OpenSubdiv/opensubdiv/far/patchTable.cpp
David G Yu fc12816d97 Updated PatchTable for Varying and Face-Varying
This change updates Far::PatchTable to include support for
evaluating varying and face-varying data on patches.

This adds to existing API and follows the existing patterns
used for vertex patches.

This includes data and methods to evaluate varying and
face-varying basis functions as well as methods to compute
local point values for varying and face-varying primvar data.

This is the foundation for updating Far::PatchTableFactory
to generate bicubic patches for face-varying channels.
2016-07-20 10:44:45 -07:00

544 lines
18 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/patchTable.h"
#include "../far/patchBasis.h"
#include <cstring>
#include <cstdio>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
PatchTable::PatchTable(int maxvalence) :
_maxValence(maxvalence),
_localPointStencils(NULL),
_localPointVaryingStencils(NULL) {
}
// Copy constructor
// XXXX manuelk we need to eliminate this constructor (C++11 smart pointers)
PatchTable::PatchTable(PatchTable const & src) :
_maxValence(src._maxValence),
_numPtexFaces(src._numPtexFaces),
_patchArrays(src._patchArrays),
_patchVerts(src._patchVerts),
_paramTable(src._paramTable),
_quadOffsetsTable(src._quadOffsetsTable),
_vertexValenceTable(src._vertexValenceTable),
_localPointStencils(NULL),
_localPointVaryingStencils(NULL),
_fvarChannels(src._fvarChannels),
_sharpnessIndices(src._sharpnessIndices),
_sharpnessValues(src._sharpnessValues) {
if (src._localPointStencils) {
_localPointStencils =
new StencilTable(*src._localPointStencils);
}
if (src._localPointVaryingStencils) {
_localPointVaryingStencils =
new StencilTable(*src._localPointVaryingStencils);
}
if (! src._localPointFaceVaryingStencils.empty()) {
_localPointFaceVaryingStencils.resize(src._localPointFaceVaryingStencils.size());
for (int fvc=0; fvc<(int)_localPointFaceVaryingStencils.size(); ++fvc) {
_localPointFaceVaryingStencils[fvc] =
new StencilTable(*src._localPointFaceVaryingStencils[fvc]);
}
}
}
PatchTable::~PatchTable() {
delete _localPointStencils;
delete _localPointVaryingStencils;
for (int fvc=0; fvc<(int)_localPointFaceVaryingStencils.size(); ++fvc) {
delete _localPointFaceVaryingStencils[fvc];
}
}
//
// PatchArrays
//
struct PatchTable::PatchArray {
PatchArray(PatchDescriptor d, int np, Index v, Index p, Index qo) :
desc(d), numPatches(np), vertIndex(v),
patchIndex(p), quadOffsetIndex (qo) { }
void print() const;
PatchDescriptor desc; // type of patches in the array
int numPatches; // number of patches in the array
Index vertIndex, // index to the first control vertex
patchIndex, // absolute index of the first patch in the array
quadOffsetIndex; // index of the first quad offset entry
};
// debug helper
void
PatchTable::PatchArray::print() const {
desc.print();
printf(" numPatches=%d vertIndex=%d patchIndex=%d "
"quadOffsetIndex=%d\n", numPatches, vertIndex, patchIndex,
quadOffsetIndex);
}
inline PatchTable::PatchArray &
PatchTable::getPatchArray(Index arrayIndex) {
assert(arrayIndex<(Index)GetNumPatchArrays());
return _patchArrays[arrayIndex];
}
inline PatchTable::PatchArray const &
PatchTable::getPatchArray(Index arrayIndex) const {
assert(arrayIndex<(Index)GetNumPatchArrays());
return _patchArrays[arrayIndex];
}
void
PatchTable::reservePatchArrays(int numPatchArrays) {
_patchArrays.reserve(numPatchArrays);
}
//
// FVarPatchChannel
//
// Stores a record for each patch in the primitive :
//
// - Each patch in the PatchTable has a corresponding patch in each
// face-varying patch channel. Patch vertex indices are sorted in the same
// patch-type order as PatchTable::PTables. Face-varying data for a patch
// can therefore be quickly accessed by using the patch primitive ID as
// index into patchValueOffsets to locate the face-varying control vertex
// indices.
//
// - Face-varying channels can have a different interpolation modes
//
// - Unlike "vertex" patches, there are no transition masks required
// for face-varying patches.
//
// - Face-varying patches still require boundary edge masks.
//
// - currently most patches with sharp boundaries but smooth interiors have
// to be isolated to level 10 : we need a special type of bicubic patch
// similar to single-crease to resolve this condition without requiring
// isolation if possible
//
struct PatchTable::FVarPatchChannel {
Sdc::Options::FVarLinearInterpolation interpolation;
PatchDescriptor desc;
std::vector<Index> patchValues;
};
void
PatchTable::allocateVaryingVertices(
PatchDescriptor desc, int numPatches) {
_varyingDesc = desc;
_varyingVerts.resize(numPatches*desc.GetNumControlVertices());
}
inline PatchTable::FVarPatchChannel &
PatchTable::getFVarPatchChannel(int channel) {
assert(channel>=0 && channel<(int)_fvarChannels.size());
return _fvarChannels[channel];
}
inline PatchTable::FVarPatchChannel const &
PatchTable::getFVarPatchChannel(int channel) const {
assert(channel>=0 && channel<(int)_fvarChannels.size());
return _fvarChannels[channel];
}
void
PatchTable::allocateFVarPatchChannels(int numChannels) {
_fvarChannels.resize(numChannels);
}
void
PatchTable::allocateFVarPatchChannelValues(
PatchDescriptor desc, int numPatches, int channel) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
c.desc = desc;
c.patchValues.resize(numPatches*desc.GetNumControlVertices());
}
void
PatchTable::setFVarPatchChannelLinearInterpolation(
Sdc::Options::FVarLinearInterpolation interpolation, int channel) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
c.interpolation = interpolation;
}
//
// PatchTable
//
inline int
getPatchSize(PatchDescriptor desc) {
return desc.GetNumControlVertices();
}
void
PatchTable::pushPatchArray(PatchDescriptor desc, int npatches,
Index * vidx, Index * pidx, Index * qoidx) {
if (npatches>0) {
_patchArrays.push_back(PatchArray(
desc, npatches, *vidx, *pidx, qoidx ? *qoidx : 0));
int nverts = getPatchSize(desc);
*vidx += npatches * nverts;
*pidx += npatches;
if (qoidx) {
*qoidx += (desc.GetType() == PatchDescriptor::GREGORY) ?
npatches*nverts : 0;
}
}
}
int
PatchTable::getPatchIndex(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert(patchIndex<pa.numPatches);
return pa.patchIndex + patchIndex;
}
Index *
PatchTable::getSharpnessIndices(int arrayIndex) {
return &_sharpnessIndices[getPatchArray(arrayIndex).patchIndex];
}
float *
PatchTable::getSharpnessValues(int arrayIndex) {
return &_sharpnessValues[getPatchArray(arrayIndex).patchIndex];
}
PatchDescriptor
PatchTable::GetPatchDescriptor(PatchHandle const & handle) const {
return getPatchArray(handle.arrayIndex).desc;
}
PatchDescriptor
PatchTable::GetPatchArrayDescriptor(int arrayIndex) const {
return getPatchArray(arrayIndex).desc;
}
int
PatchTable::GetNumPatchArrays() const {
return (int)_patchArrays.size();
}
int
PatchTable::GetNumPatches(int arrayIndex) const {
return getPatchArray(arrayIndex).numPatches;
}
int
PatchTable::GetNumPatchesTotal() const {
// there is one PatchParam record for each patch in the mesh
return (int)_paramTable.size();
}
int
PatchTable::GetNumControlVertices(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
return pa.numPatches * getPatchSize(pa.desc);
}
Index
PatchTable::findPatchArray(PatchDescriptor desc) {
for (int i=0; i<(int)_patchArrays.size(); ++i) {
if (_patchArrays[i].desc==desc)
return i;
}
return Vtr::INDEX_INVALID;
}
IndexArray
PatchTable::getPatchArrayVertices(int arrayIndex) {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert(pa.vertIndex<(Index)_patchVerts.size());
return IndexArray(&_patchVerts[pa.vertIndex], pa.numPatches * size);
}
ConstIndexArray
PatchTable::GetPatchArrayVertices(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert(pa.vertIndex<(Index)_patchVerts.size());
return ConstIndexArray(&_patchVerts[pa.vertIndex], pa.numPatches * size);
}
ConstIndexArray
PatchTable::GetPatchVertices(PatchHandle const & handle) const {
PatchArray const & pa = getPatchArray(handle.arrayIndex);
Index vert = pa.vertIndex + handle.vertIndex;
return ConstIndexArray(&_patchVerts[vert], getPatchSize(pa.desc));
}
ConstIndexArray
PatchTable::GetPatchVertices(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
int size = getPatchSize(pa.desc);
assert((pa.vertIndex + patchIndex*size)<(Index)_patchVerts.size());
return ConstIndexArray(&_patchVerts[pa.vertIndex + patchIndex*size], size);
}
PatchParam
PatchTable::GetPatchParam(PatchHandle const & handle) const {
assert(handle.patchIndex < (Index)_paramTable.size());
return _paramTable[handle.patchIndex];
}
PatchParam
PatchTable::GetPatchParam(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert((pa.patchIndex + patchIndex) < (int)_paramTable.size());
return _paramTable[pa.patchIndex + patchIndex];
}
PatchParamArray
PatchTable::getPatchParams(int arrayIndex) {
PatchArray const & pa = getPatchArray(arrayIndex);
return PatchParamArray(&_paramTable[pa.patchIndex], pa.numPatches);
}
ConstPatchParamArray const
PatchTable::GetPatchParams(int arrayIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
return ConstPatchParamArray(&_paramTable[pa.patchIndex], pa.numPatches);
}
float
PatchTable::GetSingleCreasePatchSharpnessValue(PatchHandle const & handle) const {
assert((handle.patchIndex) < (int)_sharpnessIndices.size());
Index index = _sharpnessIndices[handle.patchIndex];
if (index == Vtr::INDEX_INVALID) {
return 0.0f;
}
assert(index < (Index)_sharpnessValues.size());
return _sharpnessValues[index];
}
float
PatchTable::GetSingleCreasePatchSharpnessValue(int arrayIndex, int patchIndex) const {
PatchArray const & pa = getPatchArray(arrayIndex);
assert((pa.patchIndex + patchIndex) < (int)_sharpnessIndices.size());
Index index = _sharpnessIndices[pa.patchIndex + patchIndex];
if (index == Vtr::INDEX_INVALID) {
return 0.0f;
}
assert(index < (Index)_sharpnessValues.size());
return _sharpnessValues[index];
}
int
PatchTable::GetNumLocalPoints() const {
return _localPointStencils ? _localPointStencils->GetNumStencils() : 0;
}
int
PatchTable::GetNumLocalPointsVarying() const {
return _localPointVaryingStencils ? _localPointVaryingStencils->GetNumStencils() : 0;
}
int
PatchTable::GetNumLocalPointsFaceVarying(int channel) const {
if (channel>=0 && channel<(int)_localPointFaceVaryingStencils.size() &&
_localPointFaceVaryingStencils[channel]) {
return _localPointFaceVaryingStencils[channel]->GetNumStencils();
}
return 0;
}
PatchTable::ConstQuadOffsetsArray
PatchTable::GetPatchQuadOffsets(PatchHandle const & handle) const {
PatchArray const & pa = getPatchArray(handle.arrayIndex);
return Vtr::ConstArray<unsigned int>(&_quadOffsetsTable[pa.quadOffsetIndex + handle.vertIndex], 4);
}
bool
PatchTable::IsFeatureAdaptive() const {
// XXX:
// revisit this function, since we'll add uniform cubic patches later.
for (int i=0; i<GetNumPatchArrays(); ++i) {
PatchDescriptor const & desc = _patchArrays[i].desc;
if (desc.GetType()>=PatchDescriptor::REGULAR &&
desc.GetType()<=PatchDescriptor::GREGORY_BASIS) {
return true;
}
}
return false;
}
ConstIndexArray
PatchTable::GetPatchVaryingVertices(PatchHandle const & handle) const {
int numVaryingCVs = _varyingDesc.GetNumControlVertices();
Index start = handle.patchIndex * numVaryingCVs;
return ConstIndexArray(&_varyingVerts[start], numVaryingCVs);
}
ConstIndexArray
PatchTable::GetPatchVaryingVertices(int array, int patch) const {
PatchArray const & pa = getPatchArray(array);
int numVaryingCVs = _varyingDesc.GetNumControlVertices();
Index start = (pa.patchIndex + patch) * numVaryingCVs;
return ConstIndexArray(&_varyingVerts[start], numVaryingCVs);
}
ConstIndexArray
PatchTable::GetPatchArrayVaryingVertices(int array) const {
PatchArray const & pa = getPatchArray(array);
int numVaryingCVs = _varyingDesc.GetNumControlVertices();
Index start = pa.patchIndex * numVaryingCVs;
Index count = pa.numPatches * numVaryingCVs;
return ConstIndexArray(&_varyingVerts[start], count);
}
ConstIndexArray
PatchTable::GetVaryingVertices() const {
return ConstIndexArray(&_varyingVerts[0], (int)_varyingVerts.size());
}
IndexArray
PatchTable::getPatchArrayVaryingVertices(int arrayIndex) {
PatchArray const & pa = getPatchArray(arrayIndex);
int numVaryingCVs = _varyingDesc.GetNumControlVertices();
Index start = pa.patchIndex * numVaryingCVs;
return IndexArray(&_varyingVerts[start], pa.numPatches * numVaryingCVs);
}
int
PatchTable::GetNumFVarChannels() const {
return (int)_fvarChannels.size();
}
Sdc::Options::FVarLinearInterpolation
PatchTable::GetFVarChannelLinearInterpolation(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
return c.interpolation;
}
PatchDescriptor
PatchTable::GetFVarChannelPatchDescriptor(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
return c.desc;
}
ConstIndexArray
PatchTable::GetFVarValues(int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
return ConstIndexArray(&c.patchValues[0], (int)c.patchValues.size());
}
IndexArray
PatchTable::getFVarValues(int channel) {
FVarPatchChannel & c = getFVarPatchChannel(channel);
return IndexArray(&c.patchValues[0], (int)c.patchValues.size());
}
ConstIndexArray
PatchTable::getPatchFVarValues(int patch, int channel) const {
FVarPatchChannel const & c = getFVarPatchChannel(channel);
int ncvs = c.desc.GetNumControlVertices();
return ConstIndexArray(&c.patchValues[patch * ncvs], ncvs);
}
ConstIndexArray
PatchTable::GetPatchFVarValues(PatchHandle const & handle, int channel) const {
return getPatchFVarValues(handle.patchIndex, channel);
}
ConstIndexArray
PatchTable::GetPatchFVarValues(int arrayIndex, int patchIndex, int channel) const {
return getPatchFVarValues(getPatchIndex(arrayIndex, patchIndex), channel);
}
ConstIndexArray
PatchTable::GetPatchArrayFVarValues(int array, int channel) const {
PatchArray const & pa = getPatchArray(array);
FVarPatchChannel const & c = getFVarPatchChannel(channel);
int ncvs = c.desc.GetNumControlVertices();
int start = pa.patchIndex * ncvs;
int count = pa.numPatches * ncvs;
return ConstIndexArray(&c.patchValues[start], count);
}
void
PatchTable::print() const {
printf("patchTable (0x%p)\n", this);
printf(" numPatches = %d\n", GetNumPatchesTotal());
for (int i=0; i<GetNumPatchArrays(); ++i) {
printf(" patchArray %d:\n", i);
PatchArray const & pa = getPatchArray(i);
pa.print();
}
}
//
// Evaluate basis functions for vertex and derivatives at (s,t):
//
void
PatchTable::EvaluateBasis(
PatchHandle const & handle, float s, float t,
float wP[], float wDs[], float wDt[],
float wDss[], float wDst[], float wDtt[]) const {
PatchDescriptor::Type patchType = GetPatchArrayDescriptor(handle.arrayIndex).GetType();
PatchParam const & param = _paramTable[handle.patchIndex];
if (patchType == PatchDescriptor::REGULAR) {
internal::GetBSplineWeights(param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
} else if (patchType == PatchDescriptor::GREGORY_BASIS) {
internal::GetGregoryWeights(param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
} else if (patchType == PatchDescriptor::QUADS) {
internal::GetBilinearWeights(param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
} else {
assert(0);
}
}
//
// Evaluate basis functions for varying and derivatives at (s,t):
//
void
PatchTable::EvaluateBasisVarying(
PatchHandle const & handle, float s, float t,
float wP[], float wDs[], float wDt[],
float wDss[], float wDst[], float wDtt[]) const {
PatchParam const & param = _paramTable[handle.patchIndex];
internal::GetBilinearWeights(param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
}
//
// Evaluate basis functions for face-varying and derivatives at (s,t):
//
void
PatchTable::EvaluateBasisFaceVarying(
PatchHandle const & handle, float s, float t,
float wP[], float wDs[], float wDt[],
float wDss[], float wDst[], float wDtt[],
int channel) const {
PatchDescriptor::Type patchType = GetFVarChannelPatchDescriptor(channel).GetType();
PatchParam param = _paramTable[handle.patchIndex];
// XXXdyu need fvar boundary parameterization
if (patchType == PatchDescriptor::REGULAR) {
internal::GetBSplineWeights(param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
} else if (patchType == PatchDescriptor::GREGORY_BASIS) {
internal::GetGregoryWeights(param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
} else if (patchType == PatchDescriptor::QUADS) {
internal::GetBilinearWeights(param, s, t, wP, wDs, wDt, wDss, wDst, wDtt);
} else {
assert(0);
}
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv