OpenSubdiv/opensubdiv/far/subdivisionTables.h

691 lines
24 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_SUBDIVISION_TABLES_H
#define FAR_SUBDIVISION_TABLES_H
#include "../version.h"
#include <cassert>
#include <cmath>
#include <utility>
#include <vector>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
/// \brief FarSubdivisionTables are a serialized topological data representation.
///
/// Subdivision tables store the indexing tables required in order to compute
/// the refined positions of a mesh without the help of a hierarchical data
/// structure. The advantage of this representation is its ability to be executed
/// in a massively parallel environment without data dependencies.
///
/// The vertex indexing tables require the vertex buffer to be sorted based on the
/// nature of the parent of a given vertex : either a face, an edge, or a vertex.
/// (note : the Loop subdivision scheme does not create vertices as a child of a
/// face).
///
/// Each type of vertex in the buffer is associated the following tables :
/// - _<T>_IT : indices of all the adjacent vertices required by the compute kernels
/// - _<T>_W : fractional weight of the vertex (based on sharpness & topology)
/// - _<T>_ITa : codex for the two previous tables
/// (where T denotes a face-vertex / edge-vertex / vertex-vertex)
///
///
/// Because each subdivision scheme (Catmark / Loop / Bilinear) introduces variations
/// in the subdivision rules, a derived class specialization is associated with
/// each scheme.
///
/// For more details see : "Feature Adaptive GPU Rendering of Catmull-Clark
/// Subdivision Surfaces" (p.3 - par. 3.2)
///
class FarSubdivisionTables {
public:
enum Scheme {
UNDEFINED=0,
BILINEAR,
CATMARK,
LOOP
};
enum TableType {
E_IT, ///< edge-vertices adjacency indexing table
E_W, ///< edge-vertices weights
V_ITa, ///< vertex-vertices adjacency indexing table
V_IT, ///< vertex-vertices indexing table
V_W, ///< vertex-vertices weights
F_ITa, ///< face-vertices adjacency indexing table
F_IT, ///< face-vertices indexing table
TABLE_TYPES_COUNT // number of different types of tables
};
/// \brief Destructor
~FarSubdivisionTables() {}
/// \brief Return the highest level of subdivision possible with these tables
int GetMaxLevel() const { return (int)(_vertsOffsets.size()-1); }
/// \brief Memory required to store the indexing tables
int GetMemoryUsed() const;
/// \brief The index of the first vertex that belongs to the level of subdivision
/// represented by this set of FarSubdivisionTables
int GetFirstVertexOffset( int level ) const;
/// \brief Returns the total number of vertex adressed by the tables (this is the
/// length that a vertex buffer object should be allocating
int GetNumVertices( ) const;
/// \brief Returns the number of vertices at a given level
int GetNumVertices( int level ) const;
/// \brief Returns the summation of the number of vertices up to a given level
int GetNumVerticesTotal( int level ) const;
// Indexing tables accessors
/// \brief Returns the face vertices codex table
std::vector<int> const & Get_F_ITa( ) const { return _F_ITa; }
/// \brief Returns the face vertices indexing table
std::vector<unsigned int> const & Get_F_IT( ) const { return _F_IT; }
/// \brief Returns the edge vertices indexing table
std::vector<int> const & Get_E_IT() const { return _E_IT; }
/// \brief Returns the edge vertices weights table
std::vector<float> const & Get_E_W() const { return _E_W; }
/// \brief Returns the vertex vertices codex table
std::vector<int> const & Get_V_ITa() const { return _V_ITa; }
/// \brief Returns the vertex vertices indexing table
std::vector<unsigned int> const & Get_V_IT() const { return _V_IT; }
/// \brief Returns the vertex vertices weights table
std::vector<float> const & Get_V_W() const { return _V_W; }
/// \brief Returns the subdivision scheme of the tables
/// (sidesteps typeinfo dependency)
Scheme GetScheme() const { return _scheme; }
/// \brief Returns the number of indexing tables needed to represent this particular
/// subdivision scheme.
int GetNumTables() const;
// -------------------------------------------------------------------------
// Bilinear scheme
// Compute-kernel applied to vertices resulting from the refinement of a face.
template <class U>
void computeBilinearFacePoints(int vertexOffset, int tableOffset, int start, int end, U *vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of an edge.
template <class U>
void computeBilinearEdgePoints(int vertexOffset, int tableOffset, int start, int end, U *vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a vertex
template <class U>
void computeBilinearVertexPoints(int vertexOffset, int tableOffset, int start, int end, U *vsrc) const;
// -------------------------------------------------------------------------
// Catmark scheme
// Compute-kernel applied to vertices resulting from the refinement of a face.
template <class U>
void computeCatmarkFacePoints(int vertexOffset, int tableOffset, int start, int end, U * vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a quad face.
template <class U>
void computeCatmarkQuadFacePoints(int vertexOffset, int tableOffset, int start, int end, U * vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a tri or quad face.
template <class U>
void computeCatmarkTriQuadFacePoints(int vertexOffset, int tableOffset, int start, int end, U * vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of an edge.
template <class U>
void computeCatmarkEdgePoints(int vertexOffset, int tableOffset, int start, int end, U * vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a smooth or sharp edge.
template <class U>
void computeCatmarkRestrictedEdgePoints(int vertexOffset, int tableOffset, int start, int end, U * vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a vertex
// Kernel "A" Handles the k_Crease and k_Corner rules
template <class U>
void computeCatmarkVertexPointsA(int vertexOffset, bool pass, int tableOffset, int start, int end, U * vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a vertex
// Kernel "B" Handles the k_Smooth and k_Dart rules
template <class U>
void computeCatmarkVertexPointsB(int vertexOffset, int tableOffset, int start, int end, U * vsrc) const;
// -------------------------------------------------------------------------
// Loop scheme
// Compute-kernel applied to vertices resulting from the refinement of an edge.
template <class U>
void computeLoopEdgePoints(int offset, int level, int start, int end, U *vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a vertex
// Kernel "A" Handles the k_Smooth and k_Dart rules
template <class U>
void computeLoopVertexPointsA(int offset, bool pass, int level, int start, int end, U *vsrc) const;
// Compute-kernel applied to vertices resulting from the refinement of a vertex
// Kernel "B" Handles the k_Crease and k_Corner rules
template <class U>
void computeLoopVertexPointsB(int offset,int level, int start, int end, U *vsrc) const;
protected:
template <class X, class Y> friend class FarBilinearSubdivisionTablesFactory;
template <class X, class Y> friend class FarCatmarkSubdivisionTablesFactory;
template <class X, class Y> friend class FarLoopSubdivisionTablesFactory;
template <class X, class Y> friend class FarSubdivisionTablesFactory;
FarSubdivisionTables( int maxlevel, Scheme scheme );
std::vector<int> _F_ITa; // vertices from face refinement
std::vector<unsigned int> _F_IT; // indices of face vertices
std::vector<int> _E_IT; // vertices from edge refinement
std::vector<float> _E_W; // weigths
std::vector<int> _V_ITa; // vertices from vertex refinement
std::vector<unsigned int> _V_IT; // indices of adjacent vertices
std::vector<float> _V_W; // weights
std::vector<int> _vertsOffsets; // offset to the first vertex of each level
Scheme _scheme; // subdivision scheme
};
inline
FarSubdivisionTables::FarSubdivisionTables( int maxlevel, Scheme scheme ) :
_vertsOffsets(maxlevel+2, 0), _scheme(scheme)
{
assert( maxlevel > 0 );
}
inline int
FarSubdivisionTables::GetFirstVertexOffset( int level ) const {
assert(level>=0 and level<(int)_vertsOffsets.size());
return _vertsOffsets[level];
}
inline int
FarSubdivisionTables::GetNumVertices( ) const {
if (_vertsOffsets.empty()) {
return 0;
} else {
// _vertsOffsets contains an extra offset at the end that is the position
// of the first vertex 1 level above that of the tables
return *_vertsOffsets.rbegin();
}
}
inline int
FarSubdivisionTables::GetNumVertices( int level ) const {
assert(level>=0 and level<((int)_vertsOffsets.size()-1));
return _vertsOffsets[level+1] - _vertsOffsets[level];
}
inline int
FarSubdivisionTables::GetNumVerticesTotal( int level ) const {
assert(level>=0 and level<((int)_vertsOffsets.size()-1));
return _vertsOffsets[level+1];
}
inline int
FarSubdivisionTables::GetNumTables() const {
switch (_scheme) {
case BILINEAR: return 7;
case CATMARK: return 7;
case LOOP: return 5;
default: return 0;
}
}
inline int
FarSubdivisionTables::GetMemoryUsed() const {
return (int)(_F_ITa.size() * sizeof(int) +
_F_IT.size() * sizeof(unsigned int) +
_E_IT.size() * sizeof(int) +
_E_W.size() * sizeof(float) +
_V_ITa.size() * sizeof(int) +
_V_IT.size() * sizeof(unsigned int) +
_V_W.size() * sizeof(float));
}
//
// Face-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeBilinearFacePoints( int offset, int tableOffset, int start, int end, U *vsrc ) const {
U * vdst = vsrc + offset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int h = this->_F_ITa[2*i ],
n = this->_F_ITa[2*i+1];
float weight = 1.0f/n;
for (int j=0; j<n; ++j) {
vdst->AddWithWeight( vsrc[ this->_F_IT[h+j] ], weight );
vdst->AddVaryingWithWeight( vsrc[ this->_F_IT[h+j] ], weight );
}
}
}
//
// Edge-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeBilinearEdgePoints( int offset, int tableOffset, int start, int end, U *vsrc ) const {
U * vdst = vsrc + offset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int eidx0 = this->_E_IT[2*i+0],
eidx1 = this->_E_IT[2*i+1];
vdst->AddWithWeight( vsrc[eidx0], 0.5f );
vdst->AddWithWeight( vsrc[eidx1], 0.5f );
vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f );
vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f );
}
}
//
// Vertex-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeBilinearVertexPoints( int offset, int tableOffset, int start, int end, U *vsrc ) const {
U * vdst = vsrc + offset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int p = this->_V_ITa[i]; // index of the parent vertex
vdst->AddWithWeight( vsrc[p], 1.0f );
vdst->AddVaryingWithWeight( vsrc[p], 1.0f );
}
}
//
// Face-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeCatmarkFacePoints( int vertexOffset, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int h = this->_F_ITa[2*i ],
n = this->_F_ITa[2*i+1];
float weight = 1.0f/n;
for (int j=0; j<n; ++j) {
vdst->AddWithWeight( vsrc[ this->_F_IT[h+j] ], weight );
vdst->AddVaryingWithWeight( vsrc[ this->_F_IT[h+j] ], weight );
}
}
}
//
// Quad face-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeCatmarkQuadFacePoints( int vertexOffset, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start; i<end; ++i, ++vdst ) {
int fidx0 = _F_IT[tableOffset + 4 * i + 0];
int fidx1 = _F_IT[tableOffset + 4 * i + 1];
int fidx2 = _F_IT[tableOffset + 4 * i + 2];
int fidx3 = _F_IT[tableOffset + 4 * i + 3];
vdst->Clear();
vdst->AddWithWeight(vsrc[fidx0], 0.25f);
vdst->AddVaryingWithWeight(vsrc[fidx0], 0.25f);
vdst->AddWithWeight(vsrc[fidx1], 0.25f);
vdst->AddVaryingWithWeight(vsrc[fidx1], 0.25f);
vdst->AddWithWeight(vsrc[fidx2], 0.25f);
vdst->AddVaryingWithWeight(vsrc[fidx2], 0.25f);
vdst->AddWithWeight(vsrc[fidx3], 0.25f);
vdst->AddVaryingWithWeight(vsrc[fidx3], 0.25f);
}
}
//
// Tri/quad face-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeCatmarkTriQuadFacePoints( int vertexOffset, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start; i<end; ++i, ++vdst ) {
int fidx0 = _F_IT[tableOffset + 4 * i + 0];
int fidx1 = _F_IT[tableOffset + 4 * i + 1];
int fidx2 = _F_IT[tableOffset + 4 * i + 2];
int fidx3 = _F_IT[tableOffset + 4 * i + 3];
bool triangle = (fidx3 == fidx2);
float weight = triangle ? 1.0f / 3.0f : 1.0f / 4.0f;
vdst->Clear();
vdst->AddWithWeight(vsrc[fidx0], weight);
vdst->AddVaryingWithWeight(vsrc[fidx0], weight);
vdst->AddWithWeight(vsrc[fidx1], weight);
vdst->AddVaryingWithWeight(vsrc[fidx1], weight);
vdst->AddWithWeight(vsrc[fidx2], weight);
vdst->AddVaryingWithWeight(vsrc[fidx2], weight);
if (!triangle) {
vdst->AddWithWeight(vsrc[fidx3], weight);
vdst->AddVaryingWithWeight(vsrc[fidx3], weight);
}
}
}
//
// Edge-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeCatmarkEdgePoints( int vertexOffset, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int eidx0 = this->_E_IT[4*i+0],
eidx1 = this->_E_IT[4*i+1],
eidx2 = this->_E_IT[4*i+2],
eidx3 = this->_E_IT[4*i+3];
float vertWeight = this->_E_W[i*2+0];
// Fully sharp edge : vertWeight = 0.5f
vdst->AddWithWeight( vsrc[eidx0], vertWeight );
vdst->AddWithWeight( vsrc[eidx1], vertWeight );
if (eidx2!=-1) {
// Apply fractional sharpness
float faceWeight = this->_E_W[i*2+1];
vdst->AddWithWeight( vsrc[eidx2], faceWeight );
vdst->AddWithWeight( vsrc[eidx3], faceWeight );
}
vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f );
vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f );
}
}
//
// Restricted edge-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeCatmarkRestrictedEdgePoints( int vertexOffset, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int eidx0 = this->_E_IT[4*i+0],
eidx1 = this->_E_IT[4*i+1],
eidx2 = this->_E_IT[4*i+2],
eidx3 = this->_E_IT[4*i+3];
vdst->AddWithWeight( vsrc[eidx0], 0.25f );
vdst->AddWithWeight( vsrc[eidx1], 0.25f );
vdst->AddWithWeight( vsrc[eidx2], 0.25f );
vdst->AddWithWeight( vsrc[eidx3], 0.25f );
vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f );
vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f );
}
}
//
// Vertex-vertices compute Kernels "A" and "B" - completely re-entrant
//
// multi-pass kernel handling k_Crease and k_Corner rules
template <class U> void
FarSubdivisionTables::computeCatmarkVertexPointsA( int vertexOffset, bool pass, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
if (not pass)
vdst->Clear();
int n=this->_V_ITa[5*i+1], // number of vertices in the _V_IT array (valence)
p=this->_V_ITa[5*i+2], // index of the parent vertex
eidx0=this->_V_ITa[5*i+3], // index of the first crease rule edge
eidx1=this->_V_ITa[5*i+4]; // index of the second crease rule edge
float weight = pass ? this->_V_W[i] : 1.0f - this->_V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f and weight<1.0f and n>0)
weight=1.0f-weight;
// In the case of a k_Corner / k_Crease combination, the edge indices
// won't be null, so we use a -1 valence to detect that particular case
if (eidx0==-1 or (pass==false and (n==-1)) ) {
// k_Corner case
vdst->AddWithWeight( vsrc[p], weight );
} else {
// k_Crease case
vdst->AddWithWeight( vsrc[p], weight * 0.75f );
vdst->AddWithWeight( vsrc[eidx0], weight * 0.125f );
vdst->AddWithWeight( vsrc[eidx1], weight * 0.125f );
}
vdst->AddVaryingWithWeight( vsrc[p], 1.0f );
}
}
// multi-pass kernel handling k_Dart and k_Smooth rules
template <class U> void
FarSubdivisionTables::computeCatmarkVertexPointsB( int vertexOffset, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int h = this->_V_ITa[5*i ], // offset of the vertices in the _V_IT array
n = this->_V_ITa[5*i+1], // number of vertices in the _V_IT array (valence)
p = this->_V_ITa[5*i+2]; // index of the parent vertex
float weight = this->_V_W[i],
wp = 1.0f/(n*n),
wv = (n-2.0f)*n*wp;
vdst->AddWithWeight( vsrc[p], weight * wv );
for (int j=0; j<n; ++j) {
vdst->AddWithWeight( vsrc[this->_V_IT[h+j*2 ]], weight * wp );
vdst->AddWithWeight( vsrc[this->_V_IT[h+j*2+1]], weight * wp );
}
vdst->AddVaryingWithWeight( vsrc[p], 1.0f );
}
}
//
// Edge-vertices compute Kernel - completely re-entrant
//
template <class U> void
FarSubdivisionTables::computeLoopEdgePoints( int vertexOffset, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int eidx0 = this->_E_IT[4*i+0],
eidx1 = this->_E_IT[4*i+1],
eidx2 = this->_E_IT[4*i+2],
eidx3 = this->_E_IT[4*i+3];
float endPtWeight = this->_E_W[i*2+0];
// Fully sharp edge : endPtWeight = 0.5f
vdst->AddWithWeight( vsrc[eidx0], endPtWeight );
vdst->AddWithWeight( vsrc[eidx1], endPtWeight );
if (eidx2!=-1) {
// Apply fractional sharpness
float oppPtWeight = this->_E_W[i*2+1];
vdst->AddWithWeight( vsrc[eidx2], oppPtWeight );
vdst->AddWithWeight( vsrc[eidx3], oppPtWeight );
}
vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f );
vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f );
}
}
//
// Vertex-vertices compute Kernels "A" and "B" - completely re-entrant
//
// multi-pass kernel handling k_Crease and k_Corner rules
template <class U> void
FarSubdivisionTables::computeLoopVertexPointsA( int vertexOffset, bool pass, int tableOffset, int start, int end, U * vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
if (not pass)
vdst->Clear();
int n=this->_V_ITa[5*i+1], // number of vertices in the _V_IT array (valence)
p=this->_V_ITa[5*i+2], // index of the parent vertex
eidx0=this->_V_ITa[5*i+3], // index of the first crease rule edge
eidx1=this->_V_ITa[5*i+4]; // index of the second crease rule edge
float weight = pass ? this->_V_W[i] : 1.0f - this->_V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f and weight<1.0f and n>0)
weight=1.0f-weight;
// In the case of a k_Corner / k_Crease combination, the edge indices
// won't be null, so we use a -1 valence to detect that particular case
if (eidx0==-1 or (pass==false and (n==-1)) ) {
// k_Corner case
vdst->AddWithWeight( vsrc[p], weight );
} else {
// k_Crease case
vdst->AddWithWeight( vsrc[p], weight * 0.75f );
vdst->AddWithWeight( vsrc[eidx0], weight * 0.125f );
vdst->AddWithWeight( vsrc[eidx1], weight * 0.125f );
}
vdst->AddVaryingWithWeight( vsrc[p], 1.0f );
}
}
// multi-pass kernel handling k_Dart and k_Smooth rules
template <class U> void
FarSubdivisionTables::computeLoopVertexPointsB( int vertexOffset, int tableOffset, int start, int end, U *vsrc ) const {
U * vdst = vsrc + vertexOffset + start;
for (int i=start+tableOffset; i<end+tableOffset; ++i, ++vdst ) {
vdst->Clear();
int h = this->_V_ITa[5*i ], // offset of the vertices in the _V_IT array
n = this->_V_ITa[5*i+1], // number of vertices in the _V_IT array (valence)
p = this->_V_ITa[5*i+2]; // index of the parent vertex
float weight = this->_V_W[i],
wp = 1.0f/n,
beta = 0.25f * cosf((float)M_PI * 2.0f * wp) + 0.375f;
beta = beta*beta;
beta = (0.625f-beta)*wp;
vdst->AddWithWeight( vsrc[p], weight * (1.0f-(beta*n)));
for (int j=0; j<n; ++j)
vdst->AddWithWeight( vsrc[this->_V_IT[h+j]], weight * beta );
vdst->AddVaryingWithWeight( vsrc[p], 1.0f );
}
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_SUBDIVISION_TABLES_H */