OpenSubdiv/examples/glPtexViewer/glPtexViewer.cpp
2015-10-23 15:26:46 -07:00

2099 lines
69 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#if defined(__APPLE__)
#if defined(OSD_USES_GLEW)
#include <GL/glew.h>
#else
#include <OpenGL/gl3.h>
#endif
#define GLFW_INCLUDE_GL3
#define GLFW_NO_GLU
#else
#include <stdlib.h>
#include <GL/glew.h>
#if defined(WIN32)
#include <GL/wglew.h>
#endif
#endif
#include <GLFW/glfw3.h>
GLFWwindow* g_window = 0;
GLFWmonitor* g_primary = 0;
#include <vector>
#include <sstream>
#include <iostream>
#include <fstream>
#include <string>
#include <utility>
#include <algorithm>
#include <far/error.h>
#include <osd/cpuEvaluator.h>
#include <osd/cpuGLVertexBuffer.h>
#ifdef OPENSUBDIV_HAS_OPENMP
#include <osd/ompEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_TBB
#include <osd/tbbEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
#include <osd/clEvaluator.h>
#include <osd/clGLVertexBuffer.h>
#include "../common/clDeviceContext.h"
CLDeviceContext g_clDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_CUDA
#include <osd/cudaEvaluator.h>
#include <osd/cudaGLVertexBuffer.h>
#include "../common/cudaDeviceContext.h"
CudaDeviceContext g_cudaDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
#include <osd/glXFBEvaluator.h>
#include <osd/glVertexBuffer.h>
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
#include <osd/glComputeEvaluator.h>
#include <osd/glVertexBuffer.h>
#endif
#include <osd/glMesh.h>
OpenSubdiv::Osd::GLMeshInterface *g_mesh;
#include "Ptexture.h"
#include "PtexUtils.h"
#include "../../regression/common/far_utils.h"
#include "../common/stopwatch.h"
#include "../common/simple_math.h"
#include "../common/glControlMeshDisplay.h"
#include "../common/glHud.h"
#include "../common/glUtils.h"
#include "../common/hdr_reader.h"
#include "../common/glPtexMipmapTexture.h"
#include "../common/glShaderCache.h"
#include <osd/glslPatchShaderSource.h>
static const char *g_defaultShaderSource =
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
#include "shader.gen.h"
#else
#include "shader_gl3.gen.h"
#endif
;
static const char *g_skyShaderSource =
#include "skyshader.gen.h"
;
static std::string g_shaderSource;
static const char *g_shaderFilename = NULL;
enum KernelType { kCPU = 0,
kOPENMP = 1,
kTBB = 2,
kCUDA = 3,
kCL = 4,
kGLSL = 5,
kGLSLCompute = 6 };
enum HudCheckBox { HUD_CB_ADAPTIVE,
HUD_CB_DISPLAY_OCCLUSION,
HUD_CB_DISPLAY_NORMALMAP,
HUD_CB_DISPLAY_SPECULAR,
HUD_CB_CONTROL_MESH_EDGES,
HUD_CB_ANIMATE_VERTICES,
HUD_CB_VIEW_LOD,
HUD_CB_FRACTIONAL_SPACING,
HUD_CB_PATCH_CULL,
HUD_CB_IBL,
HUD_CB_BLOOM,
HUD_CB_SEAMLESS_MIPMAP,
HUD_CB_FREEZE };
enum HudRadioGroup { HUD_RB_KERNEL,
HUD_RB_LEVEL,
HUD_RB_SCHEME,
HUD_RB_WIRE,
HUD_RB_COLOR,
HUD_RB_DISPLACEMENT,
HUD_RB_NORMAL };
enum DisplayType { DISPLAY_WIRE,
DISPLAY_SHADED,
DISPLAY_WIRE_ON_SHADED };
enum ColorType { COLOR_NONE,
COLOR_PTEX_NEAREST,
COLOR_PTEX_HW_BILINEAR,
COLOR_PTEX_BILINEAR,
COLOR_PTEX_BIQUADRATIC,
COLOR_PATCHTYPE,
COLOR_PATCHCOORD,
COLOR_NORMAL };
enum DisplacementType { DISPLACEMENT_NONE,
DISPLACEMENT_HW_BILINEAR,
DISPLACEMENT_BILINEAR,
DISPLACEMENT_BIQUADRATIC };
enum NormalType { NORMAL_SURFACE,
NORMAL_FACET,
NORMAL_HW_SCREENSPACE,
NORMAL_SCREENSPACE,
NORMAL_BIQUADRATIC,
NORMAL_BIQUADRATIC_WG };
//-----------------------------------------------------------------------------
int g_frame = 0,
g_repeatCount = 0;
// GUI variables
int g_fullscreen = 0,
g_wire = DISPLAY_SHADED,
g_drawNormals = 0,
g_mbutton[3] = {0, 0, 0},
g_level = 1,
g_tessLevel = 2,
g_kernel = kCPU,
g_scheme = 0,
g_running = 1,
g_maxMipmapLevels = 10,
g_color = COLOR_PTEX_BILINEAR,
g_displacement = DISPLACEMENT_NONE,
g_normal = NORMAL_SURFACE;
float g_moveScale = 0.0f,
g_displacementScale = 1.0f,
g_mipmapBias = 0.0;
bool g_adaptive = false,
g_yup = false,
g_patchCull = true,
g_screenSpaceTess = true,
g_fractionalSpacing = true,
g_ibl = false,
g_bloom = false,
g_freeze = false;
GLuint g_constantUB = 0,
g_constantBinding = 0;
// ptex switch
bool g_occlusion = false,
g_specular = false;
bool g_seamless = true;
// camera
float g_rotate[2] = {0, 0},
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0;
float g_modelViewProjection[16];
int g_prev_x = 0,
g_prev_y = 0;
// viewport
int g_width = 1024,
g_height = 1024;
GLhud g_hud;
GLControlMeshDisplay g_controlMeshDisplay;
// performance
float g_cpuTime = 0;
float g_gpuTime = 0;
#define NUM_FPS_TIME_SAMPLES 6
float g_fpsTimeSamples[NUM_FPS_TIME_SAMPLES] = {0, 0, 0, 0, 0, 0};
int g_currentFpsTimeSample = 0;
Stopwatch g_fpsTimer;
float g_animTime = 0;
// geometry
std::vector<float> g_positions,
g_normals;
std::vector<std::vector<float> > g_animPositions;
GLuint g_queries[2] = {0, 0};
GLuint g_vao = 0;
GLuint g_skyVAO = 0;
GLuint g_edgeIndexBuffer = 0;
GLuint g_diffuseEnvironmentMap = 0;
GLuint g_specularEnvironmentMap = 0;
//------------------------------------------------------------------------------
struct Sky {
int numIndices;
GLuint vertexBuffer;
GLuint elementBuffer;
GLuint mvpMatrix;
GLDrawConfig *drawConfig;
Sky() : numIndices(0), vertexBuffer(0), elementBuffer(0), mvpMatrix(0),
drawConfig(NULL) {}
~Sky() {
delete drawConfig;
}
bool BuildProgram(const char *source) {
if (drawConfig) delete drawConfig;
drawConfig = new GLDrawConfig("#version 410\n");
drawConfig->CompileAndAttachShader(GL_VERTEX_SHADER,
"#define SKY_VERTEX_SHADER\n" +
std::string(source));
drawConfig->CompileAndAttachShader(GL_FRAGMENT_SHADER,
"#define SKY_FRAGMENT_SHADER\n" +
std::string(source));
if (drawConfig->Link() == false) {
delete drawConfig;
drawConfig = NULL;
return false;
}
return true;
}
int GetProgram() const {
if (drawConfig) return drawConfig->GetProgram();
return 0;
}
} g_sky;
//------------------------------------------------------------------------------
GLPtexMipmapTexture * g_osdPTexImage = 0;
GLPtexMipmapTexture * g_osdPTexDisplacement = 0;
GLPtexMipmapTexture * g_osdPTexOcclusion = 0;
GLPtexMipmapTexture * g_osdPTexSpecular = 0;
const char * g_ptexColorFilename;
size_t g_ptexMemoryUsage = 0;
//------------------------------------------------------------------------------
static void
calcNormals(OpenSubdiv::Far::TopologyRefiner * refiner,
std::vector<float> const & pos, std::vector<float> & result ) {
typedef OpenSubdiv::Far::ConstIndexArray IndexArray;
OpenSubdiv::Far::TopologyLevel const & refBaseLevel = refiner->GetLevel(0);
// calc normal vectors
int nverts = refBaseLevel.GetNumVertices(),
nfaces = refBaseLevel.GetNumFaces();
for (int face = 0; face < nfaces; ++face) {
IndexArray fverts = refBaseLevel.GetFaceVertices(face);
float const * p0 = &pos[fverts[0]*3],
* p1 = &pos[fverts[1]*3],
* p2 = &pos[fverts[2]*3];
float n[3];
cross(n, p0, p1, p2);
for (int vert = 0; vert < fverts.size(); ++vert) {
int idx = fverts[vert] * 3;
result[idx ] += n[0];
result[idx+1] += n[1];
result[idx+2] += n[2];
}
}
for (int i = 0; i < nverts; ++i)
normalize(&result[i*3]);
}
//------------------------------------------------------------------------------
void
updateGeom() {
int nverts = (int)g_positions.size() / 3;
if (g_moveScale and g_adaptive and not g_animPositions.empty()) {
// baked animation only works with adaptive for now
// (since non-adaptive requires normals)
int nkey = (int)g_animPositions.size();
const float fps = 24.0f;
float p = fmodf(g_animTime * fps, (float)nkey);
int key = (int)p;
float b = p - key;
std::vector<float> vertex;
vertex.reserve(nverts*3);
for (int i = 0; i < nverts*3; ++i) {
float p0 = g_animPositions[key][i];
float p1 = g_animPositions[(key+1)%nkey][i];
vertex.push_back(p0*(1-b) + p1*b);
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
} else {
std::vector<float> vertex;
vertex.reserve(nverts*6);
const float *p = &g_positions[0];
const float *n = &g_normals[0];
for (int i = 0; i < nverts; ++i) {
float move = g_size*0.005f*cosf(p[0]*100/g_size+g_frame*0.01f);
vertex.push_back(p[0]);
vertex.push_back(p[1]+g_moveScale*move);
vertex.push_back(p[2]);
p += 3;
if (g_adaptive == false) {
vertex.push_back(n[0]);
vertex.push_back(n[1]);
vertex.push_back(n[2]);
n += 3;
}
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
}
Stopwatch s;
s.Start();
g_mesh->Refine();
s.Stop();
g_cpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
g_mesh->Synchronize();
s.Stop();
g_gpuTime = float(s.GetElapsed() * 1000.0f);
}
//-------------------------------------------------------------------------------
void
fitFrame() {
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
}
//-------------------------------------------------------------------------------
Shape *
createPTexGeo(PtexTexture * r) {
PtexMetaData* meta = r->getMetaData();
if (meta->numKeys() < 3) {
return NULL;
}
float const * vp;
int const *vi, *vc;
int nvp, nvi, nvc;
meta->getValue("PtexFaceVertCounts", vc, nvc);
if (nvc == 0) {
return NULL;
}
meta->getValue("PtexVertPositions", vp, nvp);
if (nvp == 0) {
return NULL;
}
meta->getValue("PtexFaceVertIndices", vi, nvi);
if (nvi == 0) {
return NULL;
}
Shape * shape = new Shape;
shape->scheme = kCatmark;
shape->verts.resize(nvp);
for (int i=0; i<nvp; ++i) {
shape->verts[i] = vp[i];
}
shape->nvertsPerFace.resize(nvc);
for (int i=0; i<nvc; ++i) {
shape->nvertsPerFace[i] = vc[i];
}
shape->faceverts.resize(nvi);
for (int i=0; i<nvi; ++i) {
shape->faceverts[i] = vi[i];
}
// compute model bounding
float min[3] = {vp[0], vp[1], vp[2]};
float max[3] = {vp[0], vp[1], vp[2]};
for (int i = 0; i < nvp/3; ++i) {
for (int j = 0; j < 3; ++j) {
float v = vp[i*3+j];
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
}
for (int j = 0; j < 3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
return shape;
}
//------------------------------------------------------------------------------
void
reshape(GLFWwindow *, int width, int height) {
g_width = width;
g_height = height;
int windowWidth = g_width, windowHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
g_hud.Rebuild(windowWidth, windowHeight, width, height);
glBindTexture(GL_TEXTURE_2D, 0);
GLUtils::CheckGLErrors("Reshape");
}
void reshape() {
reshape(g_window, g_width, g_height);
}
void windowClose(GLFWwindow*) {
g_running = false;
}
//------------------------------------------------------------------------------
const char *getKernelName(int kernel) {
if (kernel == kCPU)
return "CPU";
else if (kernel == kOPENMP)
return "OpenMP";
else if (kernel == kCUDA)
return "Cuda";
else if (kernel == kGLSL)
return "GLSL";
else if (kernel == kCL)
return "OpenCL";
return "Unknown";
}
//------------------------------------------------------------------------------
union Effect {
struct {
unsigned int wire:2;
unsigned int color:3;
unsigned int displacement:2;
unsigned int normal:3;
int occlusion:1;
int specular:1;
int patchCull:1;
int screenSpaceTess:1;
int fractionalSpacing:1;
int ibl:1;
int seamless:1;
};
int value;
bool operator < (const Effect &e) const {
return value < e.value;
}
};
struct EffectDesc {
EffectDesc(OpenSubdiv::Far::PatchDescriptor desc,
Effect effect) : desc(desc), effect(effect),
maxValence(0), numElements(0) { }
OpenSubdiv::Far::PatchDescriptor desc;
Effect effect;
int maxValence;
int numElements;
bool operator < (const EffectDesc &e) const {
return desc < e.desc || (desc == e.desc &&
(maxValence < e.maxValence || ((maxValence == e.maxValence) &&
(effect < e.effect))));
}
};
//------------------------------------------------------------------------------
class ShaderCache : public GLShaderCache<EffectDesc> {
public:
virtual GLDrawConfig *CreateDrawConfig(EffectDesc const &effectDesc) {
using namespace OpenSubdiv;
// compile shader program
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
const char *glslVersion = "#version 400\n";
#else
const char *glslVersion = "#version 330\n";
#endif
GLDrawConfig *config = new GLDrawConfig(glslVersion);
Far::PatchDescriptor::Type type = effectDesc.desc.GetType();
// common defines
std::stringstream ss;
if (type == Far::PatchDescriptor::QUADS) {
ss << "#define PRIM_QUAD\n";
} else if (type == Far::PatchDescriptor::LINES) {
ss << "#define PRIM_LINE\n";
} else {
ss << "#define PRIM_TRI\n";
}
// OSD tessellation controls
if (effectDesc.effect.screenSpaceTess) {
ss << "#define OSD_ENABLE_SCREENSPACE_TESSELLATION\n";
}
if (effectDesc.effect.fractionalSpacing) {
ss << "#define OSD_FRACTIONAL_ODD_SPACING\n";
}
if (effectDesc.effect.patchCull) {
ss << "#define OSD_ENABLE_PATCH_CULL\n";
}
// for legacy gregory
ss << "#define OSD_MAX_VALENCE " << effectDesc.maxValence << "\n";
ss << "#define OSD_NUM_ELEMENTS " << effectDesc.numElements << "\n";
// add ptex functions
ss << GLPtexMipmapTexture::GetShaderSource();
// -------------------------------------------------------------
// display styles
// -------------------------------------------------------------
// mipmap
if (effectDesc.effect.seamless) {
ss << "#define SEAMLESS_MIPMAP\n";
}
// wire
if (effectDesc.effect.wire == 0) {
ss << "#define GEOMETRY_OUT_WIRE\n";
} else if (effectDesc.effect.wire == 1) {
ss << "#define GEOMETRY_OUT_FILL\n";
} else if (effectDesc.effect.wire == 2) {
ss << "#define GEOMETRY_OUT_LINE\n";
}
// color
switch(effectDesc.effect.color) {
case COLOR_NONE:
break;
case COLOR_PTEX_NEAREST:
ss << "#define COLOR_PTEX_NEAREST\n";
break;
case COLOR_PTEX_HW_BILINEAR:
ss << "#define COLOR_PTEX_HW_BILINEAR\n";
break;
case COLOR_PTEX_BILINEAR:
ss << "#define COLOR_PTEX_BILINEAR\n";
break;
case COLOR_PTEX_BIQUADRATIC:
ss << "#define COLOR_PTEX_BIQUADRATIC\n";
break;
case COLOR_PATCHTYPE:
ss << "#define COLOR_PATCHTYPE\n";
break;
case COLOR_PATCHCOORD:
ss << "#define COLOR_PATCHCOORD\n";
break;
case COLOR_NORMAL:
ss << "#define COLOR_NORMAL\n";
break;
}
// displacement
switch (effectDesc.effect.displacement) {
case DISPLACEMENT_NONE:
break;
case DISPLACEMENT_HW_BILINEAR:
ss << "#define DISPLACEMENT_HW_BILINEAR\n";
break;
case DISPLACEMENT_BILINEAR:
ss << "#define DISPLACEMENT_BILINEAR\n";
break;
case DISPLACEMENT_BIQUADRATIC:
ss << "#define DISPLACEMENT_BIQUADRATIC\n";
break;
}
// normal
switch (effectDesc.effect.normal) {
case NORMAL_FACET:
ss << "#define NORMAL_FACET\n";
break;
case NORMAL_HW_SCREENSPACE:
ss << "#define NORMAL_HW_SCREENSPACE\n";
break;
case NORMAL_SCREENSPACE:
ss << "#define NORMAL_SCREENSPACE\n";
break;
case NORMAL_BIQUADRATIC:
ss << "#define NORMAL_BIQUADRATIC\n";
break;
case NORMAL_BIQUADRATIC_WG:
ss << "#define OSD_COMPUTE_NORMAL_DERIVATIVES\n";
ss << "#define NORMAL_BIQUADRATIC_WG\n";
break;
}
// occlusion
if (effectDesc.effect.occlusion)
ss << "#define USE_PTEX_OCCLUSION\n";
// specular
if (effectDesc.effect.specular)
ss << "#define USE_PTEX_SPECULAR\n";
// IBL
if (effectDesc.effect.ibl)
ss << "#define USE_IBL\n";
// need for patch color-coding : we need these defines in the fragment shader
if (type == Far::PatchDescriptor::GREGORY) {
ss << "#define OSD_PATCH_GREGORY\n";
} else if (type == Far::PatchDescriptor::GREGORY_BOUNDARY) {
ss << "#define OSD_PATCH_GREGORY_BOUNDARY\n";
} else if (type == Far::PatchDescriptor::GREGORY_BASIS) {
ss << "#define OSD_PATCH_GREGORY_BASIS\n";
}
// include osd PatchCommon
ss << Osd::GLSLPatchShaderSource::GetCommonShaderSource();
std::string common = ss.str();
ss.str("");
// vertex shader
ss << common
// enable local vertex shader
<< (effectDesc.desc.IsAdaptive() ? "" : "#define VERTEX_SHADER\n")
<< g_shaderSource
<< Osd::GLSLPatchShaderSource::GetVertexShaderSource(type);
config->CompileAndAttachShader(GL_VERTEX_SHADER, ss.str());
ss.str("");
if (effectDesc.desc.IsAdaptive()) {
// tess control shader
ss << common
<< g_shaderSource
<< Osd::GLSLPatchShaderSource::GetTessControlShaderSource(type);
config->CompileAndAttachShader(GL_TESS_CONTROL_SHADER, ss.str());
ss.str("");
// tess eval shader
ss << common
<< g_shaderSource
<< Osd::GLSLPatchShaderSource::GetTessEvalShaderSource(type);
config->CompileAndAttachShader(GL_TESS_EVALUATION_SHADER, ss.str());
ss.str("");
}
// geometry shader
ss << common
<< "#define GEOMETRY_SHADER\n" // enable local geometry shader
<< g_shaderSource;
config->CompileAndAttachShader(GL_GEOMETRY_SHADER, ss.str());
ss.str("");
// fragment shader
ss << common
<< "#define FRAGMENT_SHADER\n" // enable local fragment shader
<< g_shaderSource;
config->CompileAndAttachShader(GL_FRAGMENT_SHADER, ss.str());
ss.str("");
if (!config->Link()) {
delete config;
return NULL;
}
// assign uniform locations
GLuint program = config->GetProgram();
GLuint uboIndex = glGetUniformBlockIndex(program, "Constant");
if (uboIndex != GL_INVALID_INDEX)
glUniformBlockBinding(program, uboIndex, g_constantBinding);
// assign texture locations
GLint loc;
// patch textures
glUseProgram(program);
if ((loc = glGetUniformLocation(program, "OsdPatchParamBuffer")) != -1) {
glUniform1i(loc, 0); // GL_TEXTURE0
}
// environment textures
if ((loc = glGetUniformLocation(program, "diffuseEnvironmentMap")) != -1) {
glUniform1i(loc, 5);
}
if ((loc = glGetUniformLocation(program, "specularEnvironmentMap")) != -1) {
glUniform1i(loc, 6);
}
// ptex textures
if ((loc = glGetUniformLocation(program, "textureImage_Data")) != -1) {
glUniform1i(loc, 7);
}
if ((loc = glGetUniformLocation(program, "textureImage_Packing")) != -1) {
glUniform1i(loc, 8);
}
if ((loc = glGetUniformLocation(program, "textureDisplace_Data")) != -1) {
glUniform1i(loc, 9);
}
if ((loc = glGetUniformLocation(program, "textureDisplace_Packing")) != -1) {
glUniform1i(loc, 10);
}
if ((loc = glGetUniformLocation(program, "textureOcclusion_Data")) != -1) {
glUniform1i(loc, 11);
}
if ((loc = glGetUniformLocation(program, "textureOcclusion_Packing")) != -1) {
glUniform1i(loc, 12);
}
if ((loc = glGetUniformLocation(program, "textureSpecular_Data")) != -1) {
glUniform1i(loc, 13);
}
if ((loc = glGetUniformLocation(program, "textureSpecular_Packing")) != -1) {
glUniform1i(loc, 14);
}
glUseProgram(0);
return config;
}
};
ShaderCache g_shaderCache;
//------------------------------------------------------------------------------
GLPtexMipmapTexture *
createPtex(const char *filename, int memLimit) {
Ptex::String ptexError;
printf("Loading ptex : %s\n", filename);
#define USE_PTEX_CACHE
#define PTEX_CACHE_SIZE (512*1024*1024)
#ifdef USE_PTEX_CACHE
PtexCache *cache = PtexCache::create(1, PTEX_CACHE_SIZE);
PtexTexture *ptex = cache->get(filename, ptexError);
#else
PtexTexture *ptex = PtexTexture::open(filename, ptexError, true);
#endif
if (ptex == NULL) {
printf("Error in reading %s\n", filename);
exit(1);
}
size_t targetMemory = memLimit * 1024 * 1024; // MB
GLPtexMipmapTexture *osdPtex = GLPtexMipmapTexture::Create(
ptex, g_maxMipmapLevels, targetMemory);
GLuint texture = osdPtex->GetTexelsTexture();
glBindTexture(GL_TEXTURE_2D_ARRAY, texture);
GLint w, h, d;
glGetTexLevelParameteriv(GL_TEXTURE_2D_ARRAY, 0, GL_TEXTURE_WIDTH, &w);
glGetTexLevelParameteriv(GL_TEXTURE_2D_ARRAY, 0, GL_TEXTURE_HEIGHT, &h);
glGetTexLevelParameteriv(GL_TEXTURE_2D_ARRAY, 0, GL_TEXTURE_DEPTH, &d);
printf("PageSize = %d x %d x %d\n", w, h, d);
glBindTexture(GL_TEXTURE_2D_ARRAY, 0);
ptex->release();
#ifdef USE_PTEX_CACHE
cache->release();
#endif
return osdPtex;
}
//------------------------------------------------------------------------------
void
createOsdMesh(int level, int kernel) {
GLUtils::CheckGLErrors("createOsdMesh");
Ptex::String ptexError;
PtexTexture *ptexColor = PtexTexture::open(g_ptexColorFilename, ptexError, true);
if (ptexColor == NULL) {
printf("Error in reading %s\n", g_ptexColorFilename);
exit(1);
}
// generate Shape representation from ptex
Shape * shape = createPTexGeo(ptexColor);
if (not shape) {
return;
}
g_positions=shape->verts;
// create Far mesh (topology)
OpenSubdiv::Sdc::SchemeType sdctype = GetSdcType(*shape);
OpenSubdiv::Sdc::Options sdcoptions = GetSdcOptions(*shape);
OpenSubdiv::Far::TopologyRefiner * refiner =
OpenSubdiv::Far::TopologyRefinerFactory<Shape>::Create(*shape,
OpenSubdiv::Far::TopologyRefinerFactory<Shape>::Options(sdctype, sdcoptions));
// save coarse topology (used for coarse mesh drawing)
g_controlMeshDisplay.SetTopology(refiner->GetLevel(0));
delete shape;
g_normals.resize(g_positions.size(), 0.0f);
calcNormals(refiner, g_positions, g_normals);
delete g_mesh;
g_mesh = NULL;
// Adaptive refinement currently supported only for catmull-clark scheme
bool doAdaptive = (g_adaptive != 0 and g_scheme == 0);
OpenSubdiv::Osd::MeshBitset bits;
bits.set(OpenSubdiv::Osd::MeshAdaptive, doAdaptive);
bits.set(OpenSubdiv::Osd::MeshEndCapGregoryBasis, true);
int numVertexElements = g_adaptive ? 3 : 6;
int numVaryingElements = 0;
if (kernel == kCPU) {
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::CpuGLVertexBuffer,
OpenSubdiv::Far::StencilTable,
OpenSubdiv::Osd::CpuEvaluator,
OpenSubdiv::Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#ifdef OPENSUBDIV_HAS_OPENMP
} else if (kernel == kOPENMP) {
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::CpuGLVertexBuffer,
OpenSubdiv::Far::StencilTable,
OpenSubdiv::Osd::OmpEvaluator,
OpenSubdiv::Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_TBB
} else if (kernel == kTBB) {
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::CpuGLVertexBuffer,
OpenSubdiv::Far::StencilTable,
OpenSubdiv::Osd::TbbEvaluator,
OpenSubdiv::Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
} else if (kernel == kCL) {
static OpenSubdiv::Osd::EvaluatorCacheT<OpenSubdiv::Osd::CLEvaluator> clEvaluatorCache;
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::CLGLVertexBuffer,
OpenSubdiv::Osd::CLStencilTable,
OpenSubdiv::Osd::CLEvaluator,
OpenSubdiv::Osd::GLPatchTable,
CLDeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&clEvaluatorCache,
&g_clDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
} else if (kernel == kCUDA) {
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::CudaGLVertexBuffer,
OpenSubdiv::Osd::CudaStencilTable,
OpenSubdiv::Osd::CudaEvaluator,
OpenSubdiv::Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
} else if (kernel == kGLSL) {
static OpenSubdiv::Osd::EvaluatorCacheT<OpenSubdiv::Osd::GLXFBEvaluator> glXFBEvaluatorCache;
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::GLVertexBuffer,
OpenSubdiv::Osd::GLStencilTableTBO,
OpenSubdiv::Osd::GLXFBEvaluator,
OpenSubdiv::Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&glXFBEvaluatorCache);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
} else if (kernel == kGLSLCompute) {
static OpenSubdiv::Osd::EvaluatorCacheT<OpenSubdiv::Osd::GLComputeEvaluator> glComputeEvaluatorCache;
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::GLVertexBuffer,
OpenSubdiv::Osd::GLStencilTableSSBO,
OpenSubdiv::Osd::GLComputeEvaluator,
OpenSubdiv::Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&glComputeEvaluatorCache);
#endif
} else {
printf("Unsupported kernel %s\n", getKernelName(kernel));
}
if (glGetError() != GL_NO_ERROR) {
printf("GLERROR\n");
}
updateGeom();
// ------ VAO
glBindVertexArray(g_vao);
glBindBuffer(GL_ARRAY_BUFFER, g_mesh->BindVertexBuffer());
if (g_adaptive) {
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
} else {
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 6, 0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 6, (float*)12);
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_mesh->GetPatchTable()->GetPatchIndexBuffer());
glBindVertexArray(0);
}
//------------------------------------------------------------------------------
void
createSky() {
const int U_DIV = 20;
const int V_DIV = 20;
std::vector<float> vbo;
std::vector<int> indices;
for (int u = 0; u <= U_DIV; ++u) {
for (int v = 0; v < V_DIV; ++v) {
float s = float(2*M_PI*float(u)/U_DIV);
float t = float(M_PI*float(v)/(V_DIV-1));
vbo.push_back(-sin(t)*sin(s));
vbo.push_back(cos(t));
vbo.push_back(-sin(t)*cos(s));
vbo.push_back(u/float(U_DIV));
vbo.push_back(v/float(V_DIV));
if (v > 0 && u > 0) {
indices.push_back((u-1)*V_DIV+v-1);
indices.push_back(u*V_DIV+v-1);
indices.push_back((u-1)*V_DIV+v);
indices.push_back((u-1)*V_DIV+v);
indices.push_back(u*V_DIV+v-1);
indices.push_back(u*V_DIV+v);
}
}
}
glGenBuffers(1, &g_sky.vertexBuffer);
glBindBuffer(GL_ARRAY_BUFFER, g_sky.vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*vbo.size(), &vbo[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glGenBuffers(1, &g_sky.elementBuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_sky.elementBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*indices.size(), &indices[0], GL_STATIC_DRAW);
g_sky.numIndices = (int)indices.size();
g_sky.BuildProgram(g_skyShaderSource);
GLint environmentMap = glGetUniformLocation(g_sky.GetProgram(), "environmentMap");
glUseProgram(g_sky.GetProgram());
if (g_specularEnvironmentMap)
glUniform1i(environmentMap, 6);
else
glUniform1i(environmentMap, 5);
glUseProgram(0);
g_sky.mvpMatrix = glGetUniformLocation(g_sky.GetProgram(), "ModelViewProjectionMatrix");
}
//------------------------------------------------------------------------------
static void
updateConstantUniformBlock() {
struct Constant {
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
float ModelViewInverseMatrix[16];
struct Light {
float position[4];
float ambient[4];
float diffuse[4];
float specular[4];
} lightSource[2];
float TessLevel;
float displacementScale;
float mipmapBias;
} constantData;
// transforms
double aspect = g_width/(double)g_height;
identity(constantData.ModelViewMatrix);
translate(constantData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(constantData.ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(constantData.ModelViewMatrix, g_rotate[0], 0, 1, 0);
if (g_yup)
rotate(constantData.ModelViewMatrix, -90, 1, 0, 0);
translate(constantData.ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]);
perspective(constantData.ProjectionMatrix, 45.0f, (float)aspect, g_size*0.001f,
g_size+g_dolly);
multMatrix(constantData.ModelViewProjectionMatrix,
constantData.ModelViewMatrix,
constantData.ProjectionMatrix);
inverseMatrix(constantData.ModelViewInverseMatrix,
constantData.ModelViewMatrix);
// save mvp for the control mesh drawing
memcpy(g_modelViewProjection, constantData.ModelViewProjectionMatrix,
16*sizeof(float));
// lighs
Constant::Light light0 = { { 0.6f, 1.0f, 0.6f, 0.0f },
{ 0.1f, 0.1f, 0.1f, 1.0f },
{ 1.7f, 1.3f, 1.1f, 1.0f },
{ 1.0f, 1.0f, 1.0f, 1.0f } };
Constant::Light light1 = { { -0.8f, 0.6f, -0.7f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f },
{ 0.8f, 0.8f, 1.5f, 1.0f },
{ 0.4f, 0.4f, 0.4f, 1.0f } };
constantData.lightSource[0] = light0;
constantData.lightSource[1] = light1;
// other
constantData.TessLevel = static_cast<float>(1 << g_tessLevel);
constantData.displacementScale = g_displacementScale;
constantData.mipmapBias = g_mipmapBias;
// update GPU buffer
if (g_constantUB == 0) {
glGenBuffers(1, &g_constantUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_constantUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(constantData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_constantUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(constantData), &constantData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_constantBinding, g_constantUB);
}
static void
bindTextures() {
if (g_mesh->GetPatchTable()->GetPatchParamTextureBuffer()) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_BUFFER,
g_mesh->GetPatchTable()->GetPatchParamTextureBuffer());
}
// other textures
if (g_ibl) {
if (g_diffuseEnvironmentMap) {
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, g_diffuseEnvironmentMap);
}
if (g_specularEnvironmentMap) {
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, g_specularEnvironmentMap);
}
glActiveTexture(GL_TEXTURE0);
}
// color ptex
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D_ARRAY, g_osdPTexImage->GetTexelsTexture());
glActiveTexture(GL_TEXTURE8);
glBindTexture(GL_TEXTURE_BUFFER, g_osdPTexImage->GetLayoutTextureBuffer());
// displacement ptex
if (g_displacement != DISPLACEMENT_NONE || g_normal) {
glActiveTexture(GL_TEXTURE9);
glBindTexture(GL_TEXTURE_2D_ARRAY, g_osdPTexDisplacement->GetTexelsTexture());
glActiveTexture(GL_TEXTURE10);
glBindTexture(GL_TEXTURE_BUFFER, g_osdPTexDisplacement->GetLayoutTextureBuffer());
}
// occlusion ptex
if (g_occlusion) {
glActiveTexture(GL_TEXTURE11);
glBindTexture(GL_TEXTURE_2D_ARRAY, g_osdPTexOcclusion->GetTexelsTexture());
glActiveTexture(GL_TEXTURE12);
glBindTexture(GL_TEXTURE_BUFFER, g_osdPTexOcclusion->GetLayoutTextureBuffer());
}
// specular ptex
if (g_specular) {
glActiveTexture(GL_TEXTURE13);
glBindTexture(GL_TEXTURE_2D_ARRAY, g_osdPTexSpecular->GetTexelsTexture());
glActiveTexture(GL_TEXTURE14);
glBindTexture(GL_TEXTURE_BUFFER, g_osdPTexSpecular->GetLayoutTextureBuffer());
}
glActiveTexture(GL_TEXTURE0);
}
//------------------------------------------------------------------------------
static GLenum
bindProgram(Effect effect,
OpenSubdiv::Osd::PatchArray const & patch) {
EffectDesc effectDesc(patch.GetDescriptor(), effect);
GLDrawConfig *config = g_shaderCache.GetDrawConfig(effectDesc);
if (!config) return 0;
GLuint program = config->GetProgram();
glUseProgram(program);
// bind standalone uniforms
GLint uniformPrimitiveIdBase =
glGetUniformLocation(program, "PrimitiveIdBase");
if (uniformPrimitiveIdBase >= 0)
glUniform1i(uniformPrimitiveIdBase, patch.GetPrimitiveIdBase());
GLenum primType;
switch(effectDesc.desc.GetType()) {
case OpenSubdiv::Far::PatchDescriptor::QUADS:
primType = GL_LINES_ADJACENCY;
break;
case OpenSubdiv::Far::PatchDescriptor::TRIANGLES:
primType = GL_TRIANGLES;
break;
default:
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
primType = GL_PATCHES;
glPatchParameteri(GL_PATCH_VERTICES, effectDesc.desc.GetNumControlVertices());
#else
primType = GL_POINTS;
#endif
}
return primType;
}
//------------------------------------------------------------------------------
void
drawModel() {
g_mesh->BindVertexBuffer();
// bind patch related textures and PtexTexture
bindTextures();
glBindVertexArray(g_vao);
// patch drawing
OpenSubdiv::Osd::PatchArrayVector const & patches =
g_mesh->GetPatchTable()->GetPatchArrays();
for (int i = 0; i < (int)patches.size(); ++i) {
OpenSubdiv::Osd::PatchArray const & patch = patches[i];
Effect effect;
effect.value = 0;
effect.color = g_color;
effect.displacement = g_displacement;
effect.occlusion = g_occlusion;
effect.normal = g_normal;
effect.specular = g_specular;
effect.patchCull = g_patchCull;
effect.screenSpaceTess = g_screenSpaceTess;
effect.fractionalSpacing = g_fractionalSpacing;
effect.ibl = g_ibl;
effect.wire = g_wire;
effect.seamless = g_seamless;
GLenum primType = bindProgram(effect, patch);
glDrawElements(primType,
patch.GetNumPatches() * patch.GetDescriptor().GetNumControlVertices(),
GL_UNSIGNED_INT,
(void *)(patch.GetIndexBase() * sizeof(unsigned int)));
}
glBindVertexArray(0);
}
//------------------------------------------------------------------------------
void
drawSky() {
glUseProgram(g_sky.GetProgram());
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
float modelView[16], projection[16], mvp[16];
double aspect = g_width/(double)g_height;
identity(modelView);
rotate(modelView, g_rotate[1], 1, 0, 0);
rotate(modelView, g_rotate[0], 0, 1, 0);
perspective(projection, 45.0f, (float)aspect, g_size*0.001f, g_size+g_dolly);
multMatrix(mvp, modelView, projection);
glUniformMatrix4fv(g_sky.mvpMatrix, 1, GL_FALSE, mvp);
glBindVertexArray(g_skyVAO);
glEnableVertexAttribArray(0);
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, g_sky.vertexBuffer);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 5, 0);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 5,
(void*)(sizeof(GLfloat)*3));
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_sky.elementBuffer);
glDrawElements(GL_TRIANGLES, g_sky.numIndices, GL_UNSIGNED_INT, 0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glBindVertexArray(0);
glEnable(GL_DEPTH_TEST);
glDepthMask(GL_TRUE);
GLUtils::CheckGLErrors("draw model");
}
//------------------------------------------------------------------------------
void
display() {
Stopwatch s;
s.Start();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(0, 0, g_width, g_height);
g_hud.FillBackground();
if (g_ibl) {
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
drawSky();
}
// update transform and light
updateConstantUniformBlock();
glEnable(GL_DEPTH_TEST);
if (g_wire == DISPLAY_WIRE) {
glDisable(GL_CULL_FACE);
}
// primitive counting
glBeginQuery(GL_PRIMITIVES_GENERATED, g_queries[0]);
#if defined(GL_VERSION_3_3)
glBeginQuery(GL_TIME_ELAPSED, g_queries[1]);
#endif
drawModel();
glEndQuery(GL_PRIMITIVES_GENERATED);
#if defined(GL_VERSION_3_3)
glEndQuery(GL_TIME_ELAPSED);
#endif
// draw the control mesh
{
GLuint vbo = g_mesh->BindVertexBuffer();
int stride = g_adaptive ? 3 : 6;
g_controlMeshDisplay.Draw(vbo, stride*sizeof(float),
g_modelViewProjection);
}
if (g_wire == DISPLAY_WIRE) {
glEnable(GL_CULL_FACE);
}
glDisable(GL_DEPTH_TEST);
glUseProgram(0);
s.Stop();
float drawCpuTime = float(s.GetElapsed() * 1000.0f);
GLuint numPrimsGenerated = 0;
GLuint timeElapsed = 0;
glGetQueryObjectuiv(g_queries[0], GL_QUERY_RESULT, &numPrimsGenerated);
#if defined(GL_VERSION_3_3)
glGetQueryObjectuiv(g_queries[1], GL_QUERY_RESULT, &timeElapsed);
#endif
float drawGpuTime = timeElapsed / 1000.0f / 1000.0f;
g_fpsTimer.Stop();
float elapsed = (float)g_fpsTimer.GetElapsed();
if (not g_freeze)
g_animTime += elapsed;
g_fpsTimer.Start();
if (g_hud.IsVisible()) {
double fps = 1.0/elapsed;
// Avereage fps over a defined number of time samples for
// easier reading in the HUD
g_fpsTimeSamples[g_currentFpsTimeSample++] = float(fps);
if (g_currentFpsTimeSample >= NUM_FPS_TIME_SAMPLES)
g_currentFpsTimeSample = 0;
double averageFps = 0;
for (int i = 0; i < NUM_FPS_TIME_SAMPLES; ++i) {
averageFps += g_fpsTimeSamples[i]/(float)NUM_FPS_TIME_SAMPLES;
}
g_hud.DrawString(10, -220, "Ptex memory use : %.1f mb", g_ptexMemoryUsage/1024.0/1024.0);
g_hud.DrawString(10, -180, "Tess level (+/-): %d", g_tessLevel);
if (numPrimsGenerated > 1000000) {
g_hud.DrawString(10, -160, "Primitives : %3.1f million",
(float)numPrimsGenerated/1000000.0);
} else if (numPrimsGenerated > 1000) {
g_hud.DrawString(10, -160, "Primitives : %3.1f thousand",
(float)numPrimsGenerated/1000.0);
} else {
g_hud.DrawString(10, -160, "Primitives : %d", numPrimsGenerated);
}
g_hud.DrawString(10, -140, "Vertices : %d", g_mesh->GetNumVertices());
g_hud.DrawString(10, -120, "Scheme : %s", g_scheme == 0 ? "CATMARK" : "LOOP");
g_hud.DrawString(10, -100, "GPU Kernel : %.3f ms", g_gpuTime);
g_hud.DrawString(10, -80, "CPU Kernel : %.3f ms", g_cpuTime);
g_hud.DrawString(10, -60, "GPU Draw : %.3f ms", drawGpuTime);
g_hud.DrawString(10, -40, "CPU Draw : %.3f ms", drawCpuTime);
g_hud.DrawString(10, -20, "FPS : %3.1f", averageFps);
g_hud.Flush();
}
glFinish();
GLUtils::CheckGLErrors("draw end");
}
//------------------------------------------------------------------------------
static void
mouse(GLFWwindow *, int button, int state, int /* mods */) {
if (state == GLFW_RELEASE)
g_hud.MouseRelease();
if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y))
return;
g_mbutton[button] = (state == GLFW_PRESS);
}
//------------------------------------------------------------------------------
static void
motion(GLFWwindow *, double dx, double dy) {
int x = (int)dx, y = (int)dy;
if (g_hud.MouseCapture()) {
// check gui
g_hud.MouseMotion(x, y);
} else if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) or
(!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if (g_dolly <= 0.01) g_dolly = 0.01f;
}
g_prev_x = x;
g_prev_y = y;
}
//------------------------------------------------------------------------------
void uninitGL() {
if (g_osdPTexImage) delete g_osdPTexImage;
if (g_osdPTexDisplacement) delete g_osdPTexDisplacement;
if (g_osdPTexOcclusion) delete g_osdPTexOcclusion;
if (g_osdPTexSpecular) delete g_osdPTexSpecular;
glDeleteQueries(2, g_queries);
glDeleteVertexArrays(1, &g_vao);
glDeleteVertexArrays(1, &g_skyVAO);
if (g_mesh)
delete g_mesh;
if (g_diffuseEnvironmentMap)
glDeleteTextures(1, &g_diffuseEnvironmentMap);
if (g_specularEnvironmentMap)
glDeleteTextures(1, &g_specularEnvironmentMap);
if (g_sky.vertexBuffer) glDeleteBuffers(1, &g_sky.vertexBuffer);
if (g_sky.elementBuffer) glDeleteBuffers(1, &g_sky.elementBuffer);
}
//------------------------------------------------------------------------------
static void
callbackWireframe(int b) {
g_wire = b;
}
static void
callbackKernel(int k) {
g_kernel = k;
#ifdef OPENSUBDIV_HAS_OPENCL
if (g_kernel == kCL and (not g_clDeviceContext.IsInitialized())) {
// Initialize OpenCL
if (g_clDeviceContext.Initialize() == false) {
printf("Error in initializing OpenCL\n");
exit(1);
}
}
#endif
#ifdef OPENSUBDIV_HAS_CUDA
if (g_kernel == kCUDA and (not g_cudaDeviceContext.IsInitialized())) {
if (g_cudaDeviceContext.Initialize() == false) {
printf("Error in initializing Cuda\n");
exit(1);
}
}
#endif
createOsdMesh(g_level, g_kernel);
}
static void
callbackScheme(int s) {
g_scheme = s;
createOsdMesh(g_level, g_kernel);
}
static void
callbackLevel(int l) {
g_level = l;
createOsdMesh(g_level, g_kernel);
}
static void
callbackColor(int c) {
g_color = c;
}
static void
callbackDisplacement(int d) {
g_displacement = d;
}
static void
callbackNormal(int n) {
g_normal = n;
}
static void
callbackCheckBox(bool checked, int button) {
bool rebuild = false;
switch (button) {
case HUD_CB_ADAPTIVE:
if (GLUtils::SupportsAdaptiveTessellation()) {
g_adaptive = checked;
rebuild = true;
}
break;
case HUD_CB_DISPLAY_OCCLUSION:
g_occlusion = checked;
break;
case HUD_CB_DISPLAY_SPECULAR:
g_specular = checked;
break;
case HUD_CB_CONTROL_MESH_EDGES:
g_controlMeshDisplay.SetEdgesDisplay(checked);
break;
case HUD_CB_ANIMATE_VERTICES:
g_moveScale = checked ? 1.0f : 0.0f;
g_animTime = 0;
break;
case HUD_CB_VIEW_LOD:
g_screenSpaceTess = checked;
break;
case HUD_CB_FRACTIONAL_SPACING:
g_fractionalSpacing = checked;
break;
case HUD_CB_PATCH_CULL:
g_patchCull = checked;
break;
case HUD_CB_IBL:
g_ibl = checked;
break;
case HUD_CB_BLOOM:
g_bloom = checked;
break;
case HUD_CB_SEAMLESS_MIPMAP:
g_seamless = checked;
break;
case HUD_CB_FREEZE:
g_freeze = checked;
break;
}
if (rebuild)
createOsdMesh(g_level, g_kernel);
}
static void
callbackSlider(float value, int data) {
switch (data) {
case 0:
g_mipmapBias = value;
break;
case 1:
g_displacementScale = value;
break;
}
}
//-------------------------------------------------------------------------------
void
reloadShaderFile() {
if (not g_shaderFilename) return;
std::ifstream ifs(g_shaderFilename);
if (not ifs) return;
printf("Load shader %s\n", g_shaderFilename);
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
g_shaderSource = ss.str();
g_shaderCache.Reset();
}
//------------------------------------------------------------------------------
static void
toggleFullScreen() {
// XXXX manuelk : to re-implement from glut
}
//------------------------------------------------------------------------------
void
keyboard(GLFWwindow *, int key, int /* scancode */, int event, int /* mods */) {
if (event == GLFW_RELEASE) return;
if (g_hud.KeyDown(tolower(key))) return;
switch (key) {
case 'Q': g_running = 0; break;
case 'E': g_drawNormals = (g_drawNormals+1)%2; break;
case 'F': fitFrame(); break;
case GLFW_KEY_TAB: toggleFullScreen(); break;
case 'R': reloadShaderFile(); createOsdMesh(g_level, g_kernel); break;
case '+':
case '=': g_tessLevel++; break;
case '-': g_tessLevel = std::max(1, g_tessLevel-1); break;
case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break;
case 'X': GLUtils::WriteScreenshot(g_width, g_height); break;
}
}
//------------------------------------------------------------------------------
void
idle() {
if (not g_freeze)
g_frame++;
updateGeom();
if (g_repeatCount != 0 && g_frame >= g_repeatCount)
g_running = 0;
}
//------------------------------------------------------------------------------
void
initGL() {
glClearColor(0.1f, 0.1f, 0.1f, 0.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glEnable(GL_CULL_FACE);
glGenQueries(2, g_queries);
glGenVertexArrays(1, &g_vao);
glGenVertexArrays(1, &g_skyVAO);
glBindTexture(GL_TEXTURE_2D, 0);
}
//------------------------------------------------------------------------------
void usage(const char *program) {
printf("Usage: %s [options] <color.ptx> [<displacement.ptx>] [occlusion.ptx>] "
"[specular.ptx] [pose.obj]...\n", program);
printf("Options: -l level : subdivision level\n");
printf(" -c count : frame count until exit (for profiler)\n");
printf(" -d <diffseEnvMap.hdr> : diffuse environment map for IBL\n");
printf(" -e <specularEnvMap.hdr> : specular environment map for IBL\n");
printf(" -s <shaderfile.glsl> : custom shader file\n");
printf(" -y : Y-up model\n");
printf(" -m level : max mimmap level (default=10)\n");
printf(" -x <ptex limit MB> : ptex target memory size\n");
printf(" --disp <scale> : Displacment scale\n");
}
//------------------------------------------------------------------------------
static void
callbackError(OpenSubdiv::Far::ErrorType err, const char *message) {
printf("Error: %d\n", err);
printf("%s", message);
}
//------------------------------------------------------------------------------
static void
callbackErrorGLFW(int error, const char* description) {
fprintf(stderr, "GLFW Error (%d) : %s\n", error, description);
}
//------------------------------------------------------------------------------
int main(int argc, char ** argv) {
std::vector<std::string> animobjs;
const char *diffuseEnvironmentMap = NULL, *specularEnvironmentMap = NULL;
const char *colorFilename = NULL, *displacementFilename = NULL,
*occlusionFilename = NULL, *specularFilename = NULL;
int memLimit = 0, colorMem = 0, displacementMem = 0,
occlusionMem = 0, specularMem = 0;
bool fullscreen = false;
for (int i = 1; i < argc; ++i) {
if (strstr(argv[i], ".obj"))
animobjs.push_back(argv[i]);
else if (!strcmp(argv[i], "-l"))
g_level = atoi(argv[++i]);
else if (!strcmp(argv[i], "-c"))
g_repeatCount = atoi(argv[++i]);
else if (!strcmp(argv[i], "-d"))
diffuseEnvironmentMap = argv[++i];
else if (!strcmp(argv[i], "-e"))
specularEnvironmentMap = argv[++i];
else if (!strcmp(argv[i], "-s"))
g_shaderFilename = argv[++i];
else if (!strcmp(argv[i], "-f"))
fullscreen = true;
else if (!strcmp(argv[i], "-y"))
g_yup = true;
else if (!strcmp(argv[i], "-m"))
g_maxMipmapLevels = atoi(argv[++i]);
else if (!strcmp(argv[i], "-x"))
memLimit = atoi(argv[++i]);
else if (!strcmp(argv[i], "--disp"))
g_displacementScale = (float)atof(argv[++i]);
else if (colorFilename == NULL) {
colorFilename = argv[i];
colorMem = memLimit;
} else if (displacementFilename == NULL) {
displacementFilename = argv[i];
displacementMem = memLimit;
g_displacement = DISPLACEMENT_BILINEAR;
g_normal = NORMAL_BIQUADRATIC;
} else if (occlusionFilename == NULL) {
occlusionFilename = argv[i];
occlusionMem = memLimit;
g_occlusion = 1;
} else if (specularFilename == NULL) {
specularFilename = argv[i];
specularMem = memLimit;
g_specular = 1;
}
}
OpenSubdiv::Far::SetErrorCallback(callbackError);
g_shaderSource = g_defaultShaderSource;
reloadShaderFile();
g_ptexColorFilename = colorFilename;
if (g_ptexColorFilename == NULL) {
usage(argv[0]);
return 1;
}
glfwSetErrorCallback(callbackErrorGLFW);
if (not glfwInit()) {
printf("Failed to initialize GLFW\n");
return 1;
}
static const char windowTitle[] = "OpenSubdiv glPtexViewer" OPENSUBDIV_VERSION_STRING;
GLUtils::SetMinimumGLVersion();
if (fullscreen) {
g_primary = glfwGetPrimaryMonitor();
// apparently glfwGetPrimaryMonitor fails under linux : if no primary,
// settle for the first one in the list
if (not g_primary) {
int count = 0;
GLFWmonitor ** monitors = glfwGetMonitors(&count);
if (count)
g_primary = monitors[0];
}
if (g_primary) {
GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary);
g_width = vidmode->width;
g_height = vidmode->height;
}
}
if (not (g_window=glfwCreateWindow(g_width, g_height, windowTitle,
fullscreen and g_primary ? g_primary : NULL, NULL))) {
std::cerr << "Failed to create OpenGL context.\n";
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(g_window);
GLUtils::PrintGLVersion();
glfwSetKeyCallback(g_window, keyboard);
glfwSetCursorPosCallback(g_window, motion);
glfwSetMouseButtonCallback(g_window, mouse);
#if defined(OSD_USES_GLEW)
#ifdef CORE_PROFILE
// this is the only way to initialize glew correctly under core profile context.
glewExperimental = true;
#endif
if (GLenum r = glewInit() != GLEW_OK) {
printf("Failed to initialize glew. error = %d\n", r);
exit(1);
}
#ifdef CORE_PROFILE
// clear GL errors which was generated during glewInit()
glGetError();
#endif
#endif
initGL();
// accommodate high DPI displays (e.g. mac retina displays)
glfwGetFramebufferSize(g_window, &g_width, &g_height);
glfwSetFramebufferSizeCallback(g_window, reshape);
glfwSetWindowCloseCallback(g_window, windowClose);
// as of GLFW 3.0.1 this callback is not implicit
reshape();
// activate feature adaptive tessellation if OSD supports it
g_adaptive = GLUtils::SupportsAdaptiveTessellation();
int windowWidth = g_width, windowHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
g_hud.Init(windowWidth, windowHeight, g_width, g_height);
g_controlMeshDisplay.SetEdgesDisplay(false);
if (occlusionFilename != NULL) {
g_hud.AddCheckBox("Ambient Occlusion (A)", g_occlusion,
-200, 570, callbackCheckBox, HUD_CB_DISPLAY_OCCLUSION, 'a');
}
if (specularFilename != NULL)
g_hud.AddCheckBox("Specular (S)", g_specular,
-200, 590, callbackCheckBox, HUD_CB_DISPLAY_SPECULAR, 's');
if (diffuseEnvironmentMap or specularEnvironmentMap) {
g_hud.AddCheckBox("IBL (I)", g_ibl,
-200, 610, callbackCheckBox, HUD_CB_IBL, 'i');
}
g_hud.AddCheckBox("Control edges (H)",
g_controlMeshDisplay.GetEdgesDisplay(),
10, 10, callbackCheckBox,
HUD_CB_CONTROL_MESH_EDGES, 'h');
g_hud.AddCheckBox("Animate vertices (M)", g_moveScale != 0.0,
10, 30, callbackCheckBox, HUD_CB_ANIMATE_VERTICES, 'm');
g_hud.AddCheckBox("Screen space LOD (V)", g_screenSpaceTess,
10, 50, callbackCheckBox, HUD_CB_VIEW_LOD, 'v');
g_hud.AddCheckBox("Fractional spacing (T)", g_fractionalSpacing,
10, 70, callbackCheckBox, HUD_CB_FRACTIONAL_SPACING, 't');
g_hud.AddCheckBox("Frustum Patch Culling (B)", g_patchCull,
10, 90, callbackCheckBox, HUD_CB_PATCH_CULL, 'b');
g_hud.AddCheckBox("Bloom (Y)", g_bloom,
10, 110, callbackCheckBox, HUD_CB_BLOOM, 'y');
g_hud.AddCheckBox("Freeze (spc)", g_freeze,
10, 130, callbackCheckBox, HUD_CB_FREEZE, ' ');
g_hud.AddRadioButton(HUD_RB_SCHEME, "CATMARK", true, 10, 190, callbackScheme, 0);
g_hud.AddRadioButton(HUD_RB_SCHEME, "BILINEAR", false, 10, 210, callbackScheme, 1);
if (GLUtils::SupportsAdaptiveTessellation())
g_hud.AddCheckBox("Adaptive (`)", g_adaptive,
10, 300, callbackCheckBox, HUD_CB_ADAPTIVE, '`');
for (int i = 1; i < 8; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud.AddRadioButton(HUD_RB_LEVEL, level, i == g_level,
10, 320+i*20, callbackLevel, i, '0'+i);
}
int compute_pulldown = g_hud.AddPullDown("Compute (K)", 475, 10, 300, callbackKernel, 'k');
g_hud.AddPullDownButton(compute_pulldown, "CPU", kCPU);
#ifdef OPENSUBDIV_HAS_OPENMP
g_hud.AddPullDownButton(compute_pulldown, "OpenMP", kOPENMP);
#endif
#ifdef OPENSUBDIV_HAS_TBB
g_hud.AddPullDownButton(compute_pulldown, "TBB", kTBB);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
g_hud.AddPullDownButton(compute_pulldown, "CUDA", kCUDA);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
if (CLDeviceContext::HAS_CL_VERSION_1_1()) {
g_hud.AddPullDownButton(compute_pulldown, "OpenCL", kCL);
}
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
g_hud.AddPullDownButton(compute_pulldown, "GLSL TransformFeedback", kGLSL);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
if (GLUtils::GL_ARBComputeShaderOrGL_VERSION_4_3()) {
g_hud.AddPullDownButton(compute_pulldown, "GLSL Compute", kGLSLCompute);
}
#endif
int shading_pulldown = g_hud.AddPullDown("Shading (W)", 250, 10, 250, callbackWireframe, 'w');
g_hud.AddPullDownButton(shading_pulldown, "Wire", DISPLAY_WIRE, g_wire==DISPLAY_WIRE);
g_hud.AddPullDownButton(shading_pulldown, "Shaded", DISPLAY_SHADED, g_wire==DISPLAY_SHADED);
g_hud.AddPullDownButton(shading_pulldown, "Wire+Shaded", DISPLAY_WIRE_ON_SHADED, g_wire==DISPLAY_WIRE_ON_SHADED);
g_hud.AddLabel("Color (C)", -200, 10);
g_hud.AddRadioButton(HUD_RB_COLOR, "None", (g_color == COLOR_NONE),
-200, 30, callbackColor, COLOR_NONE, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex Nearest", (g_color == COLOR_PTEX_NEAREST),
-200, 50, callbackColor, COLOR_PTEX_NEAREST, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex HW bilinear", (g_color == COLOR_PTEX_HW_BILINEAR),
-200, 70, callbackColor, COLOR_PTEX_HW_BILINEAR, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex bilinear", (g_color == COLOR_PTEX_BILINEAR),
-200, 90, callbackColor, COLOR_PTEX_BILINEAR, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Ptex biquadratic", (g_color == COLOR_PTEX_BIQUADRATIC),
-200, 110, callbackColor, COLOR_PTEX_BIQUADRATIC, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Patch type", (g_color == COLOR_PATCHTYPE),
-200, 130, callbackColor, COLOR_PATCHTYPE, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Patch coord", (g_color == COLOR_PATCHCOORD),
-200, 150, callbackColor, COLOR_PATCHCOORD, 'c');
g_hud.AddRadioButton(HUD_RB_COLOR, "Normal", (g_color == COLOR_NORMAL),
-200, 170, callbackColor, COLOR_NORMAL, 'c');
if (displacementFilename != NULL) {
g_hud.AddLabel("Displacement (D)", -200, 200);
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "None",
(g_displacement == DISPLACEMENT_NONE),
-200, 220, callbackDisplacement, DISPLACEMENT_NONE, 'd');
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "HW bilinear",
(g_displacement == DISPLACEMENT_HW_BILINEAR),
-200, 240, callbackDisplacement, DISPLACEMENT_HW_BILINEAR, 'd');
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "Bilinear",
(g_displacement == DISPLACEMENT_BILINEAR),
-200, 260, callbackDisplacement, DISPLACEMENT_BILINEAR, 'd');
g_hud.AddRadioButton(HUD_RB_DISPLACEMENT, "Biquadratic",
(g_displacement == DISPLACEMENT_BIQUADRATIC),
-200, 280, callbackDisplacement, DISPLACEMENT_BIQUADRATIC, 'd');
g_hud.AddLabel("Normal (N)", -200, 310);
g_hud.AddRadioButton(HUD_RB_NORMAL, "Surface",
(g_normal == NORMAL_SURFACE),
-200, 330, callbackNormal, NORMAL_SURFACE, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Facet",
(g_normal == NORMAL_FACET),
-200, 350, callbackNormal, NORMAL_FACET, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "HW Screen space",
(g_normal == NORMAL_HW_SCREENSPACE),
-200, 370, callbackNormal, NORMAL_HW_SCREENSPACE, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Screen space",
(g_normal == NORMAL_SCREENSPACE),
-200, 390, callbackNormal, NORMAL_SCREENSPACE, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Biquadratic",
(g_normal == NORMAL_BIQUADRATIC),
-200, 410, callbackNormal, NORMAL_BIQUADRATIC, 'n');
g_hud.AddRadioButton(HUD_RB_NORMAL, "Biquadratic WG",
(g_normal == NORMAL_BIQUADRATIC_WG),
-200, 430, callbackNormal, NORMAL_BIQUADRATIC_WG, 'n');
}
g_hud.AddSlider("Mipmap Bias", 0, 5, 0,
-200, 450, 20, false, callbackSlider, 0);
g_hud.AddSlider("Displacement", 0, 5, 1,
-200, 490, 20, false, callbackSlider, 1);
g_hud.AddCheckBox("Seamless Mipmap", g_seamless,
-200, 530, callbackCheckBox, HUD_CB_SEAMLESS_MIPMAP, 'j');
g_hud.Rebuild(windowWidth, windowHeight, g_width, g_height);
// create mesh from ptex metadata
createOsdMesh(g_level, g_kernel);
// load ptex files
if (colorFilename)
g_osdPTexImage = createPtex(colorFilename, colorMem);
if (displacementFilename)
g_osdPTexDisplacement = createPtex(displacementFilename, displacementMem);
if (occlusionFilename)
g_osdPTexOcclusion = createPtex(occlusionFilename, occlusionMem);
if (specularFilename)
g_osdPTexSpecular = createPtex(specularFilename, specularMem);
g_ptexMemoryUsage =
(g_osdPTexImage ? g_osdPTexImage->GetMemoryUsage() : 0)
+ (g_osdPTexDisplacement ? g_osdPTexDisplacement->GetMemoryUsage() : 0)
+ (g_osdPTexOcclusion ? g_osdPTexOcclusion->GetMemoryUsage() : 0)
+ (g_osdPTexSpecular ? g_osdPTexSpecular->GetMemoryUsage() : 0);
// load animation obj sequences (optional)
if (not animobjs.empty()) {
for (int i = 0; i < (int)animobjs.size(); ++i) {
std::ifstream ifs(animobjs[i].c_str());
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
printf("Reading %s\r", animobjs[i].c_str());
std::string str = ss.str();
Shape *shape = Shape::parseObj(str.c_str(), kCatmark);
if (shape->verts.size() != g_positions.size()) {
printf("Error: vertex count doesn't match.\n");
goto error;
}
g_animPositions.push_back(shape->verts);
delete shape;
} else {
printf("Error in reading %s\n", animobjs[i].c_str());
goto error;
}
}
printf("\n");
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
if (diffuseEnvironmentMap) {
HdrInfo info;
unsigned char * image = loadHdr(diffuseEnvironmentMap, &info, /*convertToFloat=*/true);
if (image) {
glGenTextures(1, &g_diffuseEnvironmentMap);
glBindTexture(GL_TEXTURE_2D, g_diffuseEnvironmentMap);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, info.width, info.height,
0, GL_RGBA, GL_FLOAT, image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
free(image);
}
}
if (specularEnvironmentMap) {
HdrInfo info;
unsigned char * image = loadHdr(specularEnvironmentMap, &info, /*convertToFloat=*/true);
if (image) {
glGenTextures(1, &g_specularEnvironmentMap);
glBindTexture(GL_TEXTURE_2D, g_specularEnvironmentMap);
// glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); // deprecated
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, info.width, info.height,
0, GL_RGBA, GL_FLOAT, image);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindTexture(GL_TEXTURE_2D, 0);
free(image);
}
}
if (diffuseEnvironmentMap || specularEnvironmentMap) {
createSky();
}
fitFrame();
while (g_running) {
idle();
display();
glfwPollEvents();
glfwSwapBuffers(g_window);
glFinish();
}
error:
uninitGL();
glfwTerminate();
}