OpenSubdiv/opensubdiv/far/loopSubdivisionTablesFactory.h
Andrew Wong e04c95988c far: fix conversion warnings in Far*SubdivisionTablesFactory
warning C4242: 'argument' : conversion from 'int' to 'unsigned char', possible loss of data
2013-02-09 23:35:02 -05:00

285 lines
12 KiB
C++

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#ifndef FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H
#define FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H
#include "../version.h"
#include "../far/loopSubdivisionTables.h"
#include "../far/meshFactory.h"
#include "../far/subdivisionTablesFactory.h"
#include <cassert>
#include <vector>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
template <class T, class U> class FarMeshFactory;
/// \brief A specialized factory for FarLoopSubdivisionTables
///
/// Separating the factory allows us to isolate Far data structures from Hbr dependencies.
///
template <class T, class U> class FarLoopSubdivisionTablesFactory {
protected:
template <class X, class Y> friend class FarMeshFactory;
/// Creates a FarLoopSubdivisiontables instance.
static FarLoopSubdivisionTables<U> * Create( FarMeshFactory<T,U> * meshFactory, FarMesh<U> * farMesh );
};
// This factory walks the Hbr vertices and accumulates the weights and adjacency
// (valance) information specific to the loop subdivision scheme. The results
// are stored in a FarLoopSubdivisionTable<U>.
template <class T, class U> FarLoopSubdivisionTables<U> *
FarLoopSubdivisionTablesFactory<T,U>::Create( FarMeshFactory<T,U> * meshFactory, FarMesh<U> * farMesh ) {
assert( meshFactory and farMesh );
int maxlevel = meshFactory->GetMaxLevel();
std::vector<int> & remap = meshFactory->getRemappingTable();
FarSubdivisionTablesFactory<T,U> tablesFactory( meshFactory->GetHbrMesh(), maxlevel, remap );
FarLoopSubdivisionTables<U> * result = new FarLoopSubdivisionTables<U>(farMesh, maxlevel);
// Allocate memory for the indexing tables
result->_E_IT.Resize(tablesFactory.GetNumEdgeVerticesTotal(maxlevel)*4);
result->_E_W.Resize(tablesFactory.GetNumEdgeVerticesTotal(maxlevel)*2);
result->_V_ITa.Resize(tablesFactory.GetNumVertexVerticesTotal(maxlevel)*5);
result->_V_IT.Resize(tablesFactory.GetVertVertsValenceSum());
result->_V_W.Resize(tablesFactory.GetNumVertexVerticesTotal(maxlevel));
for (int level=1; level<=maxlevel; ++level) {
// pointer to the first vertex corresponding to this level
result->_vertsOffsets[level] = tablesFactory._vertVertIdx[level-1] +
(int)tablesFactory._vertVertsList[level-1].size();
typename FarSubdivisionTables<U>::VertexKernelBatch * batch = & (result->_batches[level-1]);
// Edge vertices
int * E_IT = result->_E_IT[level-1];
float * E_W = result->_E_W[level-1];
batch->kernelE = (int)tablesFactory._edgeVertsList[level].size();
for (int i=0; i < batch->kernelE; ++i) {
HbrVertex<T> * v = tablesFactory._edgeVertsList[level][i];
assert(v);
HbrHalfedge<T> * e = v->GetParentEdge();
assert(e);
float esharp = e->GetSharpness(),
endPtWeight = 0.5f,
oppPtWeight = 0.5f;
E_IT[4*i+0]= remap[e->GetOrgVertex()->GetID()];
E_IT[4*i+1]= remap[e->GetDestVertex()->GetID()];
if (!e->IsBoundary() && esharp <= 1.0f) {
endPtWeight = 0.375f + esharp * (0.5f - 0.375f);
oppPtWeight = 0.125f * (1 - esharp);
HbrHalfedge<T>* ee = e->GetNext();
E_IT[4*i+2]= remap[ee->GetDestVertex()->GetID()];
ee = e->GetOpposite()->GetNext();
E_IT[4*i+3]= remap[ee->GetDestVertex()->GetID()];
} else {
E_IT[4*i+2]= -1;
E_IT[4*i+3]= -1;
}
E_W[2*i+0] = endPtWeight;
E_W[2*i+1] = oppPtWeight;
}
result->_E_IT.SetMarker(level, &E_IT[4*batch->kernelE]);
result->_E_W.SetMarker(level, &E_W[2*batch->kernelE]);
// Vertex vertices
batch->InitVertexKernels( (int)tablesFactory._vertVertsList[level].size(), 0 );
int offset = 0;
int * V_ITa = result->_V_ITa[level-1];
unsigned int * V_IT = result->_V_IT[level-1];
float * V_W = result->_V_W[level-1];
int nverts = (int)tablesFactory._vertVertsList[level].size();
for (int i=0; i < nverts; ++i) {
HbrVertex<T> * v = tablesFactory._vertVertsList[level][i],
* pv = v->GetParentVertex();
assert(v and pv);
// Look at HbrCatmarkSubdivision<T>::Subdivide for more details about
// the multi-pass interpolation
unsigned char masks[2];
int npasses;
float weights[2];
masks[0] = pv->GetMask(false);
masks[1] = pv->GetMask(true);
// If the masks are identical, only a single pass is necessary. If the
// vertex is transitioning to another rule, two passes are necessary,
// except when transitioning from k_Dart to k_Smooth : the same
// compute kernel is applied twice. Combining this special case allows
// to batch the compute kernels into fewer calls.
if (masks[0] != masks[1] and (
not (masks[0]==HbrVertex<T>::k_Smooth and
masks[1]==HbrVertex<T>::k_Dart))) {
weights[1] = pv->GetFractionalMask();
weights[0] = 1.0f - weights[1];
npasses = 2;
} else {
weights[0] = 1.0f;
weights[1] = 0.0f;
npasses = 1;
}
int rank = FarSubdivisionTablesFactory<T,U>::GetMaskRanking(masks[0], masks[1]);
V_ITa[5*i+0] = offset;
V_ITa[5*i+1] = 0;
V_ITa[5*i+2] = remap[ pv->GetID() ];
V_ITa[5*i+3] = -1;
V_ITa[5*i+4] = -1;
for (int p=0; p<npasses; ++p)
switch (masks[p]) {
case HbrVertex<T>::k_Smooth :
case HbrVertex<T>::k_Dart : {
HbrHalfedge<T> *e = pv->GetIncidentEdge(),
*start = e;
while (e) {
V_ITa[5*i+1]++;
V_IT[offset++] = remap[ e->GetDestVertex()->GetID() ];
e = e->GetPrev()->GetOpposite();
if (e==start) break;
}
break;
}
case HbrVertex<T>::k_Crease : {
class GatherCreaseEdgesOperator : public HbrHalfedgeOperator<T> {
public:
HbrVertex<T> * vertex; int eidx[2]; int count; bool next;
GatherCreaseEdgesOperator(HbrVertex<T> * v, bool n) : vertex(v), count(0), next(n) { eidx[0]=-1; eidx[1]=-1; }
virtual void operator() (HbrHalfedge<T> &e) {
if (e.IsSharp(next) and count < 2) {
HbrVertex<T> * a = e.GetDestVertex();
if (a==vertex)
a = e.GetOrgVertex();
eidx[count++]=a->GetID();
}
}
};
GatherCreaseEdgesOperator op( pv, p==1 );
pv->ApplyOperatorSurroundingEdges( op );
assert(V_ITa[5*i+3]==-1 and V_ITa[5*i+4]==-1);
assert(op.eidx[0]!=-1 and op.eidx[1]!=-1);
V_ITa[5*i+3] = remap[op.eidx[0]];
V_ITa[5*i+4] = remap[op.eidx[1]];
break;
}
case HbrVertex<T>::k_Corner :
// in the case of a k_Crease / k_Corner pass combination, we
// need to set the valence to -1 to tell the "B" Kernel to
// switch to k_Corner rule (as edge indices won't be -1)
if (V_ITa[5*i+1]==0)
V_ITa[5*i+1] = -1;
default : break;
}
if (rank>7)
// the k_Corner and k_Crease single-pass cases apply a weight of 1.0
// but this value is inverted in the kernel
V_W[i] = 0.0;
else
V_W[i] = weights[0];
batch->AddVertex( i, rank );
}
result->_V_ITa.SetMarker(level, &V_ITa[5*nverts]);
result->_V_IT.SetMarker(level, &V_IT[offset]);
result->_V_W.SetMarker(level, &V_W[nverts]);
if (nverts>0) {
batch->kernelB.second++;
batch->kernelA1.second++;
batch->kernelA2.second++;
}
}
return result;
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H */