mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2024-12-03 16:31:04 +00:00
8cb4a1c8ad
- Refinement methods to populate relations updated to order correctly - updated topology validation method in Level
1341 lines
50 KiB
C++
1341 lines
50 KiB
C++
//
|
|
// Copyright 2014 DreamWorks Animation LLC.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
#include "../sdc/type.h"
|
|
#include "../sdc/crease.h"
|
|
#include "../vtr/array.h"
|
|
#include "../vtr/level.h"
|
|
#include "../vtr/refinement.h"
|
|
#include "../vtr/fvarLevel.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <map>
|
|
|
|
|
|
//
|
|
// Level:
|
|
// This is intended to be a fairly simple container of topology, sharpness and
|
|
// other information that is useful to retain for subdivision. It is intended to
|
|
// be constructed by other friend classes, i.e. factories and class specialized to
|
|
// contruct topology based on various splitting schemes. So its interface consists
|
|
// of simple methods for inspection, and low-level protected methods for populating
|
|
// it rather than high-level modifiers.
|
|
//
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
namespace Vtr {
|
|
|
|
//
|
|
// Simple (for now) constructor and destructor:
|
|
//
|
|
Level::Level() :
|
|
_faceCount(0),
|
|
_edgeCount(0),
|
|
_vertCount(0),
|
|
_depth(0),
|
|
_maxEdgeFaces(0),
|
|
_maxValence(0) {
|
|
}
|
|
|
|
Level::~Level() {
|
|
for (int i = 0; i < (int)_fvarChannels.size(); ++i) {
|
|
delete _fvarChannels[i];
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Debugging method to validate topology, i.e. verify appropriate symmetry
|
|
// between the relations, etc.
|
|
//
|
|
// Additions that need to be made in the near term:
|
|
// * verifying user-applied tags relating to topology:
|
|
// - non-manifold in particular (ordering above can be part of this)
|
|
// - face holes don't require anything
|
|
// - verifying orientation of components, particularly vert-edges and faces:
|
|
// - both need to be ordered correctly (when manifold)
|
|
// - both need to be in sync for an interior vertex
|
|
// ? is a rotation allowed for the interior case?
|
|
// - I don't see why not...
|
|
// ? verifying sharpness:
|
|
// - values < Smooth or > Infinite
|
|
// - sharpening of boundary edges (is this necessary, since we do it?)
|
|
// - it does ensure our work was not corrupted by client assignments
|
|
//
|
|
// Possibilities:
|
|
// - single validate() method, which will call all of:
|
|
// - validateTopology()
|
|
// - validateSharpness()
|
|
// - validateTagging()
|
|
// - consider using a mask/struct to choose what to validate, i.e.:
|
|
// - bool validate(ValidateOptions const& options) const;
|
|
//
|
|
bool
|
|
Level::validateTopology() const {
|
|
|
|
//
|
|
// Verify internal topological consistency (eventually a Level method?):
|
|
// - each face-vert has corresponding vert-face (and child)
|
|
// - each face-edge has corresponding edge-face
|
|
// - each edge-vert has corresponding vert-edge (and child)
|
|
// The above three are enough for most cases, but it is still possible
|
|
// the latter relation in each above has no correspondent in the former,
|
|
// so apply the symmetric tests:
|
|
// - each edge-face has corresponding face-edge
|
|
// - each vert-face has corresponding face-vert
|
|
// - each vert-edge has corresponding edge-vert
|
|
// We are still left with the possibility of duplicate references in
|
|
// places we don't want them. Currently a component can exist multiple
|
|
// times in a component of higher dimension.
|
|
// - each vert-face <face,child> pair is unique
|
|
// - each vert-edge <edge,child> pair is unique
|
|
//
|
|
bool returnOnFirstError = true;
|
|
bool isValid = true;
|
|
|
|
// Verify each face-vert has corresponding vert-face and child:
|
|
if ((getNumFaceVerticesTotal() == 0) || (getNumVertexFacesTotal() == 0)) {
|
|
if (getNumFaceVerticesTotal() == 0) printf("Error: missing face-verts\n");
|
|
if (getNumVertexFacesTotal() == 0) printf("Error: missing vert-faces\n");
|
|
return false;
|
|
}
|
|
for (int fIndex = 0; fIndex < getNumFaces(); ++fIndex) {
|
|
IndexArray const fVerts = getFaceVertices(fIndex);
|
|
int fVertCount = fVerts.size();
|
|
|
|
for (int i = 0; i < fVertCount; ++i) {
|
|
Index vIndex = fVerts[i];
|
|
|
|
IndexArray const vFaces = getVertexFaces(vIndex);
|
|
LocalIndexArray const vInFace = getVertexFaceLocalIndices(vIndex);
|
|
|
|
bool vertFaceOfFaceExists = false;
|
|
for (int j = 0; j < vFaces.size(); ++j) {
|
|
if ((vFaces[j] == fIndex) && (vInFace[j] == i)) {
|
|
vertFaceOfFaceExists = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!vertFaceOfFaceExists) {
|
|
printf("Error in fIndex = %d: correlation of vert %d failed\n", fIndex, i);
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify each face-edge has corresponding edge-face:
|
|
if ((getNumEdgeFacesTotal() == 0) || (getNumFaceEdgesTotal() == 0)) {
|
|
if (getNumEdgeFacesTotal() == 0) printf("Error: missing edge-faces\n");
|
|
if (getNumFaceEdgesTotal() == 0) printf("Error: missing face-edges\n");
|
|
return false;
|
|
}
|
|
for (int fIndex = 0; fIndex < getNumFaces(); ++fIndex) {
|
|
IndexArray const fEdges = getFaceEdges(fIndex);
|
|
int fEdgeCount = fEdges.size();
|
|
|
|
for (int i = 0; i < fEdgeCount; ++i) {
|
|
int eIndex = fEdges[i];
|
|
|
|
IndexArray const eFaces = getEdgeFaces(eIndex);
|
|
int eFaceCount = eFaces.size();
|
|
|
|
bool edgeFaceOfFaceExists = false;
|
|
for (int j = 0; j < eFaceCount; ++j) {
|
|
if (eFaces[j] == fIndex) {
|
|
edgeFaceOfFaceExists = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!edgeFaceOfFaceExists) {
|
|
printf("Error in fIndex = %d: correlation of edge %d failed\n", fIndex, i);
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify each edge-vert has corresponding vert-edge and child:
|
|
if ((getNumEdgeVerticesTotal() == 0) || (getNumVertexEdgesTotal() == 0)) {
|
|
if (getNumEdgeVerticesTotal() == 0) printf("Error: missing edge-verts\n");
|
|
if (getNumVertexEdgesTotal() == 0) printf("Error: missing vert-edges\n");
|
|
return false;
|
|
}
|
|
for (int eIndex = 0; eIndex < getNumEdges(); ++eIndex) {
|
|
IndexArray const eVerts = getEdgeVertices(eIndex);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
Index vIndex = eVerts[i];
|
|
|
|
IndexArray const vEdges = getVertexEdges(vIndex);
|
|
LocalIndexArray const vInEdge = getVertexEdgeLocalIndices(vIndex);
|
|
|
|
bool vertEdgeOfEdgeExists = false;
|
|
for (int j = 0; j < vEdges.size(); ++j) {
|
|
if ((vEdges[j] == eIndex) && (vInEdge[j] == i)) {
|
|
vertEdgeOfEdgeExists = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!vertEdgeOfEdgeExists) {
|
|
printf("Error in eIndex = %d: correlation of vert %d failed\n", eIndex, i);
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify that vert-faces and vert-edges are properly ordered and in sync:
|
|
// - currently this requires the relations exactly match those that we construct from
|
|
// the ordering method, i.e. we do not allow rotations for interior vertices.
|
|
Index * indexBuffer = (Index*) alloca(2 * _maxValence * sizeof(Index));
|
|
|
|
for (int vIndex = 0; vIndex < getNumVertices(); ++vIndex) {
|
|
if (_vertTags[vIndex]._incomplete || _vertTags[vIndex]._nonManifold) continue;
|
|
|
|
IndexArray const vFaces = getVertexFaces(vIndex);
|
|
IndexArray const vEdges = getVertexEdges(vIndex);
|
|
|
|
Index * vFacesOrdered = indexBuffer;
|
|
Index * vEdgesOrdered = indexBuffer + vFaces.size();
|
|
|
|
if (!orderVertexFacesAndEdges(vIndex, vFacesOrdered, vEdgesOrdered)) {
|
|
printf("Error in vIndex = %d: cannot orient incident faces and edges\n", vIndex);
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
}
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
if (vFaces[i] != vFacesOrdered[i]) {
|
|
printf("Error in vIndex = %d: orientation failure at incident face %d\n", vIndex, i);
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
break;
|
|
}
|
|
}
|
|
for (int i = 0; i < vEdges.size(); ++i) {
|
|
if (vEdges[i] != vEdgesOrdered[i]) {
|
|
printf("Error in vIndex = %d: orientation failure at incident edge %d\n", vIndex, i);
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify non-manifold tags are appropriately assigned to edges and vertices:
|
|
// - note we have to validate orientation of vertex neighbors to do this rigorously
|
|
for (int eIndex = 0; eIndex < getNumEdges(); ++eIndex) {
|
|
Level::ETag const& eTag = _edgeTags[eIndex];
|
|
if (eTag._nonManifold) continue;
|
|
|
|
IndexArray const eVerts = getEdgeVertices(eIndex);
|
|
if (eVerts[0] == eVerts[1]) {
|
|
printf("Error in eIndex = %d: degenerate edge not tagged marked non-manifold\n", eIndex);
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
}
|
|
|
|
IndexArray const eFaces = getEdgeFaces(eIndex);
|
|
if ((eFaces.size() < 1) || (eFaces.size() > 2)) {
|
|
printf("Error in eIndex = %d: edge with %d faces not tagged non-manifold\n", eIndex, eFaces.size());
|
|
if (returnOnFirstError) return false;
|
|
isValid = false;
|
|
}
|
|
}
|
|
return isValid;
|
|
}
|
|
|
|
//
|
|
// Anonymous helper functions for debugging output -- yes, using printf(), this is not
|
|
// intended to serve anyone other than myself for now and I favor its formatting control
|
|
//
|
|
namespace {
|
|
template <typename INT_TYPE>
|
|
void
|
|
printIndexArray(Array<INT_TYPE> const& array) {
|
|
|
|
printf("%d [%d", array.size(), array[0]);
|
|
for (int i = 1; i < array.size(); ++i) {
|
|
printf(" %d", array[i]);
|
|
}
|
|
printf("]\n");
|
|
}
|
|
|
|
const char*
|
|
ruleString(Sdc::Crease::Rule rule) {
|
|
switch (rule) {
|
|
case Sdc::Crease::RULE_UNKNOWN: return "<uninitialized>";
|
|
case Sdc::Crease::RULE_SMOOTH: return "Smooth";
|
|
case Sdc::Crease::RULE_DART: return "Dart";
|
|
case Sdc::Crease::RULE_CREASE: return "Crease";
|
|
case Sdc::Crease::RULE_CORNER: return "Corner";
|
|
default:
|
|
assert(0);
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
Level::print(const Refinement* pRefinement) const {
|
|
|
|
bool printFaceVerts = true;
|
|
bool printFaceEdges = true;
|
|
bool printFaceChildVerts = false;
|
|
bool printFaceTags = true;
|
|
|
|
bool printEdgeVerts = true;
|
|
bool printEdgeFaces = true;
|
|
bool printEdgeChildVerts = true;
|
|
bool printEdgeSharpness = true;
|
|
bool printEdgeTags = true;
|
|
|
|
bool printVertFaces = true;
|
|
bool printVertEdges = true;
|
|
bool printVertChildVerts = false;
|
|
bool printVertSharpness = true;
|
|
bool printVertTags = true;
|
|
|
|
printf("Level (0x%p):\n", this);
|
|
printf(" Depth = %d\n", _depth);
|
|
|
|
printf(" Primary component counts:\n");
|
|
printf(" faces = %d\n", _faceCount);
|
|
printf(" edges = %d\n", _edgeCount);
|
|
printf(" verts = %d\n", _vertCount);
|
|
|
|
printf(" Topology relation sizes:\n");
|
|
|
|
printf(" Face relations:\n");
|
|
printf(" face-vert counts/offset = %lu\n", (unsigned long)_faceVertCountsAndOffsets.size());
|
|
printf(" face-vert indices = %lu\n", (unsigned long)_faceVertIndices.size());
|
|
for (int i = 0; printFaceVerts && i < getNumFaces(); ++i) {
|
|
printf(" face %4d verts: ", i);
|
|
printIndexArray(getFaceVertices(i));
|
|
}
|
|
printf(" face-edge indices = %lu\n", (unsigned long)_faceEdgeIndices.size());
|
|
for (int i = 0; printFaceEdges && i < getNumFaces(); ++i) {
|
|
printf(" face %4d edges: ", i);
|
|
printIndexArray(getFaceEdges(i));
|
|
}
|
|
printf(" face tags = %lu\n", (unsigned long)_faceTags.size());
|
|
for (int i = 0; printFaceTags && i < (int)_faceTags.size(); ++i) {
|
|
FTag const& fTag = _faceTags[i];
|
|
printf(" face %4d:", i);
|
|
printf(" hole = %d", (int)fTag._hole);
|
|
printf("\n");
|
|
}
|
|
if (pRefinement) {
|
|
printf(" face child-verts = %lu\n", (unsigned long)pRefinement->_faceChildVertIndex.size());
|
|
for (int i = 0; printFaceChildVerts && i < (int)pRefinement->_faceChildVertIndex.size(); ++i) {
|
|
printf(" face %4d child vert: %d\n", i, pRefinement->_faceChildVertIndex[i]);
|
|
}
|
|
}
|
|
|
|
printf(" Edge relations:\n");
|
|
printf(" edge-vert indices = %lu\n", (unsigned long)_edgeVertIndices.size());
|
|
for (int i = 0; printEdgeVerts && i < getNumEdges(); ++i) {
|
|
printf(" edge %4d verts: ", i);
|
|
printIndexArray(getEdgeVertices(i));
|
|
}
|
|
printf(" edge-face counts/offset = %lu\n", (unsigned long)_edgeFaceCountsAndOffsets.size());
|
|
printf(" edge-face indices = %lu\n", (unsigned long)_edgeFaceIndices.size());
|
|
for (int i = 0; printEdgeFaces && i < getNumEdges(); ++i) {
|
|
printf(" edge %4d faces: ", i);
|
|
printIndexArray(getEdgeFaces(i));
|
|
}
|
|
if (pRefinement) {
|
|
printf(" edge child-verts = %lu\n", (unsigned long)pRefinement->_edgeChildVertIndex.size());
|
|
for (int i = 0; printEdgeChildVerts && i < (int)pRefinement->_edgeChildVertIndex.size(); ++i) {
|
|
printf(" edge %4d child vert: %d\n", i, pRefinement->_edgeChildVertIndex[i]);
|
|
}
|
|
}
|
|
printf(" edge sharpness = %lu\n", (unsigned long)_edgeSharpness.size());
|
|
for (int i = 0; printEdgeSharpness && i < (int)_edgeSharpness.size(); ++i) {
|
|
printf(" edge %4d sharpness: %f\n", i, _edgeSharpness[i]);
|
|
}
|
|
printf(" edge tags = %lu\n", (unsigned long)_edgeTags.size());
|
|
for (int i = 0; printEdgeTags && i < (int)_edgeTags.size(); ++i) {
|
|
ETag const& eTag = _edgeTags[i];
|
|
printf(" edge %4d:", i);
|
|
printf(" boundary = %d", (int)eTag._boundary);
|
|
printf(", semiSharp = %d", (int)eTag._semiSharp);
|
|
printf(", infSharp = %d", (int)eTag._infSharp);
|
|
printf("\n");
|
|
}
|
|
|
|
printf(" Vert relations:\n");
|
|
printf(" vert-face counts/offset = %lu\n", (unsigned long)_vertFaceCountsAndOffsets.size());
|
|
printf(" vert-face indices = %lu\n", (unsigned long)_vertFaceIndices.size());
|
|
printf(" vert-face children = %lu\n", (unsigned long)_vertFaceLocalIndices.size());
|
|
for (int i = 0; printVertFaces && i < getNumVertices(); ++i) {
|
|
printf(" vert %4d faces: ", i);
|
|
printIndexArray(getVertexFaces(i));
|
|
|
|
printf(" face-verts: ");
|
|
printIndexArray(getVertexFaceLocalIndices(i));
|
|
}
|
|
printf(" vert-edge counts/offset = %lu\n", (unsigned long)_vertEdgeCountsAndOffsets.size());
|
|
printf(" vert-edge indices = %lu\n", (unsigned long)_vertEdgeIndices.size());
|
|
printf(" vert-edge children = %lu\n", (unsigned long)_vertEdgeLocalIndices.size());
|
|
for (int i = 0; printVertEdges && i < getNumVertices(); ++i) {
|
|
printf(" vert %4d edges: ", i);
|
|
printIndexArray(getVertexEdges(i));
|
|
|
|
printf(" edge-verts: ");
|
|
printIndexArray(getVertexEdgeLocalIndices(i));
|
|
}
|
|
if (pRefinement) {
|
|
printf(" vert child-verts = %lu\n", (unsigned long)pRefinement->_vertChildVertIndex.size());
|
|
for (int i = 0; printVertChildVerts && i < (int)pRefinement->_vertChildVertIndex.size(); ++i) {
|
|
printf(" vert %4d child vert: %d\n", i, pRefinement->_vertChildVertIndex[i]);
|
|
}
|
|
}
|
|
printf(" vert sharpness = %lu\n", (unsigned long)_vertSharpness.size());
|
|
for (int i = 0; printVertSharpness && i < (int)_vertSharpness.size(); ++i) {
|
|
printf(" vert %4d sharpness: %f\n", i, _vertSharpness[i]);
|
|
}
|
|
printf(" vert tags = %lu\n", (unsigned long)_vertTags.size());
|
|
for (int i = 0; printVertTags && i < (int)_vertTags.size(); ++i) {
|
|
VTag const& vTag = _vertTags[i];
|
|
printf(" vert %4d:", i);
|
|
printf(" rule = %s", ruleString((Sdc::Crease::Rule)vTag._rule));
|
|
printf(", boundary = %d", (int)vTag._boundary);
|
|
printf(", xordinary = %d", (int)vTag._xordinary);
|
|
printf(", semiSharp = %d", (int)vTag._semiSharp);
|
|
printf(", infSharp = %d", (int)vTag._infSharp);
|
|
printf("\n");
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
|
|
|
|
namespace {
|
|
template <typename TAG_TYPE, typename INT_TYPE>
|
|
void
|
|
combineTags(TAG_TYPE& dstTag, TAG_TYPE const& srcTag) {
|
|
INT_TYPE const* srcInt = reinterpret_cast<INT_TYPE const*>(&srcTag);
|
|
INT_TYPE * dstInt = reinterpret_cast<INT_TYPE *> (&dstTag);
|
|
|
|
*dstInt |= *srcInt;
|
|
}
|
|
}
|
|
|
|
Level::VTag
|
|
Level::getFaceCompositeVTag(IndexArray const& faceVerts) const {
|
|
|
|
VTag compTag = _vertTags[faceVerts[0]];
|
|
|
|
for (int i = 1; i < faceVerts.size(); ++i) {
|
|
VTag const& vertTag = _vertTags[faceVerts[i]];
|
|
|
|
if (sizeof(VTag) == sizeof(unsigned short)) {
|
|
combineTags<VTag, unsigned short>(compTag, vertTag);
|
|
} else {
|
|
assert("VTag size is uint_32 -- need to adjust composite tag code..." == 0);
|
|
}
|
|
}
|
|
return compTag;
|
|
}
|
|
|
|
|
|
//
|
|
// High-level topology gathering functions -- used mainly in patch construction. These
|
|
// may eventually be moved elsewhere, possibly to classes specialized for quad- and tri-
|
|
// patch identification and construction, but for now somewhere more accessible than the
|
|
// patch tables factory is preferable.
|
|
//
|
|
// Note a couple of nuisances...
|
|
// - these are currently specialized methods for quad-meshes
|
|
// - debatable whether we should include the four face-verts in the face functions
|
|
// - we refer to the result as a "patch" when we do
|
|
// - otherwise a "ring" of vertices is more appropriate
|
|
// - some OSD containers for the results want unsigned int and others int
|
|
//
|
|
namespace {
|
|
template <typename INT_TYPE>
|
|
inline INT_TYPE fastMod4(INT_TYPE value) { return (value & 0x3); }
|
|
|
|
inline int
|
|
fastFindIn4(Index value, IndexArray const& array) {
|
|
|
|
if (value == array[0]) return 0;
|
|
if (value == array[1]) return 1;
|
|
if (value == array[2]) return 2;
|
|
if (value == array[3]) return 3;
|
|
assert("fastFindIn4() did not find expected value!" == 0);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Gathering the one-ring of vertices from quads surrounding a manifold vertex:
|
|
// - the neighborhood of the vertex is assumed to be quad-regular
|
|
//
|
|
// Ordering of resulting vertices:
|
|
// The surrounding one-ring follows the ordering of the incident faces. For each
|
|
// incident quad, the two vertices in CCW order within that quad are added. If the
|
|
// vertex is on a boundary, a third vertex on the boundary edge will be contributed from
|
|
// the last face.
|
|
//
|
|
int
|
|
Level::gatherManifoldVertexRingFromIncidentQuads(Index vIndex, int vOffset, int ringVerts[]) const {
|
|
|
|
Level const& level = *this;
|
|
|
|
IndexArray vEdges = level.getVertexEdges(vIndex);
|
|
|
|
IndexArray vFaces = level.getVertexFaces(vIndex);
|
|
LocalIndexArray vInFaces = level.getVertexFaceLocalIndices(vIndex);
|
|
|
|
bool isBoundary = (vEdges.size() > vFaces.size());
|
|
|
|
int ringIndex = 0;
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
//
|
|
// For every incident quad, we want the two vertices clockwise in each face, i.e.
|
|
// the vertex at the end of the leading edge and the vertex opposite this one:
|
|
//
|
|
IndexArray fVerts = level.getFaceVertices(vFaces[i]);
|
|
|
|
int vInThisFace = vInFaces[i];
|
|
|
|
ringVerts[ringIndex++] = vOffset + fVerts[fastMod4(vInThisFace + 1)];
|
|
ringVerts[ringIndex++] = vOffset + fVerts[fastMod4(vInThisFace + 2)];
|
|
|
|
if (isBoundary && (i == (vFaces.size() - 1))) {
|
|
ringVerts[ringIndex++] = vOffset + fVerts[fastMod4(vInThisFace + 3)];
|
|
}
|
|
}
|
|
return ringIndex;
|
|
}
|
|
|
|
//
|
|
// Gathering the 16 vertices of a quad-regular boundary patch:
|
|
// - the neighborhood of the face is assumed to be quad-regular
|
|
//
|
|
// Ordering of resulting vertices:
|
|
// It was debatable whether to include the vertices of the original face for a complete
|
|
// "patch" or just the surrounding ring -- clearly we ended up with a function for the entire
|
|
// patch, but that may change.
|
|
// The latter ring of vertices around the face (potentially returned on its own) was
|
|
// oriented with respect to the face. The ring of 12 vertices is gathered as 4 groups of 3
|
|
// vertices -- one for each corner vertex, and each group forming the quad opposite each
|
|
// corner vertex when combined with that corner vertex. The four vertices of the face begin
|
|
// the patch.
|
|
//
|
|
// | | | |
|
|
// ---5-----4-----15----14---
|
|
// | | | |
|
|
// | | | |
|
|
// ---6-----0-----3-----13---
|
|
// | |x x| |
|
|
// | |x x| |
|
|
// ---7-----1-----2-----12---
|
|
// | | | |
|
|
// | | | |
|
|
// ---8-----9-----10----11---
|
|
// | | | |
|
|
//
|
|
int
|
|
Level::gatherQuadRegularInteriorPatchVertices(
|
|
Index thisFace, unsigned int ringVerts[], int rotation) const {
|
|
|
|
Level const& level = *this;
|
|
|
|
//
|
|
// For each of the four corner vertices, there is a face diagonally opposite
|
|
// the given/central face, within which are three vertices of the ring:
|
|
//
|
|
IndexArray thisFaceVerts = level.getFaceVertices(thisFace);
|
|
if (rotation) {
|
|
ringVerts[0] = thisFaceVerts[fastMod4(rotation)];
|
|
ringVerts[1] = thisFaceVerts[fastMod4(rotation + 1)];
|
|
ringVerts[2] = thisFaceVerts[fastMod4(rotation + 2)];
|
|
ringVerts[3] = thisFaceVerts[fastMod4(rotation + 3)];
|
|
} else {
|
|
ringVerts[0] = thisFaceVerts[0];
|
|
ringVerts[1] = thisFaceVerts[1];
|
|
ringVerts[2] = thisFaceVerts[2];
|
|
ringVerts[3] = thisFaceVerts[3];
|
|
}
|
|
|
|
int ringIndex = 4;
|
|
for (int i = 0; i < 4; ++i) {
|
|
Index v = ringVerts[i];
|
|
|
|
IndexArray vFaces = level.getVertexFaces(v);
|
|
LocalIndexArray vInFaces = level.getVertexFaceLocalIndices(v);
|
|
|
|
int thisFaceInVFaces = fastFindIn4(thisFace, vFaces);
|
|
int intFaceInVFaces = fastMod4(thisFaceInVFaces + 2);
|
|
|
|
Index intFace = vFaces[intFaceInVFaces];
|
|
int vInIntFace = vInFaces[intFaceInVFaces];
|
|
|
|
IndexArray intFaceVerts = level.getFaceVertices(intFace);
|
|
|
|
ringVerts[ringIndex++] = intFaceVerts[fastMod4(vInIntFace + 1)];
|
|
ringVerts[ringIndex++] = intFaceVerts[fastMod4(vInIntFace + 2)];
|
|
ringVerts[ringIndex++] = intFaceVerts[fastMod4(vInIntFace + 3)];
|
|
}
|
|
assert(ringIndex == 16);
|
|
return 16;
|
|
}
|
|
|
|
//
|
|
// Gathering the 12 vertices of a quad-regular boundary patch:
|
|
// - the neighborhood of the face is assumed to be quad-regular
|
|
// - the single edge of the face that lies on the boundary is specified
|
|
// - only one edge of the face is a boundary edge
|
|
//
|
|
// Ordering of resulting vertices:
|
|
// It was debatable whether to include the vertices of the original face for a complete
|
|
// "patch" or just the surrounding ring -- clearly we ended up with a function for the entire
|
|
// patch, but that may change.
|
|
// The latter ring of vertices around the face (potentially returned on its own) was
|
|
// oriented beginning from the leading CCW boundary edge and ending at the trailing edge.
|
|
// The four vertices of the face begin the patch and are oriented similarly to this outer
|
|
// ring -- forming an inner ring that begins and ends in the same manner.
|
|
//
|
|
// ---4-----0-----3-----11---
|
|
// | |x x| |
|
|
// | |x x| |
|
|
// ---5-----1-----2-----10---
|
|
// | | | |
|
|
// | | | |
|
|
// ---6-----7-----8-----9----
|
|
// | | | |
|
|
//
|
|
int
|
|
Level::gatherQuadRegularBoundaryPatchVertices(
|
|
Index face, int unsigned ringVerts[], int boundaryEdgeInFace) const {
|
|
|
|
Level const& level = *this;
|
|
|
|
int interiorEdgeInFace = fastMod4(boundaryEdgeInFace + 2);
|
|
|
|
//
|
|
// V0 and V1 are the two interior vertices (opposite the boundary edge) around
|
|
// which we will gather most of the ring:
|
|
//
|
|
int intV0InFace = interiorEdgeInFace;
|
|
int intV1InFace = fastMod4(interiorEdgeInFace + 1);
|
|
|
|
IndexArray faceVerts = level.getFaceVertices(face);
|
|
|
|
Index v0 = faceVerts[intV0InFace];
|
|
Index v1 = faceVerts[intV1InFace];
|
|
|
|
IndexArray v0Faces = level.getVertexFaces(v0);
|
|
IndexArray v1Faces = level.getVertexFaces(v1);
|
|
|
|
LocalIndexArray v0InFaces = level.getVertexFaceLocalIndices(v0);
|
|
LocalIndexArray v1InFaces = level.getVertexFaceLocalIndices(v1);
|
|
|
|
int boundaryFaceInV0Faces = -1;
|
|
int boundaryFaceInV1Faces = -1;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (face == v0Faces[i]) boundaryFaceInV0Faces = i;
|
|
if (face == v1Faces[i]) boundaryFaceInV1Faces = i;
|
|
}
|
|
assert((boundaryFaceInV0Faces >= 0) && (boundaryFaceInV1Faces >= 0));
|
|
|
|
// Identify the four faces of interest -- previous to and opposite V0 and
|
|
// opposite and next from V1 -- relative to V0 and V1:
|
|
int prevFaceInV0Faces = fastMod4(boundaryFaceInV0Faces + 1);
|
|
int intFaceInV0Faces = fastMod4(boundaryFaceInV0Faces + 2);
|
|
int intFaceInV1Faces = fastMod4(boundaryFaceInV1Faces + 2);
|
|
int nextFaceInV1Faces = fastMod4(boundaryFaceInV1Faces + 3);
|
|
|
|
// Identify the indices of the four faces:
|
|
Index prevFace = v0Faces[prevFaceInV0Faces];
|
|
Index intV0Face = v0Faces[intFaceInV0Faces];
|
|
Index intV1Face = v1Faces[intFaceInV1Faces];
|
|
Index nextFace = v1Faces[nextFaceInV1Faces];
|
|
|
|
// Identify V0 and V1 relative to these four faces:
|
|
LocalIndex v0InPrevFace = v0InFaces[prevFaceInV0Faces];
|
|
LocalIndex v0InIntFace = v0InFaces[intFaceInV0Faces];
|
|
LocalIndex v1InIntFace = v1InFaces[intFaceInV1Faces];
|
|
LocalIndex v1InNextFace = v1InFaces[nextFaceInV1Faces];
|
|
|
|
// Access the vertices of these four faces and assign to the ring:
|
|
IndexArray prevFaceVerts = level.getFaceVertices(prevFace);
|
|
IndexArray intV0FaceVerts = level.getFaceVertices(intV0Face);
|
|
IndexArray intV1FaceVerts = level.getFaceVertices(intV1Face);
|
|
IndexArray nextFaceVerts = level.getFaceVertices(nextFace);
|
|
|
|
ringVerts[0] = faceVerts[fastMod4(boundaryEdgeInFace + 1)];
|
|
ringVerts[1] = faceVerts[fastMod4(boundaryEdgeInFace + 2)];
|
|
ringVerts[2] = faceVerts[fastMod4(boundaryEdgeInFace + 3)];
|
|
ringVerts[3] = faceVerts[ boundaryEdgeInFace];
|
|
|
|
ringVerts[4] = prevFaceVerts[fastMod4(v0InPrevFace + 2)];
|
|
|
|
ringVerts[5] = intV0FaceVerts[fastMod4(v0InIntFace + 1)];
|
|
ringVerts[6] = intV0FaceVerts[fastMod4(v0InIntFace + 2)];
|
|
ringVerts[7] = intV0FaceVerts[fastMod4(v0InIntFace + 3)];
|
|
|
|
ringVerts[8] = intV1FaceVerts[fastMod4(v1InIntFace + 1)];
|
|
ringVerts[9] = intV1FaceVerts[fastMod4(v1InIntFace + 2)];
|
|
ringVerts[10] = intV1FaceVerts[fastMod4(v1InIntFace + 3)];
|
|
|
|
ringVerts[11] = nextFaceVerts[fastMod4(v1InNextFace + 2)];
|
|
|
|
return 12;
|
|
}
|
|
|
|
//
|
|
// Gathering the 9 vertices of a quad-regular corner patch:
|
|
// - the neighborhood of the face is assumed to be quad-regular
|
|
// - the single corner vertex is specified
|
|
// - only one vertex of the face is a corner
|
|
//
|
|
// Ordering of resulting vertices:
|
|
// It was debatable whether to include the vertices of the original face for a complete
|
|
// "patch" or just the surrounding ring -- clearly we ended up with a function for the entire
|
|
// patch, but that may change.
|
|
// Like the boundary case, the latter ring of vertices around the face was oriented
|
|
// beginning from the leading CCW boundary edge and ending at the trailing edge. The four
|
|
// face vertices begin the patch, and begin with the corner vertex.
|
|
//
|
|
// 0-----3-----8---
|
|
// |x x| |
|
|
// |x x| |
|
|
// 1-----2-----7---
|
|
// | | |
|
|
// | | |
|
|
// 4-----5-----6---
|
|
// | | |
|
|
//
|
|
int
|
|
Level::gatherQuadRegularCornerPatchVertices(
|
|
Index face, unsigned int ringVerts[], int cornerVertInFace) const {
|
|
|
|
Level const& level = *this;
|
|
|
|
int interiorFaceVert = fastMod4(cornerVertInFace + 2);
|
|
|
|
IndexArray faceVerts = level.getFaceVertices(face);
|
|
Index intVert = faceVerts[interiorFaceVert];
|
|
|
|
IndexArray intVertFaces = level.getVertexFaces(intVert);
|
|
LocalIndexArray intVertInFaces = level.getVertexFaceLocalIndices(intVert);
|
|
|
|
int cornerFaceInIntVertFaces = -1;
|
|
for (int i = 0; i < intVertFaces.size(); ++i) {
|
|
if (face == intVertFaces[i]) {
|
|
cornerFaceInIntVertFaces = i;
|
|
break;
|
|
}
|
|
}
|
|
assert(cornerFaceInIntVertFaces >= 0);
|
|
|
|
// Identify the three faces relative to the interior vertex:
|
|
int prevFaceInIntVertFaces = fastMod4(cornerFaceInIntVertFaces + 1);
|
|
int intFaceInIntVertFaces = fastMod4(cornerFaceInIntVertFaces + 2);
|
|
int nextFaceInIntVertFaces = fastMod4(cornerFaceInIntVertFaces + 3);
|
|
|
|
// Identify the indices of the three other faces:
|
|
Index prevFace = intVertFaces[prevFaceInIntVertFaces];
|
|
Index intFace = intVertFaces[intFaceInIntVertFaces];
|
|
Index nextFace = intVertFaces[nextFaceInIntVertFaces];
|
|
|
|
// Identify the interior vertex relative to these three faces:
|
|
LocalIndex intVertInPrevFace = intVertInFaces[prevFaceInIntVertFaces];
|
|
LocalIndex intVertInIntFace = intVertInFaces[intFaceInIntVertFaces];
|
|
LocalIndex intVertInNextFace = intVertInFaces[nextFaceInIntVertFaces];
|
|
|
|
// Access the vertices of these three faces and assign to the ring:
|
|
IndexArray prevFaceVerts = level.getFaceVertices(prevFace);
|
|
IndexArray intFaceVerts = level.getFaceVertices(intFace);
|
|
IndexArray nextFaceVerts = level.getFaceVertices(nextFace);
|
|
|
|
ringVerts[0] = faceVerts[ cornerVertInFace];
|
|
ringVerts[1] = faceVerts[fastMod4(cornerVertInFace + 1)];
|
|
ringVerts[2] = faceVerts[fastMod4(cornerVertInFace + 2)];
|
|
ringVerts[3] = faceVerts[fastMod4(cornerVertInFace + 3)];
|
|
|
|
ringVerts[4] = prevFaceVerts[fastMod4(intVertInPrevFace + 2)];
|
|
|
|
ringVerts[5] = intFaceVerts[fastMod4(intVertInIntFace + 1)];
|
|
ringVerts[6] = intFaceVerts[fastMod4(intVertInIntFace + 2)];
|
|
ringVerts[7] = intFaceVerts[fastMod4(intVertInIntFace + 3)];
|
|
|
|
ringVerts[8] = nextFaceVerts[fastMod4(intVertInNextFace + 2)];
|
|
|
|
return 9;
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// What follows is an internal/anonymous class and protected methods to complete all
|
|
// topological relations when only the face-vertex relations is defined.
|
|
//
|
|
// In keeping with the original idea that Level is just data and relies on other
|
|
// classes to construct it, this functionality may be warranted elsewhere, but we are
|
|
// collectively unclear as to where that should be at present. In the meantime, the
|
|
// implementation is provided here so that we can test and make use of it.
|
|
//
|
|
namespace {
|
|
//
|
|
// This is an internal helper class to manage the assembly of the tological relations
|
|
// that do not have a predictable size, i.e. faces-per-edge, faces-per-vertex and
|
|
// edges-per-vertex. Level manages these with two vectors:
|
|
//
|
|
// - a vector of integer pairs for the "counts" and "offsets"
|
|
// - a vector of incident members accessed by the "offset" of each
|
|
//
|
|
// The "dynamic relation" allocates the latter vector of members based on a typical
|
|
// number of members per component, e.g. we expect valence 4 vertices in a typical
|
|
// quad-mesh, and so an "expected" number might be 6 to accomodate a few x-ordinary
|
|
// vertices. The member vector is allocated with this number per component and the
|
|
// counts and offsets initialized to refer to them -- but with the counts set to 0.
|
|
// The count will be incremented as members are identified and entered, and if any
|
|
// component "overflows" the expected number of members, the members are moved to a
|
|
// separate vector in an std::map for the component.
|
|
//
|
|
// Once all incident members have been added, the main vector is compressed and may
|
|
// need to merge entries from the map in the process.
|
|
//
|
|
typedef std::map<Index, IndexVector> IrregIndexMap;
|
|
|
|
class DynamicRelation {
|
|
public:
|
|
DynamicRelation(IndexVector& countAndOffsets, IndexVector& indices, int membersPerComp);
|
|
~DynamicRelation() { }
|
|
|
|
public:
|
|
// Methods dealing with the members for each component:
|
|
IndexArray getCompMembers(Index index);
|
|
void appendCompMember(Index index, Index member);
|
|
|
|
// Methods dealing with the components:
|
|
void appendComponent();
|
|
void compressMemberIndices();
|
|
|
|
public:
|
|
int _compCount;
|
|
int _memberCountPerComp;
|
|
|
|
IndexVector & _countsAndOffsets;
|
|
IndexVector & _regIndices;
|
|
|
|
IrregIndexMap _irregIndices;
|
|
};
|
|
|
|
inline
|
|
DynamicRelation::DynamicRelation(IndexVector& countAndOffsets, IndexVector& indices, int membersPerComp) :
|
|
_compCount(0),
|
|
_memberCountPerComp(membersPerComp),
|
|
_countsAndOffsets(countAndOffsets),
|
|
_regIndices(indices) {
|
|
|
|
_compCount = (int) _countsAndOffsets.size() / 2;
|
|
|
|
for (int i = 0; i < _compCount; ++i) {
|
|
_countsAndOffsets[2*i] = 0;
|
|
_countsAndOffsets[2*i+1] = i * _memberCountPerComp;
|
|
}
|
|
_regIndices.resize(_compCount * _memberCountPerComp);
|
|
}
|
|
|
|
inline IndexArray
|
|
DynamicRelation::getCompMembers(Index compIndex) {
|
|
|
|
int count = _countsAndOffsets[2*compIndex];
|
|
if (count > _memberCountPerComp) {
|
|
IndexVector & irregMembers = _irregIndices[compIndex];
|
|
return IndexArray(&irregMembers[0], (int)irregMembers.size());
|
|
} else {
|
|
int offset = _countsAndOffsets[2*compIndex+1];
|
|
return IndexArray(&_regIndices[offset], count);
|
|
}
|
|
}
|
|
inline void
|
|
DynamicRelation::appendCompMember(Index compIndex, Index memberValue) {
|
|
|
|
int count = _countsAndOffsets[2*compIndex];
|
|
int offset = _countsAndOffsets[2*compIndex+1];
|
|
|
|
if (count < _memberCountPerComp) {
|
|
_regIndices[offset + count] = memberValue;
|
|
} else {
|
|
IndexVector& irregMembers = _irregIndices[compIndex];
|
|
|
|
if (count > _memberCountPerComp) {
|
|
irregMembers.push_back(memberValue);
|
|
} else {
|
|
irregMembers.resize(_memberCountPerComp + 1);
|
|
std::memcpy(&irregMembers[0], &_regIndices[offset], sizeof(Index) * _memberCountPerComp);
|
|
irregMembers[_memberCountPerComp] = memberValue;
|
|
}
|
|
}
|
|
_countsAndOffsets[2*compIndex] ++;
|
|
}
|
|
inline void
|
|
DynamicRelation::appendComponent() {
|
|
|
|
_countsAndOffsets.push_back(0);
|
|
_countsAndOffsets.push_back(_compCount * _memberCountPerComp);
|
|
|
|
++ _compCount;
|
|
_regIndices.resize(_compCount * _memberCountPerComp);
|
|
}
|
|
void
|
|
DynamicRelation::compressMemberIndices() {
|
|
|
|
if (_irregIndices.size() == 0) {
|
|
int memberCount = _countsAndOffsets[0];
|
|
for (int i = 1; i < _compCount; ++i) {
|
|
int count = _countsAndOffsets[2*i];
|
|
int offset = _countsAndOffsets[2*i + 1];
|
|
|
|
memmove(&_regIndices[memberCount], &_regIndices[offset], count * sizeof(Index));
|
|
|
|
_countsAndOffsets[2*i + 1] = memberCount;
|
|
memberCount += count;
|
|
}
|
|
_regIndices.resize(memberCount);
|
|
} else {
|
|
// Assign new offsets-per-component while determining if we can trivially compressed in place:
|
|
bool cannotBeCompressedInPlace = false;
|
|
|
|
int memberCount = _countsAndOffsets[0];
|
|
for (int i = 1; i < _compCount; ++i) {
|
|
_countsAndOffsets[2*i + 1] = memberCount;
|
|
|
|
cannotBeCompressedInPlace |= (memberCount > (_memberCountPerComp * i));
|
|
|
|
memberCount += _countsAndOffsets[2*i];
|
|
}
|
|
cannotBeCompressedInPlace |= (memberCount > (_memberCountPerComp * _compCount));
|
|
|
|
// Copy members into the original or temporary vector accordingly:
|
|
IndexVector tmpIndices;
|
|
if (cannotBeCompressedInPlace) {
|
|
tmpIndices.resize(memberCount);
|
|
}
|
|
IndexVector& dstIndices = cannotBeCompressedInPlace ? tmpIndices : _regIndices;
|
|
for (int i = 0; i < _compCount; ++i) {
|
|
int count = _countsAndOffsets[2*i];
|
|
|
|
Index *dstMembers = &dstIndices[_countsAndOffsets[2*i + 1]];
|
|
Index *srcMembers = (count <= _memberCountPerComp)
|
|
? &_regIndices[i * _memberCountPerComp]
|
|
: &_irregIndices[i][0];
|
|
memmove(dstMembers, srcMembers, count * sizeof(Index));
|
|
}
|
|
if (cannotBeCompressedInPlace) {
|
|
_regIndices.swap(tmpIndices);
|
|
} else {
|
|
_regIndices.resize(memberCount);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Methods to populate the missing topology relations of the Level:
|
|
//
|
|
inline Index
|
|
Level::findEdge(Index v0Index, Index v1Index, IndexArray const& v0Edges) const {
|
|
|
|
if (v0Index != v1Index) {
|
|
for (int j = 0; j < v0Edges.size(); ++j) {
|
|
IndexArray eVerts = this->getEdgeVertices(v0Edges[j]);
|
|
if ((eVerts[0] == v1Index) || (eVerts[1] == v1Index)) {
|
|
return v0Edges[j];
|
|
}
|
|
}
|
|
} else {
|
|
for (int j = 0; j < v0Edges.size(); ++j) {
|
|
IndexArray eVerts = this->getEdgeVertices(v0Edges[j]);
|
|
if (eVerts[0] == eVerts[1]) {
|
|
return v0Edges[j];
|
|
}
|
|
}
|
|
}
|
|
return INDEX_INVALID;
|
|
}
|
|
|
|
Index
|
|
Level::findEdge(Index v0Index, Index v1Index) const {
|
|
return this->findEdge(v0Index, v1Index, this->getVertexEdges(v0Index));
|
|
}
|
|
|
|
void
|
|
Level::completeTopologyFromFaceVertices() {
|
|
|
|
//
|
|
// Its assumed (a pre-condition) that face-vertices have been fully specified and that we
|
|
// are to construct the remaining relations: including the edge list. We may want to
|
|
// support the existence of the edge list too in future:
|
|
//
|
|
int vCount = this->getNumVertices();
|
|
int fCount = this->getNumFaces();
|
|
int eCount = this->getNumEdges();
|
|
assert((vCount > 0) && (fCount > 0) && (eCount == 0));
|
|
|
|
// May be unnecessary depending on how the vertices and faces were defined, but worth a
|
|
// call to ensure all data related to verts and faces is available -- this will be a
|
|
// harmless call if all has been taken care of).
|
|
//
|
|
// Remember to resize edges similarly after the edge list has been assembled...
|
|
this->resizeVertices(vCount);
|
|
this->resizeFaces(fCount);
|
|
this->resizeEdges(0);
|
|
|
|
//
|
|
// Resize face-edges to match face-verts and reserve for edges based on an estimate:
|
|
//
|
|
this->_faceEdgeIndices.resize(this->getNumFaceVerticesTotal());
|
|
|
|
int eCountEstimate = (vCount << 1);
|
|
|
|
this->_edgeVertIndices.reserve(eCountEstimate * 2);
|
|
this->_edgeFaceIndices.reserve(eCountEstimate * 2);
|
|
|
|
this->_edgeFaceCountsAndOffsets.reserve(eCountEstimate * 2);
|
|
|
|
//
|
|
// Create the dynamic relations to be populated (edge-faces will remain empty as reserved
|
|
// above since there are currently no edges) and iterate through the faces to do so:
|
|
//
|
|
const int avgSize = 6;
|
|
|
|
DynamicRelation dynEdgeFaces(this->_edgeFaceCountsAndOffsets, this->_edgeFaceIndices, 2);
|
|
DynamicRelation dynVertFaces(this->_vertFaceCountsAndOffsets, this->_vertFaceIndices, avgSize);
|
|
DynamicRelation dynVertEdges(this->_vertEdgeCountsAndOffsets, this->_vertEdgeIndices, avgSize);
|
|
|
|
for (Index fIndex = 0; fIndex < fCount; ++fIndex) {
|
|
IndexArray fVerts = this->getFaceVertices(fIndex);
|
|
IndexArray fEdges = this->getFaceEdges(fIndex);
|
|
|
|
for (int i = 0; i < fVerts.size(); ++i) {
|
|
Index v0Index = fVerts[i];
|
|
Index v1Index = fVerts[(i+1) % fVerts.size()];
|
|
|
|
// Look for the edge in v0's incident edge members:
|
|
IndexArray v0Edges = dynVertEdges.getCompMembers(v0Index);
|
|
|
|
Index eIndex = this->findEdge(v0Index, v1Index, v0Edges);
|
|
|
|
// If no edge found, create/append a new one:
|
|
if (!IndexIsValid(eIndex)) {
|
|
eIndex = (Index) this->_edgeCount;
|
|
|
|
this->_edgeCount ++;
|
|
this->_edgeVertIndices.push_back(v0Index);
|
|
this->_edgeVertIndices.push_back(v1Index);
|
|
|
|
dynEdgeFaces.appendComponent();
|
|
|
|
dynVertEdges.appendCompMember(v0Index, eIndex);
|
|
dynVertEdges.appendCompMember(v1Index, eIndex);
|
|
}
|
|
dynEdgeFaces.appendCompMember(eIndex, fIndex);
|
|
dynVertFaces.appendCompMember(v0Index, fIndex);
|
|
|
|
fEdges[i] = eIndex;
|
|
}
|
|
_maxValence = std::max(_maxValence, fVerts.size());
|
|
}
|
|
|
|
dynEdgeFaces.compressMemberIndices();
|
|
dynVertFaces.compressMemberIndices();
|
|
dynVertEdges.compressMemberIndices();
|
|
|
|
//
|
|
// At this point all incident members are associated with each component. We now need
|
|
// to populate the "local indices" for each -- accounting for on-manifold potential --
|
|
// and orient each set. There is little wortwhile advantage in having the local indices
|
|
// available for the orientation as the orienting code "walks" around the components
|
|
// independent of their given order. And since determining the local indices is more
|
|
// involved for non-manifold vertices (needing to deal with repeated entries) we are
|
|
// better of orienting to determine manifold status and then computing local indices
|
|
// according to the manifold status.
|
|
//
|
|
// Resize edges with the Level to ensure anything else related to edges is created:
|
|
eCount = this->getNumEdges();
|
|
this->resizeEdges(eCount);
|
|
|
|
for (Index eIndex = 0; eIndex < eCount; ++eIndex) {
|
|
Level::ETag& eTag = this->_edgeTags[eIndex];
|
|
|
|
IndexArray eFaces = this->getEdgeFaces(eIndex);
|
|
IndexArray eVerts = this->getEdgeVertices(eIndex);
|
|
|
|
_maxEdgeFaces = std::max(_maxEdgeFaces, eFaces.size());
|
|
|
|
if ((eFaces.size() < 1) || (eFaces.size() > 2)) {
|
|
eTag._nonManifold = true;
|
|
}
|
|
if (eVerts[0] == eVerts[1]) {
|
|
printf("ASSERTION - degenerate edges not yet supported!\n");
|
|
assert(eVerts[0] != eVerts[1]);
|
|
|
|
eTag._nonManifold = true;
|
|
}
|
|
|
|
// Mark incident vertices non-manifold to avoid attempting to orient them:
|
|
if (eTag._nonManifold) {
|
|
this->_vertTags[eVerts[0]]._nonManifold = true;
|
|
this->_vertTags[eVerts[1]]._nonManifold = true;
|
|
}
|
|
}
|
|
orientIncidentComponents();
|
|
|
|
populateLocalIndices();
|
|
}
|
|
|
|
void
|
|
Level::populateLocalIndices() {
|
|
|
|
//
|
|
// We have two sets of local indices -- vert-faces and vert-edges:
|
|
//
|
|
int vCount = this->getNumVertices();
|
|
|
|
this->_vertFaceLocalIndices.resize(this->_vertFaceIndices.size());
|
|
this->_vertEdgeLocalIndices.resize(this->_vertEdgeIndices.size());
|
|
|
|
for (Index vIndex = 0; vIndex < vCount; ++vIndex) {
|
|
IndexArray vFaces = this->getVertexFaces(vIndex);
|
|
LocalIndexArray vInFaces = this->getVertexFaceLocalIndices(vIndex);
|
|
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
IndexArray fVerts = this->getFaceVertices(vFaces[i]);
|
|
|
|
int vInFaceIndex = (int)(std::find(fVerts.begin(), fVerts.end(), vIndex) - fVerts.begin());
|
|
vInFaces[i] = (LocalIndex) vInFaceIndex;
|
|
}
|
|
}
|
|
|
|
for (Index vIndex = 0; vIndex < vCount; ++vIndex) {
|
|
IndexArray vEdges = this->getVertexEdges(vIndex);
|
|
LocalIndexArray vInEdges = this->getVertexEdgeLocalIndices(vIndex);
|
|
|
|
for (int i = 0; i < vEdges.size(); ++i) {
|
|
IndexArray eVerts = this->getEdgeVertices(vEdges[i]);
|
|
|
|
vInEdges[i] = (vIndex == eVerts[1]);
|
|
}
|
|
_maxValence = std::max(_maxValence, vEdges.size());
|
|
}
|
|
}
|
|
|
|
void
|
|
Level::orientIncidentComponents() {
|
|
|
|
int vCount = this->getNumVertices();
|
|
|
|
for (Index vIndex = 0; vIndex < vCount; ++vIndex) {
|
|
Level::VTag vTag = this->_vertTags[vIndex];
|
|
|
|
if (!vTag._nonManifold) {
|
|
if (!orderVertexFacesAndEdges(vIndex)) {
|
|
vTag._nonManifold = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
inline int
|
|
findInArray(IndexArray const& array, Index value) {
|
|
return (int)(std::find(array.begin(), array.end(), value) - array.begin());
|
|
}
|
|
}
|
|
|
|
bool
|
|
Level::orderVertexFacesAndEdges(Index vIndex, Index * vFacesOrdered, Index * vEdgesOrdered) const {
|
|
|
|
IndexArray const vEdges = this->getVertexEdges(vIndex);
|
|
IndexArray const vFaces = this->getVertexFaces(vIndex);
|
|
|
|
int fCount = vFaces.size();
|
|
int eCount = vEdges.size();
|
|
|
|
if ((fCount == 0) || (eCount < 2) || ((eCount - fCount) > 1)) return false;
|
|
|
|
//
|
|
// Note we have already eliminated the possibility of incident degenerate edges
|
|
// and other bad edges earlier -- marking its vertices non-manifold as a result
|
|
// and explicitly avoiding this method:
|
|
//
|
|
Index fStart = INDEX_INVALID;
|
|
Index eStart = INDEX_INVALID;
|
|
int fvStart = 0;
|
|
|
|
if (eCount == fCount) {
|
|
// Interior case -- start with the first face
|
|
|
|
fStart = vFaces[0];
|
|
fvStart = findInArray(this->getFaceVertices(fStart), vIndex);
|
|
eStart = this->getFaceEdges(fStart)[fvStart];
|
|
} else {
|
|
// Boundary case -- start with (identify) the leading of two boundary edges:
|
|
|
|
for (int i = 0; i < eCount; ++i) {
|
|
IndexArray const eFaces = this->getEdgeFaces(vEdges[i]);
|
|
if (eFaces.size() == 1) {
|
|
eStart = vEdges[i];
|
|
fStart = eFaces[0];
|
|
fvStart = findInArray(this->getFaceVertices(fStart), vIndex);
|
|
|
|
// Singular edge -- look for forward edge to this vertex:
|
|
if (eStart == (this->getFaceEdges(fStart)[fvStart])) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// We have identified a starting face, face-vert and leading edge from
|
|
// which to walk counter clockwise to identify manifold neighbors. If
|
|
// this vertex is really locally manifold, we will end up back at the
|
|
// starting edge or at the other singular edge of a boundary:
|
|
//
|
|
int eCountOrdered = 1;
|
|
int fCountOrdered = 1;
|
|
|
|
vFacesOrdered[0] = fStart;
|
|
vEdgesOrdered[0] = eStart;
|
|
|
|
Index eFirst = eStart;
|
|
|
|
while (eCountOrdered < eCount) {
|
|
//
|
|
// Find the next edge, i.e. the one counter-clockwise to the last:
|
|
//
|
|
IndexArray const fVerts = this->getFaceVertices(fStart);
|
|
IndexArray const fEdges = this->getFaceEdges(fStart);
|
|
|
|
int feStart = fvStart;
|
|
int feNext = feStart ? (feStart - 1) : (fVerts.size() - 1);
|
|
Index eNext = fEdges[feNext];
|
|
|
|
// Two non-manifold situations detected:
|
|
// - two subsequent edges the same, i.e. a "repeated edge" in a face
|
|
// - back at the start before all edges processed
|
|
if ((eNext == eStart) || (eNext == eFirst)) return false;
|
|
|
|
//
|
|
// Add the next edge and if more faces to visit (not at the end of
|
|
// a boundary) look to its opposite face:
|
|
//
|
|
vEdgesOrdered[eCountOrdered++] = eNext;
|
|
|
|
if (fCountOrdered < fCount) {
|
|
IndexArray const eFaces = this->getEdgeFaces(eNext);
|
|
|
|
if (eFaces.size() == 0) return false;
|
|
if ((eFaces.size() == 1) && (eFaces[0] == fStart)) return false;
|
|
|
|
fStart = eFaces[eFaces[0] == fStart];
|
|
fvStart = findInArray(this->getFaceEdges(fStart), eNext);
|
|
|
|
vFacesOrdered[fCountOrdered++] = fStart;
|
|
}
|
|
eStart = eNext;
|
|
}
|
|
assert(eCountOrdered == eCount);
|
|
assert(fCountOrdered == fCount);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
Level::orderVertexFacesAndEdges(Index vIndex) {
|
|
|
|
IndexArray vFaces = this->getVertexFaces(vIndex);
|
|
IndexArray vEdges = this->getVertexEdges(vIndex);
|
|
|
|
Index * vFacesOrdered = (Index *)alloca((vFaces.size() + vEdges.size()) * sizeof(Index));
|
|
Index * vEdgesOrdered = vFacesOrdered + vFaces.size();
|
|
|
|
if (orderVertexFacesAndEdges(vIndex, vFacesOrdered, vEdgesOrdered)) {
|
|
std::memcpy(&vFaces[0], vFacesOrdered, vFaces.size() * sizeof(Index));
|
|
std::memcpy(&vEdges[0], vEdgesOrdered, vEdges.size() * sizeof(Index));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// In development -- methods for accessing face-varying data channels...
|
|
//
|
|
int
|
|
Level::createFVarChannel(int fvarValueCount, Sdc::Options const& fvarOptions) {
|
|
|
|
FVarLevel* fvarLevel = new FVarLevel(*this);
|
|
|
|
fvarLevel->setOptions(fvarOptions);
|
|
fvarLevel->resizeValues(fvarValueCount);
|
|
fvarLevel->resizeComponents();
|
|
|
|
_fvarChannels.push_back(fvarLevel);
|
|
return (int)_fvarChannels.size() - 1;
|
|
}
|
|
|
|
void
|
|
Level::destroyFVarChannel(int channel) {
|
|
|
|
delete _fvarChannels[channel];
|
|
_fvarChannels.erase(_fvarChannels.begin() + channel);
|
|
}
|
|
|
|
int
|
|
Level::getNumFVarValues(int channel) const {
|
|
return _fvarChannels[channel]->getNumValues();
|
|
}
|
|
|
|
IndexArray const
|
|
Level::getFVarFaceValues(Index faceIndex, int channel) const {
|
|
return _fvarChannels[channel]->getFaceValues(faceIndex);
|
|
}
|
|
|
|
IndexArray
|
|
Level::getFVarFaceValues(Index faceIndex, int channel) {
|
|
return _fvarChannels[channel]->getFaceValues(faceIndex);
|
|
}
|
|
|
|
void
|
|
Level::completeFVarChannelTopology(int channel) {
|
|
return _fvarChannels[channel]->completeTopologyFromFaceValues();
|
|
}
|
|
|
|
} // end namespace Vtr
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
} // end namespace OpenSubdiv
|