OpenSubdiv/opensubdiv/osd/hlslComputeKernel.hlsl
2012-12-13 10:22:30 -08:00

429 lines
12 KiB
HLSL

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
interface IComputeKernel {
void runKernel( uint3 ID );
};
IComputeKernel kernel;
cbuffer KernelCB : register( b0 ) {
int indexOffset; // index offset for the level
int indexStart; // start index for given batch
int indexEnd; // end index for given batch
bool vertexPass;
int F_IT_ofs;
int F_ITa_ofs;
int E_IT_ofs;
int V_IT_ofs;
int V_ITa_ofs;
int E_W_ofs;
int V_W_ofs;
int editIndices_ofs;
int editValues_ofs;
int editPrimVarOffset;
int editPrimVarWidth;
int editNumVertices;
};
/*
+-----+---------------------------------+-----
n-1 | Level n |<batch range>| | n+1
+-----+---------------------------------+-----
^ ^ ^
indexOffset | |
indexStart indexEnd
*/
RWBuffer<float> vertexBuffer : register( u0 );
RWBuffer<float> varyingBuffer : register( u1 );
Buffer<int> _F_IT : register( t2 );
Buffer<int> _F_ITa : register( t3 );
Buffer<int> _E_IT : register( t4 );
Buffer<int> _V_IT : register( t5 );
Buffer<int> _V_ITa : register( t6 );
Buffer<float> _E_W : register( t7 );
Buffer<float> _V_W : register( t8 );
Buffer<int> _editIndices : register( t9 );
Buffer<float> _editValues : register( t10 );
//--------------------------------------------------------------------------------
struct Vertex
{
#if NUM_VERTEX_ELEMENTS > 0
float vertexData[NUM_VERTEX_ELEMENTS];
#endif
#if NUM_VARYING_ELEMENTS > 0
float varyingData[NUM_VARYING_ELEMENTS];
#endif
};
void clear(out Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = 0;
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] = 0;
}
#endif
}
Vertex readVertex(int index)
{
Vertex v;
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = vertexBuffer[index*NUM_VERTEX_ELEMENTS+i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
v.varyingData[i] = varyingBuffer[index*NUM_VARYING_ELEMENTS+i];
}
#endif
return v;
}
void writeVertex(int index, Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
vertexBuffer[index*NUM_VERTEX_ELEMENTS+i] = v.vertexData[i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
varyingBuffer[index*NUM_VARYING_ELEMENTS+i] = v.varyingData[i];
}
#endif
}
void addWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] += weight * src.vertexData[i];
}
#endif
}
void addVaryingWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VARYING_ELEMENTS > 0
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
v.varyingData[i] += weight * src.varyingData[i];
}
#endif
}
//--------------------------------------------------------------------------------
// Face-vertices compute Kernel
class CatmarkComputeFace : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int h = _F_ITa[F_ITa_ofs+2*i];
int n = _F_ITa[F_ITa_ofs+2*i+1];
float weight = 1.0/n;
Vertex dst;
clear(dst);
for(int j=0; j<n; ++j){
int index = _F_IT[F_IT_ofs+h+j];
addWithWeight(dst, readVertex(index), weight);
addVaryingWithWeight(dst, readVertex(index), weight);
}
writeVertex(i + indexOffset, dst);
}
};
// Edge-vertices compute Kernel
class CatmarkComputeEdge : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
Vertex dst;
clear(dst);
int eidx0 = _E_IT[E_IT_ofs+4*i+0];
int eidx1 = _E_IT[E_IT_ofs+4*i+1];
int eidx2 = _E_IT[E_IT_ofs+4*i+2];
int eidx3 = _E_IT[E_IT_ofs+4*i+3];
int4 eidx = int4(eidx0, eidx1, eidx2, eidx3);
float vertWeight = _E_W[E_W_ofs+i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
addWithWeight(dst, readVertex(eidx.x), vertWeight);
addWithWeight(dst, readVertex(eidx.y), vertWeight);
if(eidx.z != -1){
float faceWeight = _E_W[E_W_ofs+i*2+1];
addWithWeight(dst, readVertex(eidx.z), faceWeight);
addWithWeight(dst, readVertex(eidx.w), faceWeight);
}
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(i + indexOffset, dst);
}
};
// Edge-vertices compute Kernel (bilinear scheme)
class BilinearComputeEdge : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
Vertex dst;
clear(dst);
int2 eidx = int2(_E_IT[E_IT_ofs+2*i+0],
_E_IT[E_IT_ofs+2*i+1]);
addWithWeight(dst, readVertex(eidx.x), 0.5f);
addWithWeight(dst, readVertex(eidx.y), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(i + indexOffset, dst);
}
};
// Vertex-vertices compute Kernel (bilinear scheme)
class BilinearComputeVertex : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
Vertex dst;
clear(dst);
int p = _V_ITa[V_ITa_ofs+i];
addWithWeight(dst, readVertex(p), 1.0f);
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(i + indexOffset, dst);
}
};
// Vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
class CatmarkComputeVertexA : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int n = _V_ITa[V_ITa_ofs+5*i+1];
int p = _V_ITa[V_ITa_ofs+5*i+2];
int eidx0 = _V_ITa[V_ITa_ofs+5*i+3];
int eidx1 = _V_ITa[V_ITa_ofs+5*i+4];
float weight = vertexPass
? _V_W[V_W_ofs+i]
: 1.0 - _V_W[V_W_ofs+i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0 && weight<1.0 && n > 0)
weight=1.0-weight;
Vertex dst;
if(! vertexPass)
clear(dst);
else
dst = readVertex(i + indexOffset);
if (eidx0==-1 || (vertexPass==false && (n==-1)) ) {
addWithWeight(dst, readVertex(p), weight);
} else {
addWithWeight(dst, readVertex(p), weight * 0.75f);
addWithWeight(dst, readVertex(eidx0), weight * 0.125f);
addWithWeight(dst, readVertex(eidx1), weight * 0.125f);
}
if(! vertexPass)
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(i + indexOffset, dst);
}
};
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
class CatmarkComputeVertexB : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int h = _V_ITa[V_ITa_ofs+5*i];
int n = _V_ITa[V_ITa_ofs+5*i+1];
int p = _V_ITa[V_ITa_ofs+5*i+2];
float weight = _V_W[V_W_ofs+i];
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * wv);
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(_V_IT[V_IT_ofs+h+j*2]), weight * wp);
addWithWeight(dst, readVertex(_V_IT[V_IT_ofs+h+j*2+1]), weight * wp);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(i + indexOffset, dst);
}
};
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
class LoopComputeVertexB : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
float PI = 3.14159265358979323846264;
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int h = _V_ITa[V_ITa_ofs+5*i];
int n = _V_ITa[V_ITa_ofs+5*i+1];
int p = _V_ITa[V_ITa_ofs+5*i+2];
float weight = _V_W[V_W_ofs+i];
float wp = 1.0/n;
float beta = 0.25 * cos(PI*2.0f*wp)+0.375f;
beta = beta * beta;
beta = (0.625f-beta)*wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * (1.0-(beta*n)));
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(_V_IT[V_IT_ofs+h+j]), weight * beta);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(i + indexOffset, dst);
}
};
class EditAdd : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x);
if (i >= editNumVertices) return;
int v = _editIndices[editIndices_ofs+i];
Vertex dst = readVertex(v);
// seemingly we can't iterate dynamically over vertexData[n]
// due to mysterious glsl runtime limitation...?
for (int j = 0; j < NUM_VERTEX_ELEMENTS; ++j) {
float editValue = _editValues[editValues_ofs+min(j, editPrimVarWidth)];
editValue *= float(j >= editPrimVarOffset);
editValue *= float(j < (editPrimVarWidth + editPrimVarOffset));
dst.vertexData[j] += editValue;
}
writeVertex(v, dst);
}
};
CatmarkComputeFace catmarkComputeFace;
CatmarkComputeEdge catmarkComputeEdge;
BilinearComputeEdge bilinearComputeEdge;
BilinearComputeVertex bilinearComputeVertex;
CatmarkComputeVertexA catmarkComputeVertexA;
CatmarkComputeVertexB catmarkComputeVertexB;
LoopComputeVertexB loopComputeVertexB;
EditAdd editAdd;
[numthreads(WORK_GROUP_SIZE, 1, 1)]
void cs_main( uint3 ID : SV_DispatchThreadID )
{
// call kernel
kernel.runKernel(ID);
}