OpenSubdiv/opensubdiv/far/patchTables.cpp
2015-02-27 15:52:12 -08:00

521 lines
18 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/patchTables.h"
#include <cstring>
#include <cstdio>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
PatchTables::PatchTables(int maxvalence) :
_maxValence(maxvalence), _endcapStencilTables(0) { }
// Copy constructor
// XXXX manuelk we need to eliminate this constructor (C++11 smart pointers)
PatchTables::PatchTables(PatchTables const & src) :
_maxValence(src._maxValence),
_numPtexFaces(src._numPtexFaces),
_patchArrays(src._patchArrays),
_patchVerts(src._patchVerts),
_paramTable(src._paramTable),
#ifdef ENDCAP_TOPOPOLGY
_endcapTopology(src._endcapTopology),
#endif
_quadOffsetsTable(src._quadOffsetsTable),
_vertexValenceTable(src._vertexValenceTable),
_fvarChannels(src._fvarChannels),
_sharpnessIndices(src._sharpnessIndices),
_sharpnessValues(src._sharpnessValues) {
_endcapStencilTables = src._endcapStencilTables ?
new StencilTables(*src._endcapStencilTables) : 0;
}
PatchTables::~PatchTables() {
delete _endcapStencilTables;
}
//
// PatchArrays
//
struct PatchTables::PatchArray {
PatchArray(PatchDescriptor d, int np, Index v, Index p, Index qo) :
desc(d), numPatches(np), vertIndex(v),
patchIndex(p), quadOffsetIndex (qo) { }
void print() const;
PatchDescriptor desc; // type of patches in the array
int numPatches; // number of patches in the array
Index vertIndex, // index to the first control vertex
patchIndex, // index of the first patch in the array
quadOffsetIndex; // index of the first quad offset entry
};
// debug helper
void
PatchTables::PatchArray::print() const {
desc.print();
printf(" numPatches=%d vertIndex=%d patchIndex=%d "
"quadOffsetIndex=%d\n", numPatches, vertIndex, patchIndex,
quadOffsetIndex);
}
inline PatchTables::PatchArray &
PatchTables::getPatchArray(Index arrayIndex) {
assert(arrayIndex<(Index)GetNumPatchArrays());
return _patchArrays[arrayIndex];
}
inline PatchTables::PatchArray const &
PatchTables::getPatchArray(Index arrayIndex) const {
assert(arrayIndex<(Index)GetNumPatchArrays());
return _patchArrays[arrayIndex];
}
void
PatchTables::reservePatchArrays(int numPatchArrays) {
_patchArrays.reserve(numPatchArrays);
}
//
// FVarPatchChannel
//
// Stores a record for each patch in the primitive :
//
// - Each patch in the PatchTables has a corresponding patch in each
// face-varying patch channel. Patch vertex indices are sorted in the same
// patch-type order as PatchTables::PTables. Face-varying data for a patch
// can therefore be quickly accessed by using the patch primitive ID as
// index into patchValueOffsets to locate the face-varying control vertex
// indices.
//
// - Face-varying channels can have a different interpolation modes
//
// - Unlike "vertex" PatchTables, there are no "transition" patterns required
// for face-varying patches.
//
// - No transition patterns means vertex indices of face-varying patches can
// be pre-rotated in the factory, so we do not store patch rotation
//
// - Face-varying patches still special variants for boundary and corner cases
//
// - currently most patches with sharp boundaries but smooth interiors have
// to be isolated to level 10 : we need a special type of bicubic patch
// similar to single-crease to resolve this condition without requiring
// isolation if possible
//
struct PatchTables::FVarPatchChannel {
// Channel interpolation mode
Sdc::Options::FVarLinearInterpolation interpolation;
// Patch type
//
// Note : in bilinear interpolation modes, all patches are of the same type,
// so we only need a single type (patchesType). In bi-cubic modes, each
// patch requires its own type (patchTypes).
PatchDescriptor::Type patchesType;
std::vector<PatchDescriptor::Type> patchTypes;
// Patch points values
std::vector<Index> patchValuesOffsets; // offset to the first value of each patch
std::vector<Index> patchValues; // point values for each patch
};
inline PatchTables::FVarPatchChannel &
PatchTables::getFVarPatchChannel(int channel) {
assert(channel<(int)_fvarChannels.size());
return _fvarChannels[channel];
}
inline PatchTables::FVarPatchChannel const &
PatchTables::getFVarPatchChannel(int channel) const {
assert(channel<(int)_fvarChannels.size());
return _fvarChannels[channel];
}
void
PatchTables::allocateFVarPatchChannels(int numChannels) {
_fvarChannels.resize(numChannels);
}
void
PatchTables::allocateChannelValues(int channel,
int numPatches, int numVerticesTotal) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
if (c.interpolation==Sdc::Options::FVAR_LINEAR_ALL) {
// Allocate bi-linear channels (allows uniform topology to be populated
// in a single traversal)
c.patchValues.resize(numVerticesTotal);
} else {
// Allocate per-patch type and offset vectors for bi-cubic patches
//
// Note : c.patchValues cannot be allocated pre-emptively since we do
// not know the type (and size) of each patch yet. These channels
// require an extra step to compact the value indices and generate
// offsets
c.patchesType = PatchDescriptor::NON_PATCH;
c.patchTypes.resize(numPatches);
}
}
void
PatchTables::setFVarPatchChannelLinearInterpolation(int channel,
Sdc::Options::FVarLinearInterpolation interpolation) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
c.interpolation = interpolation;
}
void
PatchTables::setFVarPatchChannelPatchesType(int channel, PatchDescriptor::Type type) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
c.patchesType = type;
}
void
PatchTables::setBicubicFVarPatchChannelValues(int channel, int patchSize,
std::vector<Index> const & values) {
// This method populates the sparse array of values held in the patch
// tables from a non-sparse array of value indices generated during
// the second traversal of an adaptive TopologyRefiner.
// It is assumed that the patch types have been stored in the channel's
// 'patchTypes' vector during the first traversal.
FVarPatchChannel & c = getFVarPatchChannel(channel);
assert(c.interpolation!=Sdc::Options::FVAR_LINEAR_ALL and
c.patchTypes.size()*patchSize==values.size());
int npatches = (int)c.patchTypes.size(),
nverts = 0;
// Generate offsets and count vertices
c.patchValuesOffsets.resize(npatches);
for (int patch=0; patch<npatches; ++patch) {
int nv = PatchDescriptor::GetNumFVarControlVertices(c.patchTypes[patch]);
c.patchValuesOffsets[patch] = nverts;
nverts += nv;
}
// Populate values
Index const * srcValues = &values[0];
c.patchValues.resize(nverts);
Index * dstValues = &c.patchValues[0];
for (int patch=0; patch<npatches; ++patch) {
int nv = PatchDescriptor::GetNumFVarControlVertices(c.patchTypes[patch]);
memcpy(dstValues, srcValues, nv * sizeof(Index));
srcValues += patchSize;
dstValues += nv;
}
}
//
// PatchTables
//
inline int
getPatchSize(PatchDescriptor desc) {
int size = desc.GetNumControlVertices();
// XXXX manuelk we do not store the topology for Gregory Basis
// patch types yet - so point to the 4 corners of the 0-ring
if (desc.GetType() == PatchDescriptor::GREGORY_BASIS) {
size = 4;
}
return size;
}
void
PatchTables::pushPatchArray(PatchDescriptor desc, int npatches,
Index * vidx, Index * pidx, Index * qoidx) {
if (npatches>0) {
_patchArrays.push_back(PatchArray(
desc, npatches, *vidx, *pidx, qoidx ? *qoidx : 0));
int nverts = getPatchSize(desc);
*vidx += npatches * nverts;
*pidx += npatches;
if (qoidx) {
*qoidx += (desc.GetType() == PatchDescriptor::GREGORY) ?
npatches*nverts : 0;
}
}
}
int
PatchTables::getPatchIndex(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert(patchIndex<pa.numPatches);
return pa.patchIndex + patchIndex;
}
Index *
PatchTables::getSharpnessIndices(int arrayIndex) {
return &_sharpnessIndices[getPatchArray(arrayIndex).patchIndex];
}
float *
PatchTables::getSharpnessValues(int arrayIndex) {
return &_sharpnessValues[getPatchArray(arrayIndex).patchIndex];
}
PatchDescriptor
PatchTables::GetPatchDescriptor(PatchHandle const & handle) const {
return getPatchArray(handle.arrayIndex).desc;
}
PatchDescriptor
PatchTables::GetPatchArrayDescriptor(int arrayIndex) const {
return getPatchArray(arrayIndex).desc;
}
int
PatchTables::GetNumPatchArrays() const {
return (int)_patchArrays.size();
}
int
PatchTables::GetNumPatches(int arrayIndex) const {
return getPatchArray(arrayIndex).numPatches;
}
int
PatchTables::GetNumPatchesTotal() const {
// there is one PatchParam record for each patch in the mesh
return (int)_paramTable.size();
}
int
PatchTables::GetNumControlVertices(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
return pa.numPatches * getPatchSize(pa.desc);
}
Index
PatchTables::findPatchArray(PatchDescriptor desc) {
for (int i=0; i<(int)_patchArrays.size(); ++i) {
if (_patchArrays[i].desc==desc)
return i;
}
return Vtr::INDEX_INVALID;
}
IndexArray
PatchTables::getPatchArrayVertices(int arrayIndex) {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert(pa.vertIndex<(Index)_patchVerts.size());
return IndexArray(&_patchVerts[pa.vertIndex], pa.numPatches * size);
}
ConstIndexArray
PatchTables::GetPatchArrayVertices(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert(pa.vertIndex<(Index)_patchVerts.size());
return ConstIndexArray(&_patchVerts[pa.vertIndex], pa.numPatches * size);
}
ConstIndexArray
PatchTables::GetPatchVertices(PatchHandle const & handle) const {
PatchArray const & pa = getPatchArray(handle.arrayIndex);
Index vert = pa.vertIndex;
// XXXX manuelk we do not store the topology for Gregory Basis
// patch types yet - so point to the 4 corners of the 0-ring
vert += (pa.desc.GetType() == PatchDescriptor::GREGORY_BASIS) ?
handle.vertIndex / 5 : handle.vertIndex;
assert(vert<(Index)_patchVerts.size());
return ConstIndexArray(&_patchVerts[vert], getPatchSize(pa.desc));
}
ConstIndexArray
PatchTables::GetPatchVertices(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert((pa.vertIndex + patchIndex*size)<(Index)_patchVerts.size());
return ConstIndexArray(&_patchVerts[pa.vertIndex + patchIndex*size], size);
}
PatchParam
PatchTables::GetPatchParam(PatchHandle const & handle) const {
assert(handle.patchIndex < (Index)_paramTable.size());
return _paramTable[handle.patchIndex];
}
PatchParam
PatchTables::GetPatchParam(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert((pa.patchIndex + patchIndex) < (int)_paramTable.size());
return _paramTable[pa.patchIndex + patchIndex];
}
PatchParamArray
PatchTables::getPatchParams(int arrayIndex) {
PatchArray const & pa = getPatchArray(arrayIndex);
return PatchParamArray(&_paramTable[pa.patchIndex], pa.numPatches);
}
ConstPatchParamArray const
PatchTables::GetPatchParams(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
return ConstPatchParamArray(&_paramTable[pa.patchIndex], pa.numPatches);
}
float
PatchTables::GetSingleCreasePatchSharpnessValue(PatchHandle const & handle) const {
assert((handle.patchIndex) < (int)_sharpnessIndices.size());
Index index = _sharpnessIndices[handle.patchIndex];
if (index == Vtr::INDEX_INVALID) {
return 0.0f;
}
assert(index < (Index)_sharpnessValues.size());
return _sharpnessValues[index];
}
float
PatchTables::GetSingleCreasePatchSharpnessValue(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert((pa.patchIndex + patchIndex) < (int)_sharpnessIndices.size());
Index index = _sharpnessIndices[pa.patchIndex + patchIndex];
if (index == Vtr::INDEX_INVALID) {
return 0.0f;
}
assert(index < (Index)_sharpnessValues.size());
return _sharpnessValues[index];
}
PatchTables::ConstQuadOffsetsArray
PatchTables::GetPatchQuadOffsets(PatchHandle const & handle) const {
PatchArray const & pa = getPatchArray(handle.arrayIndex);
return Vtr::ConstArray<unsigned int>(&_quadOffsetsTable[pa.quadOffsetIndex + handle.vertIndex], 4);
}
bool
PatchTables::IsFeatureAdaptive() const {
// check for presence of tables only used by adaptive patches
if (not _vertexValenceTable.empty() or _endcapStencilTables)
return true;
// otherwise, we have to check each patch array
for (int i=0; i<GetNumPatchArrays(); ++i) {
PatchDescriptor const & desc = _patchArrays[i].desc;
if (desc.GetType()>=PatchDescriptor::REGULAR and
desc.GetType()<=PatchDescriptor::GREGORY_BASIS) {
return true;
}
}
return false;
}
int
PatchTables::GetNumFVarChannels() const {
return (int)_fvarChannels.size();
}
Sdc::Options::FVarLinearInterpolation
PatchTables::GetFVarChannelLinearInterpolation(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
return c.interpolation;
}
Vtr::Array<PatchDescriptor::Type>
PatchTables::getFVarPatchTypes(int channel) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
return Vtr::Array<PatchDescriptor::Type>(&c.patchTypes[0],
(int)c.patchTypes.size());
}
Vtr::ConstArray<PatchDescriptor::Type>
PatchTables::GetFVarPatchTypes(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
if (c.patchesType!=PatchDescriptor::NON_PATCH) {
return Vtr::ConstArray<PatchDescriptor::Type>(&c.patchesType, 1);
} else {
return Vtr::ConstArray<PatchDescriptor::Type>(&c.patchTypes[0],
(int)c.patchTypes.size());
}
}
ConstIndexArray
PatchTables::GetFVarPatchesValues(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
return ConstIndexArray(&c.patchValues[0], (int)c.patchValues.size());
}
IndexArray
PatchTables::getFVarPatchesValues(int channel) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
return IndexArray(&c.patchValues[0], (int)c.patchValues.size());
}
PatchDescriptor::Type
PatchTables::getFVarPatchType(int channel, int patch) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
PatchDescriptor::Type type;
if (c.patchesType!=PatchDescriptor::NON_PATCH) {
assert(c.patchTypes.empty());
type = c.patchesType;
} else {
assert(patch<(int)c.patchTypes.size());
type = c.patchTypes[patch];
}
return type;
}
PatchDescriptor::Type
PatchTables::GetFVarPatchType(int channel, PatchHandle const & handle) const {
return getFVarPatchType(channel, handle.patchIndex);
}
PatchDescriptor::Type
PatchTables::GetFVarPatchType(int channel, int arrayIndex, int patchIndex) const {
return getFVarPatchType(channel, getPatchIndex(arrayIndex, patchIndex));
}
ConstIndexArray
PatchTables::getFVarPatchValues(int channel, int patch) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
if (c.patchValuesOffsets.empty()) {
int ncvs = PatchDescriptor::GetNumFVarControlVertices(c.patchesType);
return ConstIndexArray(&c.patchValues[patch * ncvs], ncvs);
} else {
assert(patch<(int)c.patchValuesOffsets.size() and
patch<(int)c.patchTypes.size());
return ConstIndexArray(&c.patchValues[c.patchValuesOffsets[patch]],
PatchDescriptor::GetNumFVarControlVertices(c.patchTypes[patch]));
}
}
ConstIndexArray
PatchTables::GetFVarPatchValues(int channel, PatchHandle const & handle) const {
return getFVarPatchValues(channel, handle.patchIndex);
}
ConstIndexArray
PatchTables::GetFVarPatchValues(int channel, int arrayIndex, int patchIndex) const {
return getFVarPatchValues(channel, getPatchIndex(arrayIndex, patchIndex));
}
void
PatchTables::print() const {
printf("patchTables (0x%p)\n", this);
printf(" numPatches = %d\n", GetNumPatchesTotal());
for (int i=0; i<GetNumPatchArrays(); ++i) {
printf(" patchArray %d:\n", i);
PatchArray const & pa = getPatchArray(i);
pa.print();
}
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv