OpenSubdiv/opensubdiv/osd/hlslPatchBSpline.hlsl
Takahito Tejima f7f2ca2581 Move uniform block definitions out of osd common shader into client shader.
Important notice: all client shader code must have following functions and compose them to osd intrinsic shaders (vertex/tessEval/tessControl)

mat4 OsdModelViewMatrix()
mat4 OsdProjectionMatrix()
mat4 OsdModelViewProjectionMatrix()
float OsdTessLevel()
int OsdGreogryQuadOffsetBase()
int OsdPrimitiveIdBase()

We probably should write a utility class for basic binding of them, to make client code simpler.
2013-12-03 15:59:38 -08:00

342 lines
9.9 KiB
HLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifdef OSD_TRANSITION_TRIANGLE_SUBPATCH
#define HS_DOMAIN "tri"
#else
#define HS_DOMAIN "quad"
#endif
#if defined OSD_FRACTIONAL_ODD_SPACING
#define HS_PARTITION "fractional_odd"
#elif defined OSD_FRACTIONAL_EVEN_SPACING
#define HS_PARTITION "fractional_even"
#else
#define HS_PARTITION "integer"
#endif
//----------------------------------------------------------
// Patches.Vertex
//----------------------------------------------------------
void vs_main_patches( in InputVertex input,
out HullVertex output )
{
output.position = mul(OsdModelViewMatrix(), input.position);
OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(input.position);
}
//----------------------------------------------------------
// Patches.HullBSpline
//----------------------------------------------------------
// Regular
static float4x4 Q = {
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
0.f, 4.f/6.f, 2.f/6.f, 0.f,
0.f, 2.f/6.f, 4.f/6.f, 0.f,
0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f
};
// Boundary / Corner
static float4x3 B = {
1.f, 0.f, 0.f,
4.f/6.f, 2.f/6.f, 0.f,
2.f/6.f, 4.f/6.f, 0.f,
1.f/6.f, 4.f/6.f, 1.f/6.f
};
#ifdef OSD_PATCH_TRANSITION
HS_CONSTANT_TRANSITION_FUNC_OUT
#else
HS_CONSTANT_FUNC_OUT
#endif
HSConstFunc(
InputPatch<HullVertex, OSD_PATCH_INPUT_SIZE> patch,
uint primitiveID : SV_PrimitiveID)
{
#ifdef OSD_PATCH_TRANSITION
HS_CONSTANT_TRANSITION_FUNC_OUT output;
#else
HS_CONSTANT_FUNC_OUT output;
#endif
int patchLevel = GetPatchLevel(primitiveID);
#ifdef OSD_TRANSITION_TRIANGLE_SUBPATCH
OSD_PATCH_CULL_TRIANGLE(OSD_PATCH_INPUT_SIZE);
#else
OSD_PATCH_CULL(OSD_PATCH_INPUT_SIZE);
#endif
#ifdef OSD_PATCH_TRANSITION
float3 cp[OSD_PATCH_INPUT_SIZE];
for(int k = 0; k < OSD_PATCH_INPUT_SIZE; ++k) cp[k] = patch[k].position.xyz;
SetTransitionTessLevels(output, cp, patchLevel);
#else
#if defined OSD_PATCH_BOUNDARY
const int p[4] = { 1, 2, 5, 6 };
#elif defined OSD_PATCH_CORNER
const int p[4] = { 1, 2, 4, 5 };
#else
const int p[4] = { 5, 6, 9, 10 };
#endif
#ifdef OSD_ENABLE_SCREENSPACE_TESSELLATION
output.tessLevelOuter[0] = TessAdaptive(patch[p[0]].position.xyz, patch[p[2]].position.xyz);
output.tessLevelOuter[1] = TessAdaptive(patch[p[0]].position.xyz, patch[p[1]].position.xyz);
output.tessLevelOuter[2] = TessAdaptive(patch[p[1]].position.xyz, patch[p[3]].position.xyz);
output.tessLevelOuter[3] = TessAdaptive(patch[p[2]].position.xyz, patch[p[3]].position.xyz);
output.tessLevelInner[0] = max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
output.tessLevelInner[1] = max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
#else
output.tessLevelInner[0] = GetTessLevel(patchLevel);
output.tessLevelInner[1] = GetTessLevel(patchLevel);
output.tessLevelOuter[0] = GetTessLevel(patchLevel);
output.tessLevelOuter[1] = GetTessLevel(patchLevel);
output.tessLevelOuter[2] = GetTessLevel(patchLevel);
output.tessLevelOuter[3] = GetTessLevel(patchLevel);
#endif
#endif
return output;
}
[domain(HS_DOMAIN)]
[partitioning(HS_PARTITION)]
[outputtopology("triangle_cw")]
[outputcontrolpoints(16)]
[patchconstantfunc("HSConstFunc")]
HullVertex hs_main_patches(
in InputPatch<HullVertex, OSD_PATCH_INPUT_SIZE> patch,
uint primitiveID : SV_PrimitiveID,
in uint ID : SV_OutputControlPointID )
{
int i = ID%4;
int j = ID/4;
#if defined OSD_PATCH_BOUNDARY
float3 H[3];
for (int l=0; l<3; ++l) {
H[l] = float3(0,0,0);
for (int k=0; k<4; ++k) {
H[l] += Q[i][k] * patch[l*4 + k].position.xyz;
}
}
float3 pos = float3(0,0,0);
for (int k=0; k<3; ++k) {
pos += B[j][k]*H[k];
}
#elif defined OSD_PATCH_CORNER
float3 H[3];
for (int l=0; l<3; ++l) {
H[l] = float3(0,0,0);
for (int k=0; k<3; ++k) {
H[l] += B[3-i][2-k] * patch[l*3 + k].position.xyz;
}
}
float3 pos = float3(0,0,0);
for (int k=0; k<3; ++k) {
pos += B[j][k]*H[k];
}
#else // not OSD_PATCH_BOUNDARY, not OSD_PATCH_CORNER
float3 H[4];
for (int l=0; l<4; ++l) {
H[l] = float3(0,0,0);
for(int k=0; k<4; ++k) {
H[l] += Q[i][k] * patch[l*4 + k].position.xyz;
}
}
float3 pos = float3(0,0,0);
for (int k=0; k<4; ++k){
pos += Q[j][k]*H[k];
}
#endif
HullVertex output;
output.position = float4(pos, 1.0);
int patchLevel = GetPatchLevel(primitiveID);
// +0.5 to avoid interpolation error of integer value
output.patchCoord = float4(0, 0,
patchLevel+0.5,
GetPrimitiveID(primitiveID)+0.5);
OSD_COMPUTE_PTEX_COORD_HULL_SHADER;
return output;
}
//----------------------------------------------------------
// Patches.DomainBSpline
//----------------------------------------------------------
[domain(HS_DOMAIN)]
void ds_main_patches(
#ifdef OSD_PATCH_TRANSITION
in HS_CONSTANT_TRANSITION_FUNC_OUT input,
#else
in HS_CONSTANT_FUNC_OUT input,
#endif
in OutputPatch<HullVertex, 16> patch,
#ifdef OSD_TRANSITION_TRIANGLE_SUBPATCH
in float3 domainCoord : SV_DomainLocation,
#else
in float2 domainCoord : SV_DomainLocation,
#endif
out OutputVertex output )
{
#ifdef OSD_PATCH_TRANSITION
float2 UV = GetTransitionSubpatchUV(domainCoord);
#else
float2 UV = domainCoord;
#endif
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
float B[4], D[4], C[4];
float3 BUCP[4], DUCP[4], CUCP[4];
Univar4x4(UV.x, B, D, C);
#else
float B[4], D[4];
float3 BUCP[4], DUCP[4];
Univar4x4(UV.x, B, D);
#endif
for (int i=0; i<4; ++i) {
BUCP[i] = float3(0,0,0);
DUCP[i] = float3(0,0,0);
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
CUCP[i] = float3(0,0,0);
#endif
for (int j=0; j<4; ++j) {
#if OSD_TRANSITION_ROTATE == 1
float3 A = patch[4*(3-j) + i].position.xyz;
#elif OSD_TRANSITION_ROTATE == 2
float3 A = patch[4*(3-i) + (3-j)].position.xyz;
#elif OSD_TRANSITION_ROTATE == 3
float3 A = patch[4*j + (3-i)].position.xyz;
#else // OSD_TRANSITION_ROTATE == 0, or non-transition patch
float3 A = patch[4*i + j].position.xyz;
#endif
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
CUCP[i] += A * C[j];
#endif
}
}
float3 WorldPos = float3(0,0,0);
float3 Tangent = float3(0,0,0);
float3 BiTangent = float3(0,0,0);
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
// used for weingarten term
Univar4x4(UV.y, B, D, C);
float3 dUU = float3(0,0,0);
float3 dVV = float3(0,0,0);
float3 dUV = float3(0,0,0);
for (int k=0; k<4; ++k) {
WorldPos += B[k] * BUCP[k];
Tangent += B[k] * DUCP[k];
BiTangent += D[k] * BUCP[k];
dUU += B[k] * CUCP[k];
dVV += C[k] * BUCP[k];
dUV += D[k] * DUCP[k];
}
int level = int(patch[0].ptexInfo.z);
Tangent *= 3 * level;
BiTangent *= 3 * level;
dUU *= 6 * level;
dVV *= 6 * level;
dUV *= 9 * level;
float3 n = cross(Tangent, BiTangent);
float3 normal = normalize(n);
float E = dot(Tangent, Tangent);
float F = dot(Tangent, BiTangent);
float G = dot(BiTangent, BiTangent);
float e = dot(normal, dUU);
float f = dot(normal, dUV);
float g = dot(normal, dVV);
float3 Nu = (f*F-e*G)/(E*G-F*F) * Tangent + (e*F-f*E)/(E*G-F*F) * BiTangent;
float3 Nv = (g*F-f*G)/(E*G-F*F) * Tangent + (f*F-g*E)/(E*G-F*F) * BiTangent;
Nu = Nu/length(n) - n * (dot(Nu,n)/pow(dot(n,n), 1.5));
Nv = Nv/length(n) - n * (dot(Nv,n)/pow(dot(n,n), 1.5));
OSD_COMPUTE_PTEX_COMPATIBLE_DERIVATIVES(OSD_TRANSITION_ROTATE);
#else
Univar4x4(UV.y, B, D);
for (int k=0; k<4; ++k) {
WorldPos += B[k] * BUCP[k];
Tangent += B[k] * DUCP[k];
BiTangent += D[k] * BUCP[k];
}
int level = int(patch[0].ptexInfo.z);
Tangent *= 3 * level;
BiTangent *= 3 * level;
float3 normal = normalize(cross(Tangent, BiTangent));
OSD_COMPUTE_PTEX_COMPATIBLE_TANGENT(OSD_TRANSITION_ROTATE);
#endif
output.position = float4(WorldPos, 1.0f);
output.normal = normal;
output.patchCoord = patch[0].patchCoord;
#if OSD_TRANSITION_ROTATE == 1
output.patchCoord.xy = float2(UV.y, 1.0-UV.x);
#elif OSD_TRANSITION_ROTATE == 2
output.patchCoord.xy = float2(1.0-UV.x, 1.0-UV.y);
#elif OSD_TRANSITION_ROTATE == 3
output.patchCoord.xy = float2(1.0-UV.y, UV.x);
#else // OSD_TRANNSITION_ROTATE == 0, or non-transition patch
output.patchCoord.xy = float2(UV.x, UV.y);
#endif
OSD_COMPUTE_PTEX_COORD_DOMAIN_SHADER;
OSD_DISPLACEMENT_CALLBACK;
output.positionOut = mul(OsdProjectionMatrix(),
float4(output.position.xyz, 1.0f));
}