OpenSubdiv/examples/glFVarViewer/shader.glsl
David G Yu 5d33f7c28e Improved glFVarViewer shaders for Loop
Removed the use of the LOOP preprocessor symbol from
the glFVarViewer shaders code. The shader code is now
configured according to the types of the resulting patches
without depending on the subdivision scheme of the mesh
topology.

This allows the implementation of face-varying interpolation
to be improved and simplifies both the shader code and
application code.

Also, fixed a couple of incorrect buffer/texture bindings
that were raising GL errors.
2019-06-17 17:59:15 -07:00

399 lines
10 KiB
GLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#undef OSD_USER_VARYING_DECLARE
#define OSD_USER_VARYING_DECLARE \
vec3 color;
#undef OSD_USER_VARYING_ATTRIBUTE_DECLARE
#define OSD_USER_VARYING_ATTRIBUTE_DECLARE \
layout(location = 1) in vec3 color;
#undef OSD_USER_VARYING_PER_VERTEX
#define OSD_USER_VARYING_PER_VERTEX() \
outpt.color = color
#undef OSD_USER_VARYING_PER_CONTROL_POINT
#define OSD_USER_VARYING_PER_CONTROL_POINT(ID_OUT, ID_IN) \
outpt[ID_OUT].color = inpt[ID_IN].color
#undef OSD_USER_VARYING_PER_EVAL_POINT
#define OSD_USER_VARYING_PER_EVAL_POINT(UV, a, b, c, d) \
outpt.color = \
mix(mix(inpt[a].color, inpt[b].color, UV.x), \
mix(inpt[c].color, inpt[d].color, UV.x), UV.y)
//--------------------------------------------------------------
// Uniform Blocks
//--------------------------------------------------------------
layout(std140) uniform Transform {
mat4 ModelViewMatrix;
mat4 ProjectionMatrix;
mat4 ModelViewProjectionMatrix;
mat4 ModelViewInverseMatrix;
mat4 UvViewMatrix;
};
layout(std140) uniform Tessellation {
float TessLevel;
};
uniform int GregoryQuadOffsetBase;
uniform int PrimitiveIdBase;
//--------------------------------------------------------------
// Osd external functions
//--------------------------------------------------------------
mat4 OsdModelViewMatrix()
{
return ModelViewMatrix;
}
mat4 OsdProjectionMatrix()
{
return ProjectionMatrix;
}
mat4 OsdModelViewProjectionMatrix()
{
return ModelViewProjectionMatrix;
}
float OsdTessLevel()
{
return TessLevel;
}
int OsdGregoryQuadOffsetBase()
{
return GregoryQuadOffsetBase;
}
int OsdPrimitiveIdBase()
{
return PrimitiveIdBase;
}
int OsdBaseVertex()
{
return 0;
}
//--------------------------------------------------------------
// Vertex Shader
//--------------------------------------------------------------
#ifdef VERTEX_SHADER
layout (location=0) in vec4 position;
OSD_USER_VARYING_ATTRIBUTE_DECLARE
out block {
OutputVertex v;
OSD_USER_VARYING_DECLARE
} outpt;
void main()
{
outpt.v.position = ModelViewMatrix * position;
// We don't actually want to write all these, but some
// compilers complain during about failing to fully write
// outpt.v if they are excluded.
outpt.v.normal = vec3(0);
outpt.v.tangent = vec3(0);
outpt.v.bitangent = vec3(0);
outpt.v.patchCoord = vec4(0);
outpt.v.tessCoord = vec2(0);
#if defined OSD_COMPUTE_NORMAL_DERIVATIVES
outpt.v.Nu = vec3(0);
outpt.v.Nv = vec3(0);
#endif
// --
OSD_USER_VARYING_PER_VERTEX();
}
#endif
//--------------------------------------------------------------
// Geometry Shader
//--------------------------------------------------------------
#ifdef GEOMETRY_SHADER
#ifdef PRIM_QUAD
layout(lines_adjacency) in;
#define EDGE_VERTS 4
#endif // PRIM_QUAD
#ifdef PRIM_TRI
layout(triangles) in;
#define EDGE_VERTS 3
#endif // PRIM_TRI
layout(triangle_strip, max_vertices = EDGE_VERTS) out;
in block {
OutputVertex v;
OSD_USER_VARYING_DECLARE
} inpt[EDGE_VERTS];
out block {
OutputVertex v;
noperspective out vec4 edgeDistance;
OSD_USER_VARYING_DECLARE
} outpt;
uniform isamplerBuffer OsdFVarParamBuffer;
layout(std140) uniform OsdFVarArrayData {
OsdPatchArray fvarPatchArray[2];
};
vec2
interpolateFaceVarying(vec2 uv, int fvarOffset)
{
int patchIndex = OsdGetPatchIndex(gl_PrimitiveID);
OsdPatchArray array = fvarPatchArray[0];
ivec3 fvarPatchParam = texelFetch(OsdFVarParamBuffer, patchIndex).xyz;
OsdPatchParam param = OsdPatchParamInit(fvarPatchParam.x,
fvarPatchParam.y,
fvarPatchParam.z);
int patchType = OsdPatchParamIsRegular(param) ? array.regDesc : array.desc;
float wP[20], wDu[20], wDv[20], wDuu[20], wDuv[20], wDvv[20];
int numPoints = OsdEvaluatePatchBasisNormalized(patchType, param,
uv.s, uv.t, wP, wDu, wDv, wDuu, wDuv, wDvv);
int primOffset = patchIndex * array.stride;
vec2 result = vec2(0);
for (int i=0; i<numPoints; ++i) {
int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset;
vec2 cv = vec2(texelFetch(OsdFVarDataBuffer, index).s,
texelFetch(OsdFVarDataBuffer, index + 1).s);
result += wP[i] * cv;
}
return result;
}
void emit(int index, vec3 normal)
{
outpt.v.position = inpt[index].v.position;
#ifdef SMOOTH_NORMALS
outpt.v.normal = inpt[index].v.normal;
#else
outpt.v.normal = normal;
#endif
#ifdef SHADING_FACEVARYING_UNIFORM_SUBDIVISION
// interpolate fvar data at refined tri or quad vertex locations
#ifdef PRIM_TRI
vec2 trist[3] = vec2[](vec2(0,0), vec2(1,0), vec2(0,1));
vec2 st = trist[index];
#endif
#ifdef PRIM_QUAD
vec2 quadst[4] = vec2[](vec2(0,0), vec2(1,0), vec2(1,1), vec2(0,1));
vec2 st = quadst[index];
#endif
#else
// interpolate fvar data at tessellated vertex locations
vec2 st = inpt[index].v.tessCoord;
#endif
vec2 uv = interpolateFaceVarying(st, /*fvarOffset*/0);
outpt.color = vec3(uv.s, uv.t, 0);
#ifdef GEOMETRY_UV_VIEW
uv = 2 * uv - vec2(1);
gl_Position = UvViewMatrix * vec4(uv.s, uv.y, 0, 1);
#else
gl_Position = ProjectionMatrix * inpt[index].v.position;
#endif
EmitVertex();
}
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
const float VIEWPORT_SCALE = 512.0;
float edgeDistance(vec4 p, vec4 p0, vec4 p1)
{
return VIEWPORT_SCALE *
abs((p.x - p0.x) * (p1.y - p0.y) -
(p.y - p0.y) * (p1.x - p0.x)) / length(p1.xy - p0.xy);
}
void emit(int index, vec3 normal, vec4 edgeVerts[EDGE_VERTS])
{
outpt.edgeDistance[0] =
edgeDistance(edgeVerts[index], edgeVerts[0], edgeVerts[1]);
outpt.edgeDistance[1] =
edgeDistance(edgeVerts[index], edgeVerts[1], edgeVerts[2]);
#ifdef PRIM_TRI
outpt.edgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[0]);
#endif
#ifdef PRIM_QUAD
outpt.edgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[3]);
outpt.edgeDistance[3] =
edgeDistance(edgeVerts[index], edgeVerts[3], edgeVerts[0]);
#endif
emit(index, normal);
}
#endif
void main()
{
gl_PrimitiveID = gl_PrimitiveIDIn;
#ifdef PRIM_QUAD
vec3 A = (inpt[0].v.position - inpt[1].v.position).xyz;
vec3 B = (inpt[3].v.position - inpt[1].v.position).xyz;
vec3 C = (inpt[2].v.position - inpt[1].v.position).xyz;
vec3 n0 = normalize(cross(B, A));
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * inpt[0].v.position;
edgeVerts[1] = ProjectionMatrix * inpt[1].v.position;
edgeVerts[2] = ProjectionMatrix * inpt[2].v.position;
edgeVerts[3] = ProjectionMatrix * inpt[3].v.position;
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
edgeVerts[3].xy /= edgeVerts[3].w;
emit(0, n0, edgeVerts);
emit(1, n0, edgeVerts);
emit(3, n0, edgeVerts);
emit(2, n0, edgeVerts);
#else
emit(0, n0);
emit(1, n0);
emit(3, n0);
emit(2, n0);
#endif
#endif // PRIM_QUAD
#ifdef PRIM_TRI
vec3 A = (inpt[1].v.position - inpt[0].v.position).xyz;
vec3 B = (inpt[2].v.position - inpt[0].v.position).xyz;
vec3 n0 = normalize(cross(B, A));
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * inpt[0].v.position;
edgeVerts[1] = ProjectionMatrix * inpt[1].v.position;
edgeVerts[2] = ProjectionMatrix * inpt[2].v.position;
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
emit(0, n0, edgeVerts);
emit(1, n0, edgeVerts);
emit(2, n0, edgeVerts);
#else
emit(0, n0);
emit(1, n0);
emit(2, n0);
#endif
#endif // PRIM_TRI
EndPrimitive();
}
#endif
//--------------------------------------------------------------
// Fragment Shader
//--------------------------------------------------------------
#ifdef FRAGMENT_SHADER
in block {
OutputVertex v;
noperspective in vec4 edgeDistance;
OSD_USER_VARYING_DECLARE
} inpt;
out vec4 outColor;
vec4
edgeColor(vec4 Cfill)
{
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
#ifdef PRIM_TRI
float d =
min(inpt.edgeDistance[0], min(inpt.edgeDistance[1], inpt.edgeDistance[2]));
#endif
#ifdef PRIM_QUAD
float d =
min(min(inpt.edgeDistance[0], inpt.edgeDistance[1]),
min(inpt.edgeDistance[2], inpt.edgeDistance[3]));
#endif
vec4 Cedge = vec4(1.0, 1.0, 0.0, 1.0);
float p = exp2(-2 * d * d);
#if defined(GEOMETRY_OUT_WIRE)
if (p < 0.25) discard;
#endif
Cfill.rgb = mix(Cfill.rgb, Cedge.rgb, p);
#endif
return Cfill;
}
#if defined(PRIM_QUAD) || defined(PRIM_TRI)
void
main()
{
#ifdef GEOMETRY_UV_VIEW
outColor = edgeColor(vec4(0.9));
return;
#else
vec3 N = (gl_FrontFacing ? inpt.v.normal : -inpt.v.normal);
// generating a checkerboard pattern
int checker = int(floor(20*inpt.color.r)+floor(20*inpt.color.g))&1;
vec4 color = vec4(inpt.color.rg*checker, 1-checker, 1);
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
color = edgeColor(color);
#endif
outColor = color;
#endif
}
#endif
#endif