edge, edge-face
// - assume one-to-one mapping with parent relation for now
// - will be subset of parent for holes, adaptive, etc.
// - need full complement of parent-child relations
// - subdivide sharpness values for edges or verts, if present
// ? hier-edits for sharpness to be applied before/after?
// ? re-classify/propagate vertex "masks"
// ? compute mask weights for all child verts
// - should mirror the parents topological relations
// * interpolate -- now deferred externally
//
void
Refinement::refine(Options refineOptions) {
assert(_parent && _child);
_uniform = !refineOptions._sparse;
//
// First determine the inventory of child components by populating the parent-to-child
// vectors and identifying the future child components as we take inventory:
//
populateParentToChildMapping();
createChildComponents();
//
// The child-to-parent mapping is used subsequently to iterate through components.
// Consider merging the tag propation with it as the required iteration through the
// parent components and conditional assigment could serve both purposes:
//
// Note that some tags will need to be revised after subdividing sharpness values
//
populateChildToParentMapping();
propagateComponentTags();
//
// We can often suppress full topology generation in the last level -- the parent topology
// and subdivided sharpness values are enough to be able to interpolate vertex data. How
// to best identify and specify what aspects should be refined is still unclear.
//
Relations relationsToPopulate;
if (refineOptions._faceTopologyOnly) {
relationsToPopulate.setAll(false);
relationsToPopulate._faceVertices = true;
} else {
relationsToPopulate.setAll(true);
}
subdivideTopology(relationsToPopulate);
//
// Subdividing sharpness values and classifying child vertices -- note the issue relating
// the subdivision of edge-sharpness and classification of the vertex of a parent edge: a
// case can be made for classifying while computing sharpness values.
//
// WORK IN PROGRESS:
// Considering modifying both of these to make use of the new component tags and the
// child-to-parent mapping. In particular, if the edge or vertex is not semi-sharp, the
// value can just be copied from the parent. Otherwise a newly computed semi-sharp edge
// of vertex sharpness will also need to be inspected and the "semisharp" tag adjusted
// accordingly. And, in the case of the vertex, the "rule" needs to be recomputed for
// any "semisharp" vertex as any of its "semisharp" edges may have changed.
//
subdivideEdgeSharpness();
subdivideVertexSharpness();
// Until reclassification of semisharp features is handled when subdivided, we will need
// to call a post-process to adjust the semisharp and rule tags:
//
reclassifySemisharpVertices();
//
// Refine the topology for any face-varying channels:
//
bool refineOptions_faceVaryingChannels = true;
if (refineOptions_faceVaryingChannels) {
subdivideFVarChannels();
}
}
//
// The main method to subdivide the topology -- requires sizing and initialization of
// child topology vectors and then appropriate assignment of them.
//
void
Refinement::subdivideTopology(Relations const& applyTo) {
const Level& parent = *_parent;
Level& child = *_child;
//
// Sizing and population of the topology vectors:
//
// We have 6 relations to populate, but the way a child component's topology is
// determined depends on the nature of its origin from its parent components:
//
// - face-verts: originate from parent faces
// - face-edges: originate from parent faces
// - edge-verts: originate from parent faces or edges
// - edge-faces: originate from parent faces or edges
// - vert-faces: originate from parent faces or edges or verts
// - vert-edges: originate from parent faces or edges or verts
//
// Each relation has 1-3 cases of origin and so 1-3 methods of population.
//
// It may be worth pairing up the two relations for each child component type,
// i.e. populating them together as they share the same type of origin, but keeping
// them separate may prove more efficient in general (writing to one destination at
// at a time) as well as provide opportunities for threading.
//
// Note on sizing:
// All faces now quads or tris, so the face-* relation sizes should be known.
// For edge and vert relations, where the number of incident components is more
// variable, we allocate/offset assuming 1-to-1 correspondence between child and
// parent incident components (which will be true for uniform subdivision), then
// "compress" later on-the-fly as we determine the subset of parent components
// that contribute children to the neighborhood (not really "compressing" here
// but more initializing as we go and adjusting the counts and offsets to reflect
// the actual valences -- so we never pack/move the vector elements).
// Some of the above inhibits concurrency in the mapping of the child indices
// from the parent. Knowing all of the counts/offsets before applying the mapping
// would be helpful. Current count/offset vectors are:
//
// - face-verts, also used by/shared with face-edges
// - edge-faces
// - vert-faces
// - vert-edges, not shared with vert-faces to allow non-manifold cases
//
// So we have 6 relations to transform and 4 count/offset vectors required -- 3
// of which are currently assembled incrementally. The two that are not build:
//
// - face-edges, we share the face-vert counts/offsets
// - edge-verts, no need -- constant size of 2
//
// There are many times were using a constant offset may be preferable, e.g. when
// all faces are quads or tris, there are no fin-edges, etc. Not retrieving the
// offsets from memory would be beneficial, but branching at a fine-grain level
// to do so may defeat the purpose...
//
//
// Face relations -- both face-verts and face-edges share the same counts/offsets:
//
if (applyTo._faceVertices || applyTo._faceEdges) {
initializeFaceVertexCountsAndOffsets();
// Face-verts -- allocate and populate:
if (applyTo._faceVertices) {
child._faceVertIndices.resize(child.getNumFaces() * 4);
populateFaceVerticesFromParentFaces();
}
// Face-edges -- allocate and populate:
if (applyTo._faceEdges) {
child._faceEdgeIndices.resize(child.getNumFaces() * 4);
populateFaceEdgesFromParentFaces();
}
}
//
// Edge relations -- edge-verts and edge-faces can be populated independently:
//
// Edge-verts -- allocate and populate:
if (applyTo._edgeVertices) {
child._edgeVertIndices.resize(child.getNumEdges() * 2);
populateEdgeVerticesFromParentFaces();
populateEdgeVerticesFromParentEdges();
}
// Edge-faces:
// NOTE we do not know the exact counts/offsets here because of the
// potentially sparse subdivision. If we must compute this incrementally,
// i.e. as we populate the edge-face indices, we will not be able to thread
// that operation. See populateEdgeFaceCountsAndOffsets() for possibilities
// of pre-computing these.
//
if (applyTo._edgeFaces) {
// Empty stub to eventually replace the incremental assembly that follows:
initializeEdgeFaceCountsAndOffsets();
int childEdgeFaceIndexSizeEstimate = (int)parent._faceVertIndices.size() * 2 +
(int)parent._edgeFaceIndices.size() * 2;
child._edgeFaceCountsAndOffsets.resize(child.getNumEdges() * 2);
child._edgeFaceIndices.resize( childEdgeFaceIndexSizeEstimate);
populateEdgeFacesFromParentFaces();
populateEdgeFacesFromParentEdges();
// Revise the over-allocated estimate based on what is used (as indicated in the
// count/offset for the last vertex) and trim the index vector accordingly:
childEdgeFaceIndexSizeEstimate = child.getNumEdgeFaces(child.getNumEdges()-1) +
child.getOffsetOfEdgeFaces(child.getNumEdges()-1);
child._edgeFaceIndices.resize(childEdgeFaceIndexSizeEstimate);
child._maxEdgeFaces = parent._maxEdgeFaces;
}
//
// Vert relations -- vert-faces and vert-edges can be populated independently:
//
// Vert-faces:
// We know the number of counts/offsets required, but we do not yet know how
// many total incident faces we will have -- given we are generating a potential
// subset of the number of children possible, allocate for the maximum and trim
// once its determined how many were used.
// The upper-bound for allocation is determined by the incidence vectors for
// the parent components, e.g. assuming fully populated, the total number of faces
// incident all vertices that are generated from parent faces is equal to the size
// of the parent's face-vert index vector. Similar deductions can be made for
// for those originating from parent edges and verts.
// If this over-allocation proves excessive, we can get a more reasonable
// estimate, or even the exact size, by iterating though topology/child vectors.
//
// The bigger issue here though is that not having the counts/offsets known
// and updating it incrementally inhibits threading. So consider figuring out the
// counts/offsets before remapping the topology:
// - if uniform subdivision, vert-face count will be:
// - 4 for verts from parent faces (for catmark)
// - 2x number in parent edge for verts from parent edges
// - same as parent vert for verts from parent verts
// - if sparse subdivision, vert-face count will be:
// - the number of child faces in parent face
// - 1 or 2x number in parent edge for verts from parent edges
// - where the 1 or 2 is number of child edges of parent edge
// - same as parent vert for verts from parent verts (catmark)
//
// Note a couple of these metrics are Catmark-dependent, i.e. assuming 4 child
// faces per face, but more subtely the assumption that a child vert from a
// parent vert will have the same valence -- this will only be true if the
// subd Scheme requires a "neighborhood of 1", which will have been taken into
// account when marking/generating children.
//
if (applyTo._vertexFaces) {
// Empty stub to eventually replace the incremental assembly that follows:
initializeVertexFaceCountsAndOffsets();
int childVertFaceIndexSizeEstimate = (int)parent._faceVertIndices.size()
+ (int)parent._edgeFaceIndices.size() * 2
+ (int)parent._vertFaceIndices.size();
child._vertFaceCountsAndOffsets.resize(child.getNumVertices() * 2);
child._vertFaceIndices.resize( childVertFaceIndexSizeEstimate);
child._vertFaceLocalIndices.resize( childVertFaceIndexSizeEstimate);
populateVertexFacesFromParentFaces();
populateVertexFacesFromParentEdges();
populateVertexFacesFromParentVertices();
// Revise the over-allocated estimate based on what is used (as indicated in the
// count/offset for the last vertex) and trim the index vectors accordingly:
childVertFaceIndexSizeEstimate = child.getNumVertexFaces(child.getNumVertices()-1) +
child.getOffsetOfVertexFaces(child.getNumVertices()-1);
child._vertFaceIndices.resize( childVertFaceIndexSizeEstimate);
child._vertFaceLocalIndices.resize(childVertFaceIndexSizeEstimate);
}
// Vert-edges:
// As for vert-faces, we know the number of counts/offsets required, but we do
// not yet know how many total incident edges we will have. So over-estimate and
// trim after population, similar to above for face-verts.
//
// See also notes above regarding attempts to determine counts/offsets before we
// start to remap the components:
// - if uniform subdivision, vert-edge count will be:
// - 4 for verts from parent faces (for catmark)
// - 2 + N faces incident parent edge for verts from parent edges
// - same as parent vert for verts from parent verts
// - if sparse subdivision, vert-edge count will be:
// - non-trivial function of child faces in parent face
// - 1 child face will always result in 2 child edges
// * 2 child faces can mean 3 or 4 child edges
// - 3 child faces will always result in 4 child edges
// - 1 or 2 + N faces incident parent edge for verts from parent edges
// - where the 1 or 2 is number of child edges of parent edge
// - any end vertex will require all N child faces (catmark)
// - same as parent vert for verts from parent verts (catmark)
//
if (applyTo._vertexEdges) {
// Empty stub to eventually replace the incremental assembly that follows:
initializeVertexEdgeCountsAndOffsets();
int childVertEdgeIndexSizeEstimate = (int)parent._faceVertIndices.size()
+ (int)parent._edgeFaceIndices.size() + parent.getNumEdges() * 2
+ (int)parent._vertEdgeIndices.size();
child._vertEdgeCountsAndOffsets.resize(child.getNumVertices() * 2);
child._vertEdgeIndices.resize( childVertEdgeIndexSizeEstimate);
child._vertEdgeLocalIndices.resize( childVertEdgeIndexSizeEstimate);
populateVertexEdgesFromParentFaces();
populateVertexEdgesFromParentEdges();
populateVertexEdgesFromParentVertices();
// Revise the over-allocated estimate based on what is used (as indicated in the
// count/offset for the last vertex) and trim the index vectors accordingly:
childVertEdgeIndexSizeEstimate = child.getNumVertexEdges(child.getNumVertices()-1) +
child.getOffsetOfVertexEdges(child.getNumVertices()-1);
child._vertEdgeIndices.resize( childVertEdgeIndexSizeEstimate);
child._vertEdgeLocalIndices.resize(childVertEdgeIndexSizeEstimate);
}
child._maxValence = parent._maxValence;
}
//
// Sharpness subdivision methods:
// Subdividing vertex sharpness is relatively trivial -- most complexity is in
// the edge sharpness given its varying computation methods.
//
void
Refinement::subdivideEdgeSharpness() {
Sdc::Crease creasing(_schemeOptions);
_child->_edgeSharpness.clear();
_child->_edgeSharpness.resize(_child->getNumEdges(), Sdc::Crease::SHARPNESS_SMOOTH);
//
// Edge sharpness is passed to child-edges using the parent edge and the
// parent vertex for which the child corresponds. Child-edges are created
// from both parent faces and parent edges, but those child-edges created
// from a parent face should be within the face's interior and so smooth
// (and so previously initialized).
//
// The presence/validity of each parent edges child vert indicates one or
// more child edges.
//
// NOTE -- It is also useful at this time to classify the child vert of
// this edge based on the creasing information here, particularly when a
// non-trivial creasing method like Chaikin is used. This is not being
// done now but is worth considering...
//
// Only deal with the subrange of edges originating from edges:
int cEdgeBegin = _childEdgeFromFaceCount;
int cEdgeEnd = _child->getNumEdges();
float * pVertEdgeSharpness = 0;
if (!creasing.IsUniform()) {
pVertEdgeSharpness = (float *)alloca(_parent->getMaxValence() * sizeof(float));
}
for (Index cEdge = cEdgeBegin; cEdge < cEdgeEnd; ++cEdge) {
Sharpness& cSharpness = _child->_edgeSharpness[cEdge];
Level::ETag& cEdgeTag = _child->_edgeTags[cEdge];
if (cEdgeTag._infSharp) {
cSharpness = Sdc::Crease::SHARPNESS_INFINITE;
} else if (cEdgeTag._semiSharp) {
Index pEdge = _childEdgeParentIndex[cEdge];
Sharpness pSharpness = _parent->_edgeSharpness[pEdge];
if (creasing.IsUniform()) {
cSharpness = creasing.SubdivideUniformSharpness(pSharpness);
} else {
IndexArray const pEdgeVerts = _parent->getEdgeVertices(pEdge);
Index pVert = pEdgeVerts[_childEdgeTag[cEdge]._indexInParent];
IndexArray const pVertEdges = _parent->getVertexEdges(pVert);
for (int i = 0; i < pVertEdges.size(); ++i) {
pVertEdgeSharpness[i] = _parent->_edgeSharpness[pVertEdges[i]];
}
cSharpness = creasing.SubdivideEdgeSharpnessAtVertex(pSharpness, pVertEdges.size(),
pVertEdgeSharpness);
}
cEdgeTag._semiSharp = Sdc::Crease::IsSharp(cSharpness);
}
}
}
void
Refinement::subdivideVertexSharpness() {
Sdc::Crease creasing(_schemeOptions);
_child->_vertSharpness.clear();
_child->_vertSharpness.resize(_child->getNumVertices(), Sdc::Crease::SHARPNESS_SMOOTH);
//
// All child-verts originating from faces or edges are initialized as smooth
// above. Only those originating from vertices require "subdivided" values:
//
// Only deal with the subrange of vertices originating from vertices:
int cVertBegin = _childVertFromFaceCount + _childVertFromEdgeCount;
int cVertEnd = _child->getNumVertices();
for (Index cVert = cVertBegin; cVert < cVertEnd; ++cVert) {
Sharpness& cSharpness = _child->_vertSharpness[cVert];
Level::VTag& cVertTag = _child->_vertTags[cVert];
if (cVertTag._infSharp) {
cSharpness = Sdc::Crease::SHARPNESS_INFINITE;
} else if (cVertTag._semiSharp) {
Index pVert = _childVertexParentIndex[cVert];
Sharpness pSharpness = _parent->_vertSharpness[pVert];
cSharpness = creasing.SubdivideVertexSharpness(pSharpness);
if (!Sdc::Crease::IsSharp(cSharpness)) {
// Need to visit edge neighborhood to determine if still semisharp...
// cVertTag._infSharp = ...?
// See the "reclassify" method below...
}
}
}
}
void
Refinement::reclassifySemisharpVertices() {
typedef Level::VTag::VTagSize VTagSize;
Sdc::Crease creasing(_schemeOptions);
//
// Inspect all vertices derived from edges -- for those whose parent edges were semisharp,
// reset the semisharp tag and the associated Rule according to the sharpness pair for the
// subdivided edges (note this may be better handled when the edge sharpness is computed):
//
int vertFromEdgeMin = _childVertFromFaceCount;
int vertFromEdgeMax = vertFromEdgeMin + _childVertFromEdgeCount;
for (Index cVert = vertFromEdgeMin; cVert < vertFromEdgeMax; ++cVert) {
Level::VTag& cVertTag = _child->_vertTags[cVert];
if (!cVertTag._semiSharp) continue;
Index pEdge = _childVertexParentIndex[cVert];
IndexArray const cEdges = getEdgeChildEdges(pEdge);
if (_childVertexTag[cVert]._incomplete) {
// One child edge likely missing -- assume Crease if remaining edge semi-sharp:
cVertTag._semiSharp = (IndexIsValid(cEdges[0]) && _child->_edgeTags[cEdges[0]]._semiSharp) ||
(IndexIsValid(cEdges[1]) && _child->_edgeTags[cEdges[1]]._semiSharp);
cVertTag._rule = (VTagSize)(cVertTag._semiSharp ? Sdc::Crease::RULE_CREASE : Sdc::Crease::RULE_SMOOTH);
} else {
int sharpEdgeCount = _child->_edgeTags[cEdges[0]]._semiSharp + _child->_edgeTags[cEdges[1]]._semiSharp;
cVertTag._semiSharp = (sharpEdgeCount > 0);
cVertTag._rule = (VTagSize)(creasing.DetermineVertexVertexRule(0.0, sharpEdgeCount));
}
}
//
// Inspect all vertices derived from vertices -- for those whose parent vertices were
// semisharp, reset the semisharp tag and the associated Rule based on the neighborhood
// of child edges around the child vertex.
//
// We should never find such a vertex "incomplete" in a sparse refinement as a parent
// vertex is either selected or not, but never neighboring. So the only complication
// here is whether the local topology of child edges exists -- it may have been pruned
// from the last level to reduce memory. If so, we use the parent to identify the
// child edges.
//
// In both cases, we count the number of sharp and semisharp child edges incident the
// child vertex and adjust the "semisharp" and "rule" tags accordingly.
//
int vertFromVertMin = vertFromEdgeMax;
int vertFromVertMax = vertFromVertMin + _childVertFromVertCount;
for (Index cVert = vertFromVertMin; cVert < vertFromVertMax; ++cVert) {
Level::VTag& cVertTag = _child->_vertTags[cVert];
if (!cVertTag._semiSharp) continue;
// If the vertex is still sharp, it remains the semisharp Corner its parent was...
if (_child->_vertSharpness[cVert] > 0.0) continue;
//
// See if we can use the vert-edges of the child vertex:
//
int sharpEdgeCount = 0;
int semiSharpEdgeCount = 0;
bool cVertEdgesPresent = (_child->getNumVertexEdgesTotal() > 0);
if (cVertEdgesPresent) {
IndexArray const cEdges = _child->getVertexEdges(cVert);
for (int i = 0; i < cEdges.size(); ++i) {
Level::ETag cEdgeTag = _child->_edgeTags[cEdges[i]];
sharpEdgeCount += cEdgeTag._semiSharp || cEdgeTag._infSharp;
semiSharpEdgeCount += cEdgeTag._semiSharp;
}
} else {
Index pVert = _childVertexParentIndex[cVert];
IndexArray const pEdges = _parent->getVertexEdges(pVert);
LocalIndexArray const pVertInEdge = _parent->getVertexEdgeLocalIndices(pVert);
for (int i = 0; i < pEdges.size(); ++i) {
IndexArray const cEdgePair = getEdgeChildEdges(pEdges[i]);
Index cEdge = cEdgePair[pVertInEdge[i]];
Level::ETag cEdgeTag = _child->_edgeTags[cEdge];
sharpEdgeCount += cEdgeTag._semiSharp || cEdgeTag._infSharp;
semiSharpEdgeCount += cEdgeTag._semiSharp;
}
}
cVertTag._semiSharp = (semiSharpEdgeCount > 0);
cVertTag._rule = (VTagSize)(creasing.DetermineVertexVertexRule(0.0, sharpEdgeCount));
}
}
void
Refinement::subdivideFVarChannels() {
//printf("Refinement::subdivideFVarChannels() -- level %d...\n", _child->_depth);
assert(_child->_fvarChannels.size() == 0);
assert(this->_fvarChannels.size() == 0);
int channelCount = _parent->getNumFVarChannels();
for (int channel = 0; channel < channelCount; ++channel) {
FVarLevel* parentFVar = _parent->_fvarChannels[channel];
FVarLevel* childFVar = new FVarLevel(*_child);
FVarRefinement* refineFVar = new FVarRefinement(*this, *parentFVar, *childFVar);
refineFVar->applyRefinement();
_child->_fvarChannels.push_back(childFVar);
this->_fvarChannels.push_back(refineFVar);
}
}
//
// Methods to propagate/initialize component tags according to their parent component:
//
void
Refinement::propagateFaceTagsFromParentFaces() {
//
// Tags for faces originating from faces are inherited from the parent face:
//
for (Index cFace = 0; cFace < _child->getNumFaces(); ++cFace) {
_child->_faceTags[cFace] = _parent->_faceTags[_childFaceParentIndex[cFace]];
}
/*
for (int pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
Level::FTag const& fTag = _parent->_faceTags[pFace];
IndexArray const pFaceChildFaces = getFaceChildFaces(pFace);
for (int i = 0; i < pFaceChildFaces.size(); ++i) {
Index cFace = pFaceChildFaces[i];
if (IndexIsValid(cFace)) _child->_faceTags[cFace] = fTag;
}
}
*/
}
void
Refinement::propagateEdgeTagsFromParentFaces() {
//
// Tags for edges originating from faces are all constant:
//
Level::ETag eTag;
eTag._nonManifold = 0;
eTag._boundary = 0;
eTag._infSharp = 0;
eTag._semiSharp = 0;
for (Index cEdge = 0; cEdge < _childEdgeFromFaceCount; ++cEdge) {
_child->_edgeTags[cEdge] = eTag;
}
}
void
Refinement::propagateVertexTagsFromParentFaces() {
//
// Similarly, tags for vertices originating from faces are all constant -- with the
// unfortunate exception of refining level 0, where the faces may be N-sided and so
// introduce new vertices that need to be tagged as extra-ordinary:
//
Level::VTag vTag;
vTag._nonManifold = 0;
vTag._xordinary = 0;
vTag._boundary = 0;
vTag._infSharp = 0;
vTag._semiSharp = 0;
vTag._rule = Sdc::Crease::RULE_SMOOTH;
if (_parent->_depth > 0) {
for (Index cVert = 0; cVert < _childVertFromFaceCount; ++cVert) {
_child->_vertTags[cVert] = vTag;
}
} else {
for (Index cVert = 0; cVert < _childVertFromFaceCount; ++cVert) {
_child->_vertTags[cVert] = vTag;
if (_parent->getNumFaceVertices(_childVertexParentIndex[cVert]) != 4) {
_child->_vertTags[cVert]._xordinary = true;
}
}
}
}
void
Refinement::propagateEdgeTagsFromParentEdges() {
//
// Tags for edges originating from edges are inherited from the parent edge:
//
for (Index cEdge = _childEdgeFromFaceCount; cEdge < _child->getNumEdges(); ++cEdge) {
_child->_edgeTags[cEdge] = _parent->_edgeTags[_childEdgeParentIndex[cEdge]];
}
/*
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
Level::ETag const& pEdgeTag = _parent->_edgeTags[pEdge];
IndexArray const cEdges = getEdgeChildEdges(pEdge);
if (IndexIsValid(cEdges[0])) _child->_edgeTags[cEdges[0]] = pEdgeTag;
if (IndexIsValid(cEdges[1])) _child->_edgeTags[cEdges[1]] = pEdgeTag;
}
*/
}
void
Refinement::propagateVertexTagsFromParentEdges() {
//
// Tags for vertices originating from edges are initialized according to the tags
// of the parent edge:
//
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
Index cVert = _edgeChildVertIndex[pEdge];
if (!IndexIsValid(cVert)) continue;
Level::ETag const& pEdgeTag = _parent->_edgeTags[pEdge];
Level::VTag& cVertTag = _child->_vertTags[cVert];
cVertTag._nonManifold = pEdgeTag._nonManifold;
cVertTag._xordinary = false;
cVertTag._boundary = pEdgeTag._boundary;
cVertTag._infSharp = false;
cVertTag._semiSharp = pEdgeTag._semiSharp;
cVertTag._rule = (Level::VTag::VTagSize)((pEdgeTag._semiSharp || pEdgeTag._infSharp)
? Sdc::Crease::RULE_CREASE : Sdc::Crease::RULE_SMOOTH);
}
}
void
Refinement::propagateVertexTagsFromParentVertices() {
//
// Tags for vertices originating from vertices are inherited from the parent vertex:
//
for (Index cVert = _childVertFromFaceCount + _childVertFromEdgeCount;
cVert < _child->getNumVertices(); ++cVert) {
_child->_vertTags[cVert] = _parent->_vertTags[_childVertexParentIndex[cVert]];
}
/*
for (Index pVert = 0; pVert < _parent->getNumVertices(); ++pVert) {
Index cVert = _vertChildVertIndex[pVert];
if (IndexIsValid(cVert)) _child->_vertTags[cVert] = _parent->_vertTags[pVert];
}
*/
}
void
Refinement::propagateComponentTags() {
_child->_faceTags.resize(_child->getNumFaces());
_child->_edgeTags.resize(_child->getNumEdges());
_child->_vertTags.resize(_child->getNumVertices());
propagateFaceTagsFromParentFaces();
propagateEdgeTagsFromParentFaces();
propagateEdgeTagsFromParentEdges();
propagateVertexTagsFromParentFaces();
propagateVertexTagsFromParentEdges();
propagateVertexTagsFromParentVertices();
if (!_uniform) {
for (Index cVert = 0; cVert < _child->getNumVertices(); ++cVert) {
if (_childVertexTag[cVert]._incomplete) {
_child->_vertTags[cVert]._incomplete = true;
}
}
}
}
void
Refinement::populateChildToParentTags() {
ChildTag childTags[2][4];
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 4; ++j) {
ChildTag& tag = childTags[i][j];
tag._incomplete = (unsigned char)i;
tag._parentType = 0;
tag._indexInParent = (unsigned char)j;
}
}
if (_uniform) {
Index cFace = 0;
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
IndexArray pVerts = _parent->getFaceVertices(pFace);
if (pVerts.size() == 4) {
_childFaceTag[cFace + 0] = childTags[0][0];
_childFaceTag[cFace + 1] = childTags[0][1];
_childFaceTag[cFace + 2] = childTags[0][2];
_childFaceTag[cFace + 3] = childTags[0][3];
_childFaceParentIndex[cFace + 0] = pFace;
_childFaceParentIndex[cFace + 1] = pFace;
_childFaceParentIndex[cFace + 2] = pFace;
_childFaceParentIndex[cFace + 3] = pFace;
cFace += 4;
} else {
for (int i = 0; i < pVerts.size(); ++i, ++cFace) {
_childFaceTag[cFace] = childTags[0][i];
_childFaceParentIndex[cFace] = pFace;
}
}
}
Index cEdge = 0;
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
IndexArray pVerts = _parent->getFaceVertices(pFace);
if (pVerts.size() == 4) {
_childEdgeTag[cEdge + 0] = childTags[0][0];
_childEdgeTag[cEdge + 1] = childTags[0][1];
_childEdgeTag[cEdge + 2] = childTags[0][2];
_childEdgeTag[cEdge + 3] = childTags[0][3];
_childEdgeParentIndex[cEdge + 0] = pFace;
_childEdgeParentIndex[cEdge + 1] = pFace;
_childEdgeParentIndex[cEdge + 2] = pFace;
_childEdgeParentIndex[cEdge + 3] = pFace;
cEdge += 4;
} else {
for (int i = 0; i < pVerts.size(); ++i, ++cEdge) {
_childEdgeTag[cEdge] = childTags[0][i];
_childEdgeParentIndex[cEdge] = pFace;
}
}
}
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge, cEdge += 2) {
_childEdgeTag[cEdge + 0] = childTags[0][0];
_childEdgeTag[cEdge + 1] = childTags[0][1];
_childEdgeParentIndex[cEdge + 0] = pEdge;
_childEdgeParentIndex[cEdge + 1] = pEdge;
}
Index cVert = 0;
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace, ++cVert) {
_childVertexTag[cVert] = childTags[0][0];
_childVertexParentIndex[cVert] = pFace;
}
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge, ++cVert) {
_childVertexTag[cVert] = childTags[0][0];
_childVertexParentIndex[cVert] = pEdge;
}
for (Index pVert = 0; pVert < _parent->getNumVertices(); ++pVert, ++cVert) {
_childVertexTag[cVert] = childTags[0][0];
_childVertexParentIndex[cVert] = pVert;
}
} else {
// Child faces of faces:
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
bool incomplete = !_parentFaceTag[pFace]._selected;
IndexArray cFaces = getFaceChildFaces(pFace);
if (!incomplete && (cFaces.size() == 4)) {
_childFaceTag[cFaces[0]] = childTags[0][0];
_childFaceTag[cFaces[1]] = childTags[0][1];
_childFaceTag[cFaces[2]] = childTags[0][2];
_childFaceTag[cFaces[3]] = childTags[0][3];
_childFaceParentIndex[cFaces[0]] = pFace;
_childFaceParentIndex[cFaces[1]] = pFace;
_childFaceParentIndex[cFaces[2]] = pFace;
_childFaceParentIndex[cFaces[3]] = pFace;
} else {
for (int i = 0; i < cFaces.size(); ++i) {
if (IndexIsValid(cFaces[i])) {
_childFaceTag[cFaces[i]] = childTags[incomplete][i];
_childFaceParentIndex[cFaces[i]] = pFace;
}
}
}
}
// Child edges of faces and edges:
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
bool incomplete = !_parentFaceTag[pFace]._selected;
IndexArray cEdges = getFaceChildEdges(pFace);
if (!incomplete && (cEdges.size() == 4)) {
_childEdgeTag[cEdges[0]] = childTags[0][0];
_childEdgeTag[cEdges[1]] = childTags[0][1];
_childEdgeTag[cEdges[2]] = childTags[0][2];
_childEdgeTag[cEdges[3]] = childTags[0][3];
_childEdgeParentIndex[cEdges[0]] = pFace;
_childEdgeParentIndex[cEdges[1]] = pFace;
_childEdgeParentIndex[cEdges[2]] = pFace;
_childEdgeParentIndex[cEdges[3]] = pFace;
} else {
for (int i = 0; i < cEdges.size(); ++i) {
if (IndexIsValid(cEdges[i])) {
_childEdgeTag[cEdges[i]] = childTags[incomplete][i];
_childEdgeParentIndex[cEdges[i]] = pFace;
}
}
}
}
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
bool incomplete = !_parentEdgeTag[pEdge]._selected;
IndexArray cEdges = getEdgeChildEdges(pEdge);
if (!incomplete) {
_childEdgeTag[cEdges[0]] = childTags[0][0];
_childEdgeTag[cEdges[1]] = childTags[0][1];
_childEdgeParentIndex[cEdges[0]] = pEdge;
_childEdgeParentIndex[cEdges[1]] = pEdge;
} else {
for (int i = 0; i < 2; ++i) {
if (IndexIsValid(cEdges[i])) {
_childEdgeTag[cEdges[i]] = childTags[incomplete][i];
_childEdgeParentIndex[cEdges[i]] = pEdge;
}
}
}
}
// Child vertices of faces, edges and vertices:
for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) {
Index cVert = _faceChildVertIndex[pFace];
if (IndexIsValid(cVert)) {
bool incomplete = !_parentFaceTag[pFace]._selected;
_childVertexTag[cVert] = childTags[incomplete][0];
_childVertexParentIndex[cVert] = pFace;
}
}
for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) {
Index cVert = _edgeChildVertIndex[pEdge];
if (IndexIsValid(cVert)) {
bool incomplete = !_parentEdgeTag[pEdge]._selected;
_childVertexTag[cVert] = childTags[incomplete][0];
_childVertexParentIndex[cVert] = pEdge;
}
}
for (Index pVert = 0; pVert < _parent->getNumVertices(); ++pVert) {
Index cVert = _vertChildVertIndex[pVert];
if (IndexIsValid(cVert)) {
_childVertexTag[cVert] = childTags[0][0];
_childVertexParentIndex[cVert] = pVert;
}
}
}
}
void
Refinement::populateChildToParentIndices() {
}
void
Refinement::populateChildToParentMapping() {
assert(_quadSplit);
_childVertexParentIndex.resize(_child->getNumVertices());
_childEdgeParentIndex.resize(_child->getNumEdges());
_childFaceParentIndex.resize(_child->getNumFaces());
_childVertexTag.resize(_child->getNumVertices());
_childEdgeTag.resize(_child->getNumEdges());
_childFaceTag.resize(_child->getNumFaces());
populateChildToParentIndices();
populateChildToParentTags();
}
#ifdef _VTR_COMPUTE_MASK_WEIGHTS_ENABLED
void
Refinement::computeMaskWeights() {
const Level& parent = *this->_parent;
Level& child = *this->_child;
assert(child.getNumVertices() != 0);
_faceVertWeights.resize(parent.faceVertCount());
_edgeVertWeights.resize(parent.edgeVertCount());
_edgeFaceWeights.resize(parent.edgeFaceCount());
_vertVertWeights.resize(parent.getNumVertices());
_vertEdgeWeights.resize(parent.vertEdgeCount());
_vertFaceWeights.resize(parent.vertEdgeCount());
//
// Hard-coding this for Catmark temporarily for testing...
//
assert(_schemeType == Sdc::TYPE_CATMARK);
Sdc::Scheme<Sdc::TYPE_CATMARK> scheme(_schemeOptions);
if (_childVertFromFaceCount) {
for (int pFace = 0; pFace < parent.getNumFaces(); ++pFace) {
Index cVert = _faceChildVertIndex[pFace];
if (!IndexIsValid(cVert)) continue;
int fVertCount = parent.faceVertCount(pFace);
int fVertOffset = parent.faceVertOffset(pFace);
float* fVertWeights = &_faceVertWeights[fVertOffset];
MaskInterface fMask(fVertWeights, 0, 0);
FaceInterface fHood(fVertCount);
scheme.ComputeFaceVertexMask(fHood, fMask);
}
}
if (_childVertFromEdgeCount) {
EdgeInterface eHood(parent);
for (int pEdge = 0; pEdge < parent.getNumEdges(); ++pEdge) {
Index cVert = _edgeChildVertIndex[pEdge];
if (!IndexIsValid(cVert)) continue;
//
// Update the locations for the mask weights:
//
int eFaceCount = parent.edgeFaceCount(pEdge);
int eFaceOffset = parent.edgeFaceOffset(pEdge);
float* eFaceWeights = &_edgeFaceWeights[eFaceOffset];
float* eVertWeights = &_edgeVertWeights[2 * pEdge];
MaskInterface eMask(eVertWeights, 0, eFaceWeights);
//
// Identify the parent and child and compute weights -- note that the face
// weights may not be populated, so set them to zero if not:
//
eHood.SetIndex(pEdge);
Sdc::Rule pRule = (parent._edgeSharpness[pEdge] > 0.0) ? Sdc::Crease::RULE_CREASE : Sdc::Crease::RULE_SMOOTH;
Sdc::Rule cRule = child.getVertexRule(cVert);
scheme.ComputeEdgeVertexMask(eHood, eMask, pRule, cRule);
if (eMask.GetFaceWeightCount() == 0) {
std::fill(eFaceWeights, eFaceWeights + eFaceCount, 0.0);
}
}
}
if (_childVertFromVertCount) {
VertexInterface vHood(parent, child);
for (int pVert = 0; pVert < parent.getNumVertices(); ++pVert) {
Index cVert = _vertChildVertIndex[pVert];
if (!IndexIsValid(cVert)) continue;
//
// Update the locations for the mask weights:
//
float* vVertWeights = &_vertVertWeights[pVert];
int vEdgeCount = parent.vertEdgeCount(pVert);
int vEdgeOffset = parent.vertEdgeOffset(pVert);
float* vEdgeWeights = &_vertEdgeWeights[vEdgeOffset];
int vFaceCount = parent.vertFaceCount(pVert);
int vFaceOffset = parent.vertFaceOffset(pVert);
float* vFaceWeights = &_vertFaceWeights[vFaceOffset];
MaskInterface vMask(vVertWeights, vEdgeWeights, vFaceWeights);
//
// Initialize the neighborhood and gather the pre-determined Rules:
//
vHood.SetIndex(pVert, cVert);
Sdc::Rule pRule = parent.vertRule(pVert);
Sdc::Rule cRule = child.vertRule(cVert);
scheme.ComputeVertexVertexMask(vHood, vMask, pRule, cRule);
if (vMask.GetEdgeWeightCount() == 0) {
std::fill(vEdgeWeights, vEdgeWeights + vEdgeCount, 0.0);
}
if (vMask.GetFaceWeightCount() == 0) {
std::fill(vFaceWeights, vFaceWeights + vFaceCount, 0.0);
}
}
}
}
#endif
//
// Marking of sparse child components -- including those selected and those neighboring...
//
// For schemes requiring neighboring support, this is the equivalent of the "guarantee
// neighbors" in Hbr -- it ensures that all components required to define the limit of
// those "selected" are also generated in the refinement.
//
// The difference with Hbr is that we do this in a single pass for all components once
// "selection" of components of interest has been completed.
//
// Considering two approaches:
// 1) By Vertex neighborhoods:
// - for each base vertex
// - for each incident face
// - test and mark components for its child face
// or
// 2) By Edge and Face contents:
// - for each base edge
// - test and mark local components
// - for each base face
// - test and mark local components
//
// Given a typical quad mesh with N verts, N faces and 2*N edges, determine which is more
// efficient...
//
// Going with (2) initially for simplicity -- certain aspects of (1) are awkward, i.e. the
// identification of child-edges to be marked (trivial in (2). We are also guaranteed with
// (2) that we only visit each component once, i.e. each edge and each face.
//
// Revising the above assessment... (2) has gotten WAY more complicated once the ability to
// select child faces is provided. Given that feature is important to Manuel for support
// of the FarStencilTables we have to assume it will be needed. So we'll try (1) out as it
// will be simpler to get it correct -- we can work on improving performance later.
//
// Complexity added by child component selection:
// - the child vertex of the component can now be selected as part of a child face or
// edge, and so the parent face or edge is not fully selected. So we've had to add another
// bit to the marking masks to indicate when a parent component is "fully selected".
// - selecting a child face creates the situation where child edges of parent edges do
// not have any selected vertex at their ends -- both can be neighboring. This complicated
// the marking of neighboring child edges, which was otherwise trivial -- if any end vertex
// of a child edge (of a parent edge) was selected, the child edge was at least neighboring.
//
// Final note on the marking technique:
// There are currently two values to the marking of child components, which are no
// longer that useful. It is now sufficient, and not likely to be necessary, to distinguish
// between what was selected or added to support it. Ultimately that will be determined by
// inspecting the selected flag on the parent component once the child-to-parent map is in
// place.
//
namespace {
Index const IndexSparseMaskNeighboring = (1 << 0);
Index const IndexSparseMaskSelected = (1 << 1);
inline void markSparseIndexNeighbor(Index& index) { index = IndexSparseMaskNeighboring; }
inline void markSparseIndexSelected(Index& index) { index = IndexSparseMaskSelected; }
}
void
Refinement::markSparseChildComponents() {
assert(_parentEdgeTag.size() > 0);
assert(_parentFaceTag.size() > 0);
assert(_parentVertexTag.size() > 0);
//
// For each parent vertex:
// - mark the descending child vertex for each selected vertex
//
for (Index pVert = 0; pVert < parent().getNumVertices(); ++pVert) {
if (_parentVertexTag[pVert]._selected) {
markSparseIndexSelected(_vertChildVertIndex[pVert]);
}
}
//
// For each parent edge:
// - mark the descending child edges and vertex for each selected edge
// - test each end vertex of unselected edges to see if selected:
// - mark both the child edge and the middle child vertex if so
// - set transitional bit for all edges based on selection of incident faces
//
// Note that no edges have been marked "fully selected" -- only their vertices have
// been marked and marking of their child edges deferred to visiting each edge only
// once here.
//
for (Index pEdge = 0; pEdge < parent().getNumEdges(); ++pEdge) {
IndexArray eChildEdges = getEdgeChildEdges(pEdge);
IndexArray const eVerts = parent().getEdgeVertices(pEdge);
SparseTag& pEdgeTag = _parentEdgeTag[pEdge];
if (pEdgeTag._selected) {
markSparseIndexSelected(eChildEdges[0]);
markSparseIndexSelected(eChildEdges[1]);
markSparseIndexSelected(_edgeChildVertIndex[pEdge]);
} else {
if (_parentVertexTag[eVerts[0]]._selected) {
markSparseIndexNeighbor(eChildEdges[0]);
markSparseIndexNeighbor(_edgeChildVertIndex[pEdge]);
}
if (_parentVertexTag[eVerts[1]]._selected) {
markSparseIndexNeighbor(eChildEdges[1]);
markSparseIndexNeighbor(_edgeChildVertIndex[pEdge]);
}
}
//
// TAG the parent edges as "transitional" here if only one was selected (or in
// the more general non-manifold case, they are not all selected the same way).
// We use the transitional tags on the edges to TAG the parent face below.
//
// Note -- this is best done now rather than as a post-process as we have more
// explicit information about the selected components. Unless we also tag the
// parent faces as selected, we can't easily tell from the child-faces of the
// edge's incident faces which were generated by selection or neighboring...
//
IndexArray const eFaces = parent().getEdgeFaces(pEdge);
if (eFaces.size() == 2) {
pEdgeTag._transitional = (_parentFaceTag[eFaces[0]]._selected !=
_parentFaceTag[eFaces[1]]._selected);
} else if (eFaces.size() < 2) {
pEdgeTag._transitional = false;
} else {
bool isFace0Selected = _parentFaceTag[eFaces[0]]._selected;
pEdgeTag._transitional = false;
for (int i = 1; i < eFaces.size(); ++i) {
if (_parentFaceTag[eFaces[i]]._selected != isFace0Selected) {
pEdgeTag._transitional = true;
break;
}
}
}
}
//
// For each parent face:
// All boundary edges will be adequately marked as a result of the pass over the
// edges above and boundary vertices marked by selection. So all that remains is to
// identify the child faces and interior child edges for a face requiring neighboring
// child faces.
// For each corner vertex selected, we need to mark the corresponding child face,
// the two interior child edges and shared child vertex in the middle.
//
assert(_quadSplit);
for (Index pFace = 0; pFace < parent().getNumFaces(); ++pFace) {
//
// Mark all descending child components of a selected face. Otherwise inspect
// its incident vertices to see if anything neighboring has been selected --
// requiring partial refinement of this face.
//
// Remember that a selected face cannot be transitional, and that only a
// transitional face will be partially refined.
//
IndexArray fChildFaces = getFaceChildFaces(pFace);
IndexArray fChildEdges = getFaceChildEdges(pFace);
IndexArray const fVerts = parent().getFaceVertices(pFace);
SparseTag& pFaceTag = _parentFaceTag[pFace];
if (pFaceTag._selected) {
for (int i = 0; i < fVerts.size(); ++i) {
markSparseIndexSelected(fChildFaces[i]);
markSparseIndexSelected(fChildEdges[i]);
}
markSparseIndexSelected(_faceChildVertIndex[pFace]);
pFaceTag._transitional = 0;
} else {
int marked = false;
for (int i = 0; i < fVerts.size(); ++i) {
// NOTE - the mod 4 here will not work for N-gons (and want to avoid % anyway)
int iPrev = (i+3) % 4;
if (_parentVertexTag[fVerts[i]]._selected) {
markSparseIndexNeighbor(fChildFaces[i]);
markSparseIndexNeighbor(fChildEdges[i]);
markSparseIndexNeighbor(fChildEdges[iPrev]);
marked = true;
}
}
if (marked) {
markSparseIndexNeighbor(_faceChildVertIndex[pFace]);
//
// Assign selection and transitional tags to faces when required:
//
// Only non-selected faces may be "transitional", and we need to inspect
// all tags on its boundary edges to be sure. Since we're inspecting each
// now (and may need to later) retain the transitional state of each in a
// 4-bit mask that reflects the full transitional topology for later.
//
IndexArray const fEdges = parent().getFaceEdges(pFace);
if (fEdges.size() == 4) {
pFaceTag._transitional = (unsigned char)
((_parentEdgeTag[fEdges[0]]._transitional << 0) |
(_parentEdgeTag[fEdges[1]]._transitional << 1) |
(_parentEdgeTag[fEdges[2]]._transitional << 2) |
(_parentEdgeTag[fEdges[3]]._transitional << 3));
} else if (fEdges.size() == 3) {
pFaceTag._transitional = (unsigned char)
((_parentEdgeTag[fEdges[0]]._transitional << 0) |
(_parentEdgeTag[fEdges[1]]._transitional << 1) |
(_parentEdgeTag[fEdges[2]]._transitional << 2));
} else {
pFaceTag._transitional = 0;
for (int i = 0; i < fEdges.size(); ++i) {
pFaceTag._transitional |= _parentEdgeTag[fEdges[i]]._transitional;
}
}
}
}
}
}
} // end namespace Vtr
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv