OpenSubdiv/examples/glShareTopology/shader.glsl
David G Yu ed3fa312e5 Removed obsolete LOOP define from example shaders
Removed the use of the LOOP preprocessor symbol from
the remaining example shader code. The shader code is now
configured according to the types of the resulting patches
without depending on the subdivision scheme of the mesh
topology.
2019-06-17 17:59:15 -07:00

470 lines
13 KiB
GLSL

//
// Copyright 2014 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#line 24
#if defined(VARYING_COLOR) || defined(FACEVARYING_COLOR)
#undef OSD_USER_VARYING_DECLARE
#define OSD_USER_VARYING_DECLARE \
vec3 color;
#undef OSD_USER_VARYING_ATTRIBUTE_DECLARE
#define OSD_USER_VARYING_ATTRIBUTE_DECLARE \
layout(location = 1) in vec3 color;
#undef OSD_USER_VARYING_PER_VERTEX
#define OSD_USER_VARYING_PER_VERTEX() \
outpt.color = color
#undef OSD_USER_VARYING_PER_CONTROL_POINT
#define OSD_USER_VARYING_PER_CONTROL_POINT(ID_OUT, ID_IN) \
outpt[ID_OUT].color = inpt[ID_IN].color
#undef OSD_USER_VARYING_PER_EVAL_POINT
#define OSD_USER_VARYING_PER_EVAL_POINT(UV, a, b, c, d) \
outpt.color = \
mix(mix(inpt[a].color, inpt[b].color, UV.x), \
mix(inpt[c].color, inpt[d].color, UV.x), UV.y)
#else
#define OSD_USER_VARYING_DECLARE
#define OSD_USER_VARYING_ATTRIBUTE_DECLARE
#define OSD_USER_VARYING_PER_CONTROL_POINT(ID_OUT, ID_IN)
#define OSD_USER_VARYING_PER_EVAL_POINT(UV, a, b, c, d)
#endif
//--------------------------------------------------------------
// Uniforms / Uniform Blocks
//--------------------------------------------------------------
layout(std140) uniform Transform {
mat4 ModelViewMatrix;
mat4 ProjectionMatrix;
mat4 ModelViewProjectionMatrix;
};
layout(std140) uniform Tessellation {
float TessLevel;
};
uniform int GregoryQuadOffsetBase;
uniform int BaseVertex;
uniform int PrimitiveIdBase;
//--------------------------------------------------------------
// Osd external functions
//--------------------------------------------------------------
mat4 OsdModelViewMatrix()
{
return ModelViewMatrix;
}
mat4 OsdProjectionMatrix()
{
return ProjectionMatrix;
}
mat4 OsdModelViewProjectionMatrix()
{
return ModelViewProjectionMatrix;
}
float OsdTessLevel()
{
return TessLevel;
}
int OsdGregoryQuadOffsetBase()
{
return GregoryQuadOffsetBase;
}
int OsdPrimitiveIdBase()
{
// return inpt[0].primitiveIDOffset;
return PrimitiveIdBase;
}
int OsdBaseVertex()
{
#ifdef GL_ARB_shader_draw_parameters
// return gl_BaseVertexARB;
return BaseVertex;
#else
return BaseVertex;
#endif
}
//--------------------------------------------------------------
// Vertex Shader
//--------------------------------------------------------------
#ifdef VERTEX_SHADER
layout (location=0) in vec4 position;
OSD_USER_VARYING_ATTRIBUTE_DECLARE
out block {
OutputVertex v;
OSD_USER_VARYING_DECLARE
} outpt;
void main()
{
outpt.v.position = ModelViewMatrix * position;
OSD_USER_VARYING_PER_VERTEX();
}
#endif
//--------------------------------------------------------------
// Geometry Shader
//--------------------------------------------------------------
#ifdef GEOMETRY_SHADER
#ifdef PRIM_QUAD
layout(lines_adjacency) in;
#define EDGE_VERTS 4
#endif // PRIM_QUAD
#ifdef PRIM_TRI
layout(triangles) in;
#define EDGE_VERTS 3
#endif // PRIM_TRI
layout(triangle_strip, max_vertices = EDGE_VERTS) out;
in block {
OutputVertex v;
OSD_USER_VARYING_DECLARE
} inpt[EDGE_VERTS];
out block {
OutputVertex v;
noperspective out vec4 edgeDistance;
OSD_USER_VARYING_DECLARE
} outpt;
void emit(int index, vec3 normal)
{
outpt.v.position = inpt[index].v.position;
#ifdef SMOOTH_NORMALS
outpt.v.normal = inpt[index].v.normal;
#else
outpt.v.normal = normal;
#endif
#ifdef VARYING_COLOR
outpt.color = inpt[index].color;
#endif
outpt.v.patchCoord = inpt[index].v.patchCoord;
gl_Position = ProjectionMatrix * inpt[index].v.position;
EmitVertex();
}
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
const float VIEWPORT_SCALE = 1024.0; // XXXdyu
float edgeDistance(vec4 p, vec4 p0, vec4 p1)
{
return VIEWPORT_SCALE *
abs((p.x - p0.x) * (p1.y - p0.y) -
(p.y - p0.y) * (p1.x - p0.x)) / length(p1.xy - p0.xy);
}
void emit(int index, vec3 normal, vec4 edgeVerts[EDGE_VERTS])
{
outpt.edgeDistance[0] =
edgeDistance(edgeVerts[index], edgeVerts[0], edgeVerts[1]);
outpt.edgeDistance[1] =
edgeDistance(edgeVerts[index], edgeVerts[1], edgeVerts[2]);
#ifdef PRIM_TRI
outpt.edgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[0]);
#endif
#ifdef PRIM_QUAD
outpt.edgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[3]);
outpt.edgeDistance[3] =
edgeDistance(edgeVerts[index], edgeVerts[3], edgeVerts[0]);
#endif
emit(index, normal);
}
#endif
void main()
{
gl_PrimitiveID = gl_PrimitiveIDIn;
#ifdef PRIM_QUAD
vec3 A = (inpt[0].v.position - inpt[1].v.position).xyz;
vec3 B = (inpt[3].v.position - inpt[1].v.position).xyz;
vec3 C = (inpt[2].v.position - inpt[1].v.position).xyz;
vec3 n0 = normalize(cross(B, A));
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * inpt[0].v.position;
edgeVerts[1] = ProjectionMatrix * inpt[1].v.position;
edgeVerts[2] = ProjectionMatrix * inpt[2].v.position;
edgeVerts[3] = ProjectionMatrix * inpt[3].v.position;
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
edgeVerts[3].xy /= edgeVerts[3].w;
emit(0, n0, edgeVerts);
emit(1, n0, edgeVerts);
emit(3, n0, edgeVerts);
emit(2, n0, edgeVerts);
#else
emit(0, n0);
emit(1, n0);
emit(3, n0);
emit(2, n0);
#endif
#endif // PRIM_QUAD
#ifdef PRIM_TRI
vec3 A = (inpt[1].v.position - inpt[0].v.position).xyz;
vec3 B = (inpt[2].v.position - inpt[0].v.position).xyz;
vec3 n0 = normalize(cross(B, A));
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * inpt[0].v.position;
edgeVerts[1] = ProjectionMatrix * inpt[1].v.position;
edgeVerts[2] = ProjectionMatrix * inpt[2].v.position;
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
emit(0, n0, edgeVerts);
emit(1, n0, edgeVerts);
emit(2, n0, edgeVerts);
#else
emit(0, n0);
emit(1, n0);
emit(2, n0);
#endif
#endif // PRIM_TRI
EndPrimitive();
}
#endif
//--------------------------------------------------------------
// Fragment Shader
//--------------------------------------------------------------
#ifdef FRAGMENT_SHADER
in block {
OutputVertex v;
noperspective in vec4 edgeDistance;
OSD_USER_VARYING_DECLARE
} inpt;
out vec4 outColor;
#define NUM_LIGHTS 2
struct LightSource {
vec4 position;
vec4 ambient;
vec4 diffuse;
vec4 specular;
};
layout(std140) uniform Lighting {
LightSource lightSource[NUM_LIGHTS];
};
uniform vec4 diffuseColor = vec4(1);
uniform vec4 ambientColor = vec4(1);
vec4
lighting(vec4 diffuse, vec3 Peye, vec3 Neye)
{
vec4 color = vec4(0);
for (int i = 0; i < NUM_LIGHTS; ++i) {
vec4 Plight = lightSource[i].position;
vec3 l = (Plight.w == 0.0)
? normalize(Plight.xyz) : normalize(Plight.xyz - Peye);
vec3 n = normalize(Neye);
vec3 h = normalize(l + vec3(0,0,1)); // directional viewer
float d = max(0.0, dot(n, l));
float s = pow(max(0.0, dot(n, h)), 500.0f);
color += lightSource[i].ambient * ambientColor
+ d * lightSource[i].diffuse * diffuse
+ s * lightSource[i].specular;
}
color.a = 1;
return color;
}
vec4
edgeColor(vec4 Cfill, vec4 edgeDistance)
{
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
#ifdef PRIM_TRI
float d =
min(inpt.edgeDistance[0], min(inpt.edgeDistance[1], inpt.edgeDistance[2]));
#endif
#ifdef PRIM_QUAD
float d =
min(min(inpt.edgeDistance[0], inpt.edgeDistance[1]),
min(inpt.edgeDistance[2], inpt.edgeDistance[3]));
#endif
float v = 0.8;
vec4 Cedge = vec4(Cfill.r*v, Cfill.g*v, Cfill.b*v, 1);
float p = exp2(-2 * d * d);
#if defined(GEOMETRY_OUT_WIRE)
if (p < 0.25) discard;
#endif
Cfill.rgb = mix(Cfill.rgb, Cedge.rgb, p);
#endif
return Cfill;
}
vec4
getAdaptivePatchColor(ivec3 patchParam)
{
const vec4 patchColors[7*6] = vec4[7*6](
vec4(1.0f, 1.0f, 1.0f, 1.0f), // regular
vec4(0.0f, 1.0f, 1.0f, 1.0f), // regular pattern 0
vec4(0.0f, 0.5f, 1.0f, 1.0f), // regular pattern 1
vec4(0.0f, 0.5f, 0.5f, 1.0f), // regular pattern 2
vec4(0.5f, 0.0f, 1.0f, 1.0f), // regular pattern 3
vec4(1.0f, 0.5f, 1.0f, 1.0f), // regular pattern 4
vec4(1.0f, 0.5f, 0.5f, 1.0f), // single crease
vec4(1.0f, 0.70f, 0.6f, 1.0f), // single crease pattern 0
vec4(1.0f, 0.65f, 0.6f, 1.0f), // single crease pattern 1
vec4(1.0f, 0.60f, 0.6f, 1.0f), // single crease pattern 2
vec4(1.0f, 0.55f, 0.6f, 1.0f), // single crease pattern 3
vec4(1.0f, 0.50f, 0.6f, 1.0f), // single crease pattern 4
vec4(0.8f, 0.0f, 0.0f, 1.0f), // boundary
vec4(0.0f, 0.0f, 0.75f, 1.0f), // boundary pattern 0
vec4(0.0f, 0.2f, 0.75f, 1.0f), // boundary pattern 1
vec4(0.0f, 0.4f, 0.75f, 1.0f), // boundary pattern 2
vec4(0.0f, 0.6f, 0.75f, 1.0f), // boundary pattern 3
vec4(0.0f, 0.8f, 0.75f, 1.0f), // boundary pattern 4
vec4(0.0f, 1.0f, 0.0f, 1.0f), // corner
vec4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 0
vec4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 1
vec4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 2
vec4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 3
vec4(0.5f, 1.0f, 0.5f, 1.0f), // corner pattern 4
vec4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
vec4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
vec4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
vec4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
vec4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
vec4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
vec4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
vec4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
vec4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
vec4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
vec4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
vec4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
vec4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
vec4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
vec4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
vec4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
vec4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
vec4(1.0f, 0.7f, 0.3f, 1.0f) // gregory basis
);
int patchType = 0;
int edgeCount = bitCount(OsdGetPatchBoundaryMask(patchParam));
if (edgeCount == 1) {
patchType = 2; // BOUNDARY
}
if (edgeCount > 1) {
patchType = 3; // CORNER (not correct for patches that are not isolated)
}
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
// check this after boundary/corner since single crease patch also has edgeCount.
if (inpt.vSegments.y > 0) {
patchType = 1;
}
#elif defined OSD_PATCH_GREGORY
patchType = 4;
#elif defined OSD_PATCH_GREGORY_BOUNDARY
patchType = 5;
#elif defined OSD_PATCH_GREGORY_BASIS
patchType = 6;
#elif defined OSD_PATCH_GREGORY_TRIANGLE
patchType = 6;
#endif
int pattern = bitCount(OsdGetPatchTransitionMask(patchParam));
return patchColors[6*patchType + pattern];
}
#if defined(PRIM_QUAD) || defined(PRIM_TRI)
void
main()
{
vec3 N = (gl_FrontFacing ? inpt.v.normal : -inpt.v.normal);
#if defined(VARYING_COLOR)
vec4 color = vec4(inpt.color, 1);
#else
vec4 color = getAdaptivePatchColor(OsdGetPatchParam(OsdGetPatchIndex(gl_PrimitiveID)));
#endif
vec4 Cf = lighting(color, inpt.v.position.xyz, N);
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
Cf = edgeColor(Cf, inpt.edgeDistance);
#endif
outColor = Cf;
}
#endif
#endif