OpenSubdiv/opensubdiv/osd/hlslPatchTransition.hlsl
manuelk 10c687ecd5 Release Candidate 1.0 :
- [Feature Adaptive GPU Rendering of Catmull-Clark Surfaces](http://research.microsoft.com/en-us/um/people/cloop/tog2012.pdf).

- New API architecture : we are planning to lock on to this new framework as the basis for backward compatibility, which we will enforce from Release 1.0 onward. Subsequent releases of OpenSubdiv should not break client code.

- DirectX 11 support

- and much more...
2012-12-10 17:15:13 -08:00

909 lines
29 KiB
HLSL

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#if defined(CASE00) || defined(CASE01) || defined(CASE02) || defined(CASE10) || defined(CASE11) || defined(CASE12) || defined(CASE13) || defined(CASE21) || defined(CASE22) || defined(CASE23)
#define TRIANGLE
#define HS_DOMAIN "tri"
#else
#undef TRIANGLE
#define HS_DOMAIN "quad"
#endif
#if defined BOUNDARY
#define PATCH_INPUT_SIZE 12
#elif defined CORNER
#define PATCH_INPUT_SIZE 9
#else
#define PATCH_INPUT_SIZE 16
#endif
struct HS_CONSTANT_TRANSITION_FUNC_OUT {
#ifdef TRIANGLE
float tessLevelInner : SV_InsideTessFactor;
float tessLevelOuter[3] : SV_TessFactor;
#else
float tessLevelInner[2] : SV_InsideTessFactor;
float tessLevelOuter[4] : SV_TessFactor;
#endif
};
//----------------------------------------------------------
// Patches.Coefficients
//----------------------------------------------------------
static float4x4 Q = {
1.f/6.f, 2.f/3.f, 1.f/6.f, 0.f,
0.f, 2.f/3.f, 1.f/3.f, 0.f,
0.f, 1.f/3.f, 2.f/3.f, 0.f,
0.f, 1.f/6.f, 2.f/3.f, 1.f/6.f
};
// Boundary
static float4x3 B = {
1.0f, 0.0f, 0.0f,
2.f/3.f, 1.f/3.f, 0.0f,
1.f/3.f, 2.f/3.f, 0.0f,
1.f/6.f, 2.f/3.f, 1.f/6.f
};
// Corner
static float4x4 R = {
1.f/6.f, 2.f/3.f, 1.f/6.f, 0.0f,
0.0f, 2.f/3.f, 1.f/3.f, 0.0f,
0.0f, 1.f/3.f, 2.f/3.f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f
};
//----------------------------------------------------------
// Patches.Vertex
//----------------------------------------------------------
void vs_main_patches( in InputVertex input,
out HullVertex output )
{
output.position = mul(ModelViewMatrix, input.position);
OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(input.position);
#if OSD_NUM_VARYINGS > 0
for (int i = 0; i< OSD_NUM_VARYINGS; ++i)
output.varyings[i] = input.varyings[i];
#endif
}
//----------------------------------------------------------
// Patches.HullTransition
//----------------------------------------------------------
Buffer<int> g_patchLevelBuffer : register( t3 );
OSD_DECLARE_PTEX_INDICES_BUFFER;
HS_CONSTANT_TRANSITION_FUNC_OUT HSConstFunc(
InputPatch<HullVertex, PATCH_INPUT_SIZE> patch,
uint primitiveID : SV_PrimitiveID)
{
HS_CONSTANT_TRANSITION_FUNC_OUT output;
int patchLevel = g_patchLevelBuffer[primitiveID + LevelBase];
#ifdef TRIANGLE
OSD_PATCH_CULL_TRIANGLE(PATCH_INPUT_SIZE);
#else
OSD_PATCH_CULL(PATCH_INPUT_SIZE);
#endif
#if OSD_ENABLE_SCREENSPACE_TESSELLATION
// These tables map the 9, 12, or 16 input control points onto the
// canonical 16 control points for a regular patch.
#if defined BOUNDARY
const int p[16] = { 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
#elif defined CORNER
const int p[16] = { 0, 1, 2, 2, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 8 };
#else
const int p[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
#endif
#if ROTATE == 0
const int r[16] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
#elif ROTATE == 1
const int r[16] = { 12, 8, 4, 0, 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3 };
#elif ROTATE == 2
const int r[16] = { 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 };
#elif ROTATE == 3
const int r[16] = { 3, 7, 11, 15, 2, 6, 10, 14, 1, 5, 9, 13, 0, 4, 8, 12 };
#endif
// Expand and rotate control points using remapping tables above
float3 pv0 = patch[p[r[0]]].position.xyz;
float3 pv1 = patch[p[r[1]]].position.xyz;
float3 pv2 = patch[p[r[2]]].position.xyz;
float3 pv3 = patch[p[r[3]]].position.xyz;
float3 pv4 = patch[p[r[4]]].position.xyz;
float3 pv5 = patch[p[r[5]]].position.xyz;
float3 pv6 = patch[p[r[6]]].position.xyz;
float3 pv7 = patch[p[r[7]]].position.xyz;
float3 pv8 = patch[p[r[8]]].position.xyz;
float3 pv9 = patch[p[r[9]]].position.xyz;
float3 pv10 = patch[p[r[10]]].position.xyz;
float3 pv11 = patch[p[r[11]]].position.xyz;
float3 pv12 = patch[p[r[12]]].position.xyz;
float3 pv13 = patch[p[r[13]]].position.xyz;
float3 pv14 = patch[p[r[14]]].position.xyz;
float3 pv15 = patch[p[r[15]]].position.xyz;
// Each edge of a transition patch is adjacent to one or two
// patches at the next refined level of subdivision.
// Compute the corresponding vertex-vertex and edge-vertex refined
// points along the edges of the patch using Catmull-Clark subdivision
// stencil weights.
// For simplicity, we let the optimizer discard unused computation.
float3 vv0 = (pv0 + pv2 + pv8 + pv10) * 0.015625 +
(pv1 + pv4 + pv6 + pv9) * 0.09375 + pv5 * 0.5625;
float3 ev01 = (pv1 + pv2 + pv9 + pv10) * 0.0625 + (pv5 + pv6) * 0.375;
float3 vv1 = (pv1 + pv3 + pv9 + pv11) * 0.015625 +
(pv2 + pv5 + pv7 + pv10) * 0.09375 + pv6 * 0.5625;
float3 ev12 = (pv5 + pv7 + pv9 + pv11) * 0.0625 + (pv6 + pv10) * 0.375;
float3 vv2 = (pv5 + pv7 + pv13 + pv15) * 0.015625 +
(pv6 + pv9 + pv11 + pv14) * 0.09375 + pv10 * 0.5625;
float3 ev23 = (pv5 + pv6 + pv13 + pv14) * 0.0625 + (pv9 + pv10) * 0.375;
float3 vv3 = (pv4 + pv6 + pv12 + pv14) * 0.015625 +
(pv5 + pv8 + pv10 + pv13) * 0.09375 + pv9 * 0.5625;
float3 ev30 = (pv4 + pv6 + pv8 + pv10) * 0.0625 + (pv5 + pv9) * 0.375;
// The vertices along boundaries and at corners are refined specially.
#if defined BOUNDARY
#if ROTATE == 0
vv0 = (pv4 + pv6) * 0.125 + pv5 * 0.75;
vv1 = (pv5 + pv7) * 0.125 + pv6 * 0.75;
#elif ROTATE == 1
vv1 = (pv2 + pv10) * 0.125 + pv6 * 0.75;
vv2 = (pv6 + pv14) * 0.125 + pv10 * 0.75;
#elif ROTATE == 2
vv2 = (pv9 + pv11) * 0.125 + pv10 * 0.75;
vv3 = (pv8 + pv10) * 0.125 + pv9 * 0.75;
#elif ROTATE == 3
vv3 = (pv5 + pv13) * 0.125 + pv9 * 0.75;
vv0 = (pv1 + pv9) * 0.125 + pv5 * 0.75;
#endif
#elif defined CORNER
#if ROTATE == 0
vv0 = (pv4 + pv6) * 0.125 + pv5 * 0.75;
vv1 = pv6;
vv2 = (pv6 + pv14) * 0.125 + pv10 * 0.75;
#elif ROTATE == 1
vv1 = (pv5 + pv7) * 0.125 + pv6 * 0.75;
vv2 = pv10;
vv3 = (pv8 + pv10) * 0.125 + pv9 * 0.75;
#elif ROTATE == 2
vv2 = (pv6 + pv14) * 0.125 + pv10 * 0.75;
vv3 = pv9;
vv0 = (pv4 + pv6) * 0.125 + pv5 * 0.75;
#elif ROTATE == 3
vv3 = (pv8 + pv10) * 0.125 + pv9 * 0.75;
vv0 = pv5;
vv1 = (pv5 + pv7) * 0.125 + pv6 * 0.75;
#endif
#endif
#ifdef CASE00
output.tessLevelOuter[0] = TessAdaptive(ev01, pv9, patchLevel) * 0.5;
output.tessLevelOuter[1] = TessAdaptive(ev01, pv10, patchLevel) * 0.5;
output.tessLevelOuter[2] = TessAdaptive(pv9, pv10, patchLevel);
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1] + output.tessLevelOuter[2]) * 0.5;
#endif
#ifdef CASE01
output.tessLevelOuter[0] = TessAdaptive(ev01, vv1, patchLevel+1);
output.tessLevelOuter[1] = TessAdaptive(pv6, pv10, patchLevel);
output.tessLevelOuter[2] = TessAdaptive(ev01, pv10, patchLevel) * 0.5;
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1] + output.tessLevelOuter[2]) * 0.25;
#endif
#ifdef CASE02
output.tessLevelOuter[0] = TessAdaptive(ev01, vv0, patchLevel+1);
output.tessLevelOuter[1] = TessAdaptive(ev01, pv9, patchLevel) * 0.5;
output.tessLevelOuter[2] = TessAdaptive(pv5, pv9, patchLevel);
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1] + output.tessLevelOuter[2]) * 0.25;
#endif
#ifdef CASE10
output.tessLevelOuter[0] = TessAdaptive(pv6, pv10, patchLevel);
output.tessLevelOuter[1] = TessAdaptive(ev01, pv10, patchLevel);
output.tessLevelOuter[2] = TessAdaptive(ev01, vv1, patchLevel+1);
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1]) * 0.25;
#endif
#ifdef CASE11
output.tessLevelOuter[0] = TessAdaptive(pv9, pv10, patchLevel);
output.tessLevelOuter[1] = TessAdaptive(ev30, vv3, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(ev30, pv10, patchLevel);
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[2]) * 0.25;
#endif
#ifdef CASE12
output.tessLevelOuter[0] = TessAdaptive(ev30, vv0, patchLevel+1);
output.tessLevelOuter[1] = TessAdaptive(ev01, vv0, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(ev01, ev30, patchLevel);
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1] + output.tessLevelOuter[2]) * 0.25;
#endif
#ifdef CASE13
output.tessLevelOuter[0] = TessAdaptive(ev01, pv10, patchLevel);
output.tessLevelOuter[1] = TessAdaptive(ev30, pv10, patchLevel);
output.tessLevelOuter[2] = TessAdaptive(ev01, ev30, patchLevel);
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1] + output.tessLevelOuter[2]) * 0.25;
#endif
#ifdef CASE20
output.tessLevelOuter[0] = TessAdaptive(ev12, ev30, patchLevel);
output.tessLevelOuter[1] = TessAdaptive(ev30, vv0, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(pv5, pv6, patchLevel);
output.tessLevelOuter[3] = TessAdaptive(ev12, vv1, patchLevel+1);
output.tessLevelInner[0] =
max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] =
max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#endif
#ifdef CASE21
output.tessLevelOuter[0] = TessAdaptive(ev23, ev30, patchLevel) * 0.5;
output.tessLevelOuter[1] = TessAdaptive(ev23, vv3, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(ev30, vv3, patchLevel+1);
output.tessLevelInner =
(output.tessLevelOuter[1] + output.tessLevelOuter[2]) * 0.5;
#endif
#ifdef CASE22
output.tessLevelOuter[0] = TessAdaptive(ev12, vv2, patchLevel+1);
output.tessLevelOuter[1] = TessAdaptive(ev23, vv2, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(ev12, ev23, patchLevel) * 0.5;
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1]) * 0.5;
#endif
#ifdef CASE23
output.tessLevelOuter[0] = TessAdaptive(ev12, ev30, patchLevel);
output.tessLevelOuter[1] = TessAdaptive(ev12, ev23, patchLevel) * 0.5;
output.tessLevelOuter[2] = TessAdaptive(ev23, ev30, patchLevel) * 0.5;
output.tessLevelInner =
(output.tessLevelOuter[0] + output.tessLevelOuter[1] + output.tessLevelOuter[2]) * 0.5;
#endif
#ifdef CASE30
output.tessLevelOuter[0] = TessAdaptive(ev30, ev12, patchLevel) * 0.5;
output.tessLevelOuter[1] = TessAdaptive(ev30, vv0, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(ev01, vv0, patchLevel+1);
output.tessLevelOuter[3] = TessAdaptive(ev01, ev23, patchLevel) * 0.5;
output.tessLevelInner[0] =
max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] =
max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#endif
#ifdef CASE31
output.tessLevelOuter[0] = TessAdaptive(ev01, vv1, patchLevel+1);
output.tessLevelOuter[1] = TessAdaptive(ev12, vv1, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(ev12, ev30, patchLevel) * 0.5;
output.tessLevelOuter[3] = TessAdaptive(ev01, ev23, patchLevel) * 0.5;
output.tessLevelInner[0] =
max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] =
max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#endif
#ifdef CASE32
output.tessLevelOuter[0] = TessAdaptive(ev01, ev23, patchLevel) * 0.5;
output.tessLevelOuter[1] = TessAdaptive(ev12, ev30, patchLevel) * 0.5;
output.tessLevelOuter[2] = TessAdaptive(ev23, vv3, patchLevel+1);
output.tessLevelOuter[3] = TessAdaptive(ev30, vv3, patchLevel+1);
output.tessLevelInner[0] =
max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] =
max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#endif
#ifdef CASE33
output.tessLevelOuter[0] = TessAdaptive(ev01, ev23, patchLevel) * 0.5;
output.tessLevelOuter[1] = TessAdaptive(ev12, vv2, patchLevel+1);
output.tessLevelOuter[2] = TessAdaptive(ev23, vv2, patchLevel+1);
output.tessLevelOuter[3] = TessAdaptive(ev12, ev30, patchLevel) * 0.5;
output.tessLevelInner[0] =
max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] =
max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#endif
#ifdef CASE40
output.tessLevelOuter[0] = TessAdaptive(ev01, vv0, patchLevel+1);
output.tessLevelOuter[1] = TessAdaptive(ev01, ev23, patchLevel);
output.tessLevelOuter[2] = TessAdaptive(ev23, vv3, patchLevel+1);
output.tessLevelOuter[3] = TessAdaptive(pv5, pv9, patchLevel);
output.tessLevelInner[0] =
max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] =
max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#endif
#ifdef CASE41
output.tessLevelOuter[0] = TessAdaptive(ev01, vv1, patchLevel+1);
output.tessLevelOuter[1] = TessAdaptive(pv6, pv10, patchLevel);
output.tessLevelOuter[2] = TessAdaptive(ev23, vv2, patchLevel+1);
output.tessLevelOuter[3] = TessAdaptive(ev01, ev23, patchLevel);
output.tessLevelInner[0] =
max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] =
max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#endif
#else
// XXX: HLSL compiler crashes with an internal compiler error occasionaly
// if this shader accesses a shader resource buffer or a constant buffer
// from this hull constant function.
//float TessAmount = GetTessLevel(patchLevel);
//float TessAmount = GetTessLevel(0);
float TessAmount = 2.0;
#ifdef CASE00
float side = sqrt(1.25)*TessAmount;
output.tessLevelOuter[0] = side;
output.tessLevelOuter[1] = side;
output.tessLevelOuter[2] = TessAmount;
output.tessLevelInner = TessAmount;
#endif
#ifdef CASE01
float side = sqrt(1.25)*TessAmount;
output.tessLevelOuter[0] = TessAmount/2.0;
output.tessLevelOuter[1] = TessAmount;
output.tessLevelOuter[2] = side;
output.tessLevelInner = TessAmount/2.0;
#endif
#ifdef CASE02
float side = sqrt(1.25)*TessAmount;
output.tessLevelOuter[0] = TessAmount/2.0;
output.tessLevelOuter[1] = side;
output.tessLevelOuter[2] = TessAmount;
output.tessLevelInner = TessAmount/2.0;
#endif
#ifdef CASE10
float side = sqrt(1.25) * TessAmount;
output.tessLevelOuter[0] = TessAmount;
output.tessLevelOuter[1] = side;
output.tessLevelOuter[2] = TessAmount/2.0;
output.tessLevelInner = TessAmount/2;
#endif
#ifdef CASE11
float side = sqrt(1.25) * TessAmount;
output.tessLevelOuter[0] = TessAmount;
output.tessLevelOuter[1] = TessAmount/2.0;
output.tessLevelOuter[2] = side;
output.tessLevelInner = TessAmount/2;
#endif
#ifdef CASE12
float side = sqrt(0.125) * TessAmount;
output.tessLevelOuter[0] = TessAmount/2.0;
output.tessLevelOuter[1] = TessAmount/2.0;
output.tessLevelOuter[2] = side;
output.tessLevelInner = TessAmount/2;
#endif
#ifdef CASE13
float side1 = sqrt(1.25) * TessAmount;
float side2 = sqrt(0.125) * TessAmount;
output.tessLevelOuter[0] = side1;
output.tessLevelOuter[1] = side1;
output.tessLevelOuter[2] = side2;
output.tessLevelInner = TessAmount/2.0*1.414;
#endif
#ifdef CASE20
output.tessLevelOuter[0] = TessAmount;
output.tessLevelOuter[1] = TessAmount/2.0;
output.tessLevelOuter[2] = TessAmount;
output.tessLevelOuter[3] = TessAmount/2.0;
output.tessLevelInner[0] = TessAmount/2.0;
output.tessLevelInner[1] = TessAmount;
#endif
#ifdef CASE21
float side = sqrt(0.125) * TessAmount;
output.tessLevelOuter[0] = side;
output.tessLevelOuter[1] = TessAmount/2.0;
output.tessLevelOuter[2] = TessAmount/2.0;
output.tessLevelInner = TessAmount/2.0;
#endif
#ifdef CASE22
float side = sqrt(0.125) * TessAmount;
output.tessLevelOuter[0] = TessAmount/2.0;
output.tessLevelOuter[1] = TessAmount/2.0;
output.tessLevelOuter[2] = side;
output.tessLevelInner = TessAmount/2.0;
#endif
#ifdef CASE23
float side = sqrt(0.125) * TessAmount;
output.tessLevelOuter[0] = TessAmount;
output.tessLevelOuter[1] = side;
output.tessLevelOuter[2] = side;
output.tessLevelInner = TessAmount/2.0;
#endif
#ifdef CASE30
output.tessLevelOuter[0] = output.tessLevelOuter[1] =
output.tessLevelOuter[2] = output.tessLevelOuter[3] = TessAmount/2.0;
output.tessLevelInner[0] = output.tessLevelInner[1] = TessAmount/2.0;
#endif
#ifdef CASE31
output.tessLevelOuter[0] = output.tessLevelOuter[1] =
output.tessLevelOuter[2] = output.tessLevelOuter[3] = TessAmount/2.0;
output.tessLevelInner[0] = output.tessLevelInner[1] = TessAmount/2.0;
#endif
#ifdef CASE32
output.tessLevelOuter[0] = output.tessLevelOuter[1] =
output.tessLevelOuter[2] = output.tessLevelOuter[3] = TessAmount/2.0;
output.tessLevelInner[0] = output.tessLevelInner[1] = TessAmount/2.0;
#endif
#ifdef CASE33
output.tessLevelOuter[0] = output.tessLevelOuter[1] =
output.tessLevelOuter[2] = output.tessLevelOuter[3] = TessAmount/2.0;
output.tessLevelInner[0] = output.tessLevelInner[1] = TessAmount/2.0;
#endif
#ifdef CASE40
output.tessLevelOuter[0] = TessAmount/2.0;
output.tessLevelOuter[1] = TessAmount;
output.tessLevelOuter[2] = TessAmount/2.0;
output.tessLevelOuter[3] = TessAmount;
output.tessLevelInner[0] = TessAmount;
output.tessLevelInner[1] = TessAmount/2.0;
#endif
#ifdef CASE41
output.tessLevelOuter[0] = TessAmount/2.0;
output.tessLevelOuter[1] = TessAmount;
output.tessLevelOuter[2] = TessAmount/2.0;
output.tessLevelOuter[3] = TessAmount;
output.tessLevelInner[0] = TessAmount;
output.tessLevelInner[1] = TessAmount/2.0;
#endif
#endif
return output;
}
[domain(HS_DOMAIN)]
[partitioning("integer")]
[outputtopology("triangle_cw")]
[outputcontrolpoints(16)]
[patchconstantfunc("HSConstFunc")]
HullVertex hs_main_patches(
in InputPatch<HullVertex, PATCH_INPUT_SIZE> patch,
uint primitiveID : SV_PrimitiveID,
in uint ID : SV_OutputControlPointID )
{
#if defined BOUNDARY
int i = ID/4;
int j = ID%4;
#if defined(CASE20) || defined(CASE21) || defined(CASE22) || defined(CASE23)
#else
i = 3 - i;
#endif
float3 H[3];
for (int l=0; l<3; l++) {
H[l] = float3(0,0,0);
for (int k=0; k<4; k++) {
float c = Q[i][k];
H[l] += c*patch[l*4 + k].position.xyz;
}
}
float3 pos = float3(0,0,0);
for (int k=0; k<3; k++) {
pos += B[j][k]*H[k];
}
#elif defined CORNER
int i = ID/4;
int j = ID%4;
float3 H[3];
for (int l=0; l<3; l++) {
H[l] = float3(0,0,0);
for (int k=0; k<3; k++) {
float c = B[i][2-k];
H[l] += c*patch[l*3 + k].position.xyz;
}
}
float3 pos = float3(0,0,0);
for (int k=0; k<3; k++) {
pos += B[j][k]*H[k];
}
#else
int i = ID/4;
int j = ID%4;
float3 H[4];
for (int l=0; l<4; ++l) {
H[l] = float3(0,0,0);
for(int k=0; k<4; ++k) {
H[l] += Q[i][k] * patch[l*4 + k].position.xyz;
}
}
float3 pos = float3(0,0,0);
for (int k=0; k<4; ++k){
pos += Q[j][k] * H[k];
}
#endif
HullVertex output;
output.position = float4(pos, 1.0);
int patchLevel = g_patchLevelBuffer[primitiveID + LevelBase];
// +0.5 to avoid interpolation error of integer value
output.patchCoord = float4(0, 0,
patchLevel+0.5,
primitiveID+LevelBase+0.5);
OSD_COMPUTE_PTEX_COORD_HULL_SHADER;
return output;
}
//----------------------------------------------------------
// Patches.DomainTransition
//----------------------------------------------------------
// B-spline basis evaluation via deBoor pyramid...
void
EvalCubicBSpline(in float u, out float B[4], out float BU[4])
{
float t = u;
float s = 1.0 - u;
float C0 = s * (0.5 * s);
float C1 = t * (s + 0.5 * t) + s * (0.5 * s + t);
float C2 = t * ( 0.5 * t);
B[0] = 1.f/3.f * s * C0;
B[1] = (2.f/3.f * s + t) * C0 + (2.f/3.f * s + 1.f/3.f * t) * C1;
B[2] = (1.f/3.f * s + 2.f/3.f * t) * C1 + ( s + 2.f/3.f * t) * C2;
B[3] = 1.f/3.f * t * C2;
BU[0] = - C0;
BU[1] = C0 - C1;
BU[2] = C1 - C2;
BU[3] = C2;
}
void
Univar4x4(in float u, out float B[4], out float D[4])
{
float t = u;
float s = 1.0 - u;
float A0 = s * s;
float A1 = 2 * s * t;
float A2 = t * t;
B[0] = s * A0;
B[1] = t * A0 + s * A1;
B[2] = t * A1 + s * A2;
B[3] = t * A2;
D[0] = - A0;
D[1] = A0 - A1;
D[2] = A1 - A2;
D[3] = A2;
}
[domain(HS_DOMAIN)]
void ds_main_patches(
in HS_CONSTANT_TRANSITION_FUNC_OUT input,
in OutputPatch<HullVertex, 16> patch,
#ifdef TRIANGLE
in float3 uvw : SV_DomainLocation,
#else
in float2 uv : SV_DomainLocation,
#endif
out OutputVertex output )
{
float2 UV = float2(0.0, 0.0);
// XXXtakahito: Tess coordinates computed below are results of heuristic hack
// to get front facing and appropriate patch uv.
// Revisit here to get more consistent code with patch factory!
/* CASE0*
+-------+
|1 /\\2 |
| / \\ |
|/ 0 \\|
+-------+
*/
#ifdef CASE00
UV.x = 1.0-uvw.z;
UV.y = 1.0-uvw.y-uvw.z/2.0;
#endif
#ifdef CASE01
UV.x = uvw.x;
UV.y = 1.0 - uvw.y/2;
#endif
#ifdef CASE02
UV.x = uvw.x;
UV.y = uvw.z/2;
#endif
/* CASE1*
+------+
|1 /\\2|
| /3_\\|
|/_- 0 |
+------+
*/
#ifdef CASE10
UV.x = uvw.z;
UV.y = 1.0-uvw.x/2.0;
#endif
#ifdef CASE11
UV.x = 1.0-uvw.x/2.0;
UV.y = uvw.y;
#endif
#ifdef CASE12
UV.x = uvw.y/2.0;
UV.y = uvw.x/2.0;
#endif
#ifdef CASE13
UV.x = 1.0-uvw.y-uvw.x/2.0;
UV.y = 1.0-uvw.x-uvw.y/2.0;
#endif
/* CASE2*
+-------+
| |\\2|
| | \\|
| 0 |3/ |
| |/ 1|
+-------+
*/
#ifdef CASE20
UV.x = 0.5 - uv.x/2.0;
UV.y = uv.y;
#endif
#ifdef CASE21
UV.x = 1.0 - 0.5 *uvw.y;
UV.y = 0.5*uvw.z;
#endif
#ifdef CASE22
UV.x = 1.0 - uvw.y/2.0;
UV.y = 1.0-uvw.x/2.0;
#endif
#ifdef CASE23
UV.x = 1.0-0.5*uvw.y-0.5*uvw.z;
UV.y = 1-uvw.y-0.5*uvw.x;
#endif
/* CASE3*
+-----+
|2 |3 |
|--+--+
|0 |1 |
+-----+
*/
#ifdef CASE30
UV.x = 0.5 - uv.x/2.0;
UV.y = uv.y/2.0;
#endif
#ifdef CASE31
UV.x = 0.5 + uv.x/2.0;
UV.y = 0.5 - uv.y/2.0;
#endif
#ifdef CASE32
UV.x = uv.x/2.0;
UV.y = 1.0 - uv.y/2.0;
#endif
#ifdef CASE33
UV.x = 0.5 + uv.x/2.0;
UV.y = 1.0 - uv.y/2.0;
#endif
/* CASE4*
+-----+
| 1 |
+-----+
| 0 |
+-----+
*/
#ifdef CASE40
UV.x = uv.x;
UV.y = 0.5 - uv.y/2.0;
#endif
#ifdef CASE41
UV.x = uv.x;
UV.y = 1.0 - uv.y/2.0;
#endif
float B[4], D[4];
Univar4x4(UV.x, B, D);
float3 BUCP[4], DUCP[4];
for (int i=0; i<4; ++i) {
BUCP[i] = float3(0,0,0);
DUCP[i] = float3(0,0,0);
for (int j=0; j<4; ++j) {
#if ROTATE == 0
float3 A = patch[4*i + j].position.xyz;
#elif ROTATE == 1
float3 A = patch[4*(3-j) + (3-i)].position.xyz;
#elif ROTATE == 2
float3 A = patch[4*i + (3-j)].position.xyz;
#elif ROTATE == 3
float3 A = patch[4*j + i].position.xyz;
#endif
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
}
}
float3 WorldPos = float3(0,0,0);
float3 Tangent = float3(0,0,0);
float3 BiTangent = float3(0,0,0);
Univar4x4(UV.y, B, D);
for (int i=0; i<4; ++i) {
WorldPos += B[i] * BUCP[i];
Tangent += B[i] * DUCP[i];
BiTangent += D[i] * BUCP[i];
}
float3 normal = -normalize(cross(BiTangent, Tangent));
normal = -normal;
output.position = float4(WorldPos, 1.0f);
output.normal = normal;
output.tangent = normalize(BiTangent);
output.patchCoord = patch[0].patchCoord;
#if ROTATE == 1
output.patchCoord.xy = float2(UV.x, 1.0-UV.y);
#elif ROTATE == 2
output.patchCoord.xy = float2(1.0-UV.y, 1.0-UV.x);
#elif ROTATE == 3
output.patchCoord.xy = float2(1.0-UV.x, UV.y);
#else
output.patchCoord.xy = float2(UV.y, UV.x);
#endif
OSD_COMPUTE_PTEX_COORD_DOMAIN_SHADER;
OSD_COMPUTE_PTEX_COMPATIBLE_TANGENT(ROTATE);
OSD_DISPLACEMENT_CALLBACK;
output.positionOut = mul(ProjectionMatrix, float4(WorldPos, 1.0f));
}
//----------------------------------------------------------
// Patches.Vertex
//----------------------------------------------------------
void vs_main( in InputVertex input,
out OutputVertex output)
{
output.positionOut = mul(ModelViewProjectionMatrix, input.position);
}
//----------------------------------------------------------
// Patches.PixelColor
//----------------------------------------------------------
cbuffer Data : register( b2 ) {
float4 color;
};
void ps_main( in OutputVertex input,
out float4 colorOut : SV_Target )
{
colorOut = color;
}