OpenSubdiv/opensubdiv/far/patchTables.cpp
manuelk abae4459e6 Adding support for gregory patches limit interpolation to Far::PatchTables
note: limit interpolation requires stencil-driven Gregory basis CVs
2014-11-11 11:27:25 -08:00

362 lines
10 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/patchTables.h"
#include "../far/stencilTables.h"
#include <cstring>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
static void
getBeziereWeights(float t, float point[4], float deriv[3]) {
// The weights for the four uniform cubic Bezier basis functions are:
// (1 - t)^3
// 3 * t * (1-t)
// 3 * t^2 * (1-t)
// t^3
float t2 = t*t,
w0 = 1.0f - t,
w2 = w0 * w0;
assert(point);
point[0] = w0*w2;
point[1] = 3.0f * t * w2;
point[2] = 3.0f * t2 * w0;
point[3] = t * t2;
// The weights for the three uniform quadratic basis functions are:
// (1-t)^2
// 2 * t * (1-t)
// t^2
if (deriv) {
deriv[0] = w2;
deriv[1] = 2.0f * t * w0;
deriv[2] = t2;
}
}
static void
getBSplineWeights(float t, float point[4], float deriv[3]) {
// The weights for the four uniform cubic B-Spline basis functions are:
// (1/6)(1 - t)^3
// (1/6)(3t^3 - 6t^2 + 4)
// (1/6)(-3t^3 + 3t^2 + 3t + 1)
// (1/6)t^3
float t2 = t*t,
t3 = 3.0f*t2*t,
w0 = 1.0f-t;
assert(point);
point[0] = (w0*w0*w0) / 6.0f;
point[1] = (t3 - 6.0f*t2 + 4.0f) / 6.0f;
point[2] = (3.0f*t2 - t3 + 3.0f*t + 1.0f) / 6.0f;
point[3] = t3 / 18.0f;
// The weights for the three uniform quadratic basis functions are:
// (1/2)(1-t)^2
// (1/2)(1 + 2t - 2t^2)
// (1/2)t^2
if (deriv) {
deriv[0] = 0.5f * w0 * w0;
deriv[1] = 0.5f + t - t2;
deriv[2] = 0.5f * t2;
}
}
void
PatchTables::getBasisWeightsAtUV(TensorBasis basis, PatchParam::BitField bits,
float s, float t, float point[16], float deriv1[16], float deriv2[16]) {
int const rots[4][16] =
{ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 12, 8, 4, 0, 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3 },
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 },
{ 3, 7, 11, 15, 2, 6, 10, 14, 1, 5, 9, 13, 0, 4, 8, 12 } };
assert(bits.GetRotation()<4);
int const * rot = rots[bits.GetRotation()];
float sWeights[4], tWeights[4], d1Weights[3], d2Weights[3];
if (basis==BASIS_BSPLINE) {
getBSplineWeights(s, point ? sWeights : 0, deriv1 ? d1Weights : 0);
getBSplineWeights(t, point ? tWeights : 0, deriv2 ? d2Weights : 0);
} else if (basis==BASIS_BEZIER) {
getBeziereWeights(s, point ? sWeights : 0, deriv1 ? d1Weights : 0);
getBeziereWeights(t, point ? tWeights : 0, deriv2 ? d2Weights : 0);
} else {
assert(0);
}
if (point) {
// Compute the tensor product weight corresponding to each control
// vertex
memset(point, 0, 16*sizeof(float));
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
point[rot[4*i+j]] += sWeights[j] * tWeights[i];
}
}
}
if (deriv1 and deriv2) {
// Compute the tangent stencil. This is done by taking the tensor
// product between the quadratic weights computed for s and the cubic
// weights computed for t. The stencil is constructed using
// differences between consecutive vertices in each row (i.e.
// in the s direction).
memset(deriv1, 0, 16*sizeof(float));
for (int i = 0; i < 4; ++i) {
float prevWeight = 0.0f;
for (int j = 0; j < 3; ++j) {
float weight = d1Weights[j]*tWeights[i];
deriv1[rot[4*i+j]] += prevWeight - weight;
prevWeight = weight;
}
deriv1[rot[4*i+3]]+=prevWeight;
}
memset(deriv2, 0, 16*sizeof(float));
for (int j = 0; j < 4; ++j) {
float prevWeight = 0.0f;
for (int i = 0; i < 3; ++i) {
float weight = sWeights[j]*d2Weights[i];
deriv2[rot[4*i+j]]+=prevWeight - weight;
prevWeight = weight;
}
deriv2[rot[12+j]] += prevWeight;
}
// Scale derivatives up based on level of subdivision
float scale = float(1 << bits.GetDepth());
for (int k=0; k<16; ++k) {
deriv1[k] *= scale;
deriv2[k] *= scale;
}
}
}
//
// Constructor
//
PatchTables::PatchTables(PatchArrayVector const & patchArrays,
PTable const & patches,
VertexValenceTable const * vertexValences,
QuadOffsetTable const * quadOffsets,
StencilTables const * endcapStencilTables,
PatchParamTable const * patchParams,
FVarPatchTables const * fvarPatchTables,
int maxValence) :
_maxValence(maxValence),
_numPtexFaces(0),
_patchArrays(patchArrays),
_patches(patches),
_endcapStencilTables(endcapStencilTables),
_fvarPatchTables(fvarPatchTables) {
// copy other tables if exist
if (vertexValences)
_vertexValenceTable = *vertexValences;
if (quadOffsets)
_quadOffsetTable = *quadOffsets;
if (patchParams)
_paramTable = *patchParams;
}
PatchTables::~PatchTables() {
delete _endcapStencilTables;
delete _fvarPatchTables;
}
bool
PatchTables::IsFeatureAdaptive() const {
// the vertex valence table is only used by Gregory patches, so the PatchTables
// contain feature adaptive patches if this is not empty.
if (not _vertexValenceTable.empty())
return true;
PatchArrayVector const & parrays = GetPatchArrayVector();
// otherwise, we have to check each patch array
for (int i=0; i<(int)parrays.size(); ++i) {
if (parrays[i].GetDescriptor().GetType() >= REGULAR and
parrays[i].GetDescriptor().GetType() <= GREGORY_BOUNDARY)
return true;
}
return false;
}
int
PatchTables::GetNumPatchesTotal() const {
// there is one PatchParam record for each patch in the mesh
return (int)GetPatchParamTable().size();
}
int
PatchTables::GetNumControlVerticesTotal() const {
int result=0;
for (int i=0; i<(int)_patchArrays.size(); ++i) {
result += _patchArrays[i].GetDescriptor().GetNumControlVertices() *
_patchArrays[i].GetNumPatches();
}
return result;
}
//
// Uniform accessors
//
PatchTables::PatchArray const *
PatchTables::GetUniformPatchArray(int level) const {
if (IsFeatureAdaptive())
return NULL;
PatchArrayVector const & parrays = GetPatchArrayVector();
if (parrays.empty())
return NULL;
if (level < 1) {
return &(*parrays.rbegin());
} else if ((level-1) < (int)parrays.size() ) {
return &parrays[level-1];
}
return NULL;
}
Index const *
PatchTables::GetUniformFaceVertices(int level) const {
PatchArray const * parray = GetUniformPatchArray(level);
if (parray) {
return &GetPatchTable()[ parray->GetVertIndex() ];
}
return NULL;
}
int
PatchTables::GetNumUniformFaces(int level) const {
PatchArray const * parray = GetUniformPatchArray(level);
if (parray) {
return parray->GetNumPatches();
}
return -1;
}
//
// Returns a pointer to the array of patches matching the descriptor
//
PatchTables::PatchArray *
PatchTables::findPatchArray( PatchTables::Descriptor desc ) {
for (int i=0; i<(int)_patchArrays.size(); ++i) {
if (_patchArrays[i].GetDescriptor()==desc)
return &_patchArrays[i];
}
return 0;
}
//
// Lists of patch Descriptors for each subdivision scheme
//
PatchTables::DescriptorVector const &
PatchTables::getAdaptiveCatmarkDescriptors() {
static DescriptorVector _descriptors;
if (_descriptors.empty()) {
_descriptors.reserve(71);
// non-transition patches : 6
for (int i=REGULAR; i<=GREGORY_BASIS; ++i) {
_descriptors.push_back( Descriptor(i, NON_TRANSITION, 0) );
}
// transition patches (1 + 4 * 3) * 5 = 65
for (int i=PATTERN0; i<=PATTERN4; ++i) {
_descriptors.push_back( Descriptor(REGULAR, i, 0) );
// 4 rotations for single-crease, boundary and corner patches
for (int j=0; j<4; ++j) {
_descriptors.push_back( Descriptor(SINGLE_CREASE, i, j) );
}
for (int j=0; j<4; ++j) {
_descriptors.push_back( Descriptor(BOUNDARY, i, j) );
}
for (int j=0; j<4; ++j) {
_descriptors.push_back( Descriptor(CORNER, i, j) );
}
}
}
return _descriptors;
}
PatchTables::DescriptorVector const &
PatchTables::getAdaptiveLoopDescriptors() {
static DescriptorVector _descriptors;
if (_descriptors.empty()) {
_descriptors.reserve(1);
_descriptors.push_back( Descriptor(LOOP, NON_TRANSITION, 0) );
}
return _descriptors;
}
PatchTables::DescriptorVector const &
PatchTables::GetAdaptiveDescriptors(Sdc::Type type) {
static DescriptorVector _empty;
switch (type) {
case Sdc::TYPE_CATMARK : return getAdaptiveCatmarkDescriptors();
case Sdc::TYPE_LOOP : return getAdaptiveLoopDescriptors();
default:
assert(0);
}
return _empty;
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv