OpenSubdiv/opensubdiv/far/loopSubdivisionTablesFactory.h
manuelk 10c687ecd5 Release Candidate 1.0 :
- [Feature Adaptive GPU Rendering of Catmull-Clark Surfaces](http://research.microsoft.com/en-us/um/people/cloop/tog2012.pdf).

- New API architecture : we are planning to lock on to this new framework as the basis for backward compatibility, which we will enforce from Release 1.0 onward. Subsequent releases of OpenSubdiv should not break client code.

- DirectX 11 support

- and much more...
2012-12-10 17:15:13 -08:00

284 lines
12 KiB
C++

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#ifndef FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H
#define FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H
#include "../version.h"
#include "../far/loopSubdivisionTables.h"
#include "../far/meshFactory.h"
#include "../far/subdivisionTablesFactory.h"
#include <cassert>
#include <vector>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
template <class T, class U> class FarMeshFactory;
/// \brief A specialized factory for FarLoopSubdivisionTables
///
/// Separating the factory allows us to isolate Far data structures from Hbr dependencies.
///
template <class T, class U> class FarLoopSubdivisionTablesFactory {
protected:
template <class X, class Y> friend class FarMeshFactory;
/// Creates a FarLoopSubdivisiontables instance.
static FarLoopSubdivisionTables<U> * Create( FarMeshFactory<T,U> * meshFactory, FarMesh<U> * farMesh );
};
// This factory walks the Hbr vertices and accumulates the weights and adjacency
// (valance) information specific to the loop subdivision scheme. The results
// are stored in a FarLoopSubdivisionTable<U>.
template <class T, class U> FarLoopSubdivisionTables<U> *
FarLoopSubdivisionTablesFactory<T,U>::Create( FarMeshFactory<T,U> * meshFactory, FarMesh<U> * farMesh ) {
assert( meshFactory and farMesh );
int maxlevel = meshFactory->GetMaxLevel();
std::vector<int> & remap = meshFactory->getRemappingTable();
FarSubdivisionTablesFactory<T,U> tablesFactory( meshFactory->GetHbrMesh(), maxlevel, remap );
FarLoopSubdivisionTables<U> * result = new FarLoopSubdivisionTables<U>(farMesh, maxlevel);
// Allocate memory for the indexing tables
result->_E_IT.Resize(tablesFactory.GetNumEdgeVerticesTotal(maxlevel)*4);
result->_E_W.Resize(tablesFactory.GetNumEdgeVerticesTotal(maxlevel)*2);
result->_V_ITa.Resize(tablesFactory.GetNumVertexVerticesTotal(maxlevel)*5);
result->_V_IT.Resize(tablesFactory.GetVertVertsValenceSum());
result->_V_W.Resize(tablesFactory.GetNumVertexVerticesTotal(maxlevel));
for (int level=1; level<=maxlevel; ++level) {
// pointer to the first vertex corresponding to this level
result->_vertsOffsets[level] = tablesFactory._vertVertIdx[level-1] +
(int)tablesFactory._vertVertsList[level-1].size();
typename FarSubdivisionTables<U>::VertexKernelBatch * batch = & (result->_batches[level-1]);
// Edge vertices
int * E_IT = result->_E_IT[level-1];
float * E_W = result->_E_W[level-1];
batch->kernelE = (int)tablesFactory._edgeVertsList[level].size();
for (int i=0; i < batch->kernelE; ++i) {
HbrVertex<T> * v = tablesFactory._edgeVertsList[level][i];
assert(v);
HbrHalfedge<T> * e = v->GetParentEdge();
assert(e);
float esharp = e->GetSharpness(),
endPtWeight = 0.5f,
oppPtWeight = 0.5f;
E_IT[4*i+0]= remap[e->GetOrgVertex()->GetID()];
E_IT[4*i+1]= remap[e->GetDestVertex()->GetID()];
if (!e->IsBoundary() && esharp <= 1.0f) {
endPtWeight = 0.375f + esharp * (0.5f - 0.375f);
oppPtWeight = 0.125f * (1 - esharp);
HbrHalfedge<T>* ee = e->GetNext();
E_IT[4*i+2]= remap[ee->GetDestVertex()->GetID()];
ee = e->GetOpposite()->GetNext();
E_IT[4*i+3]= remap[ee->GetDestVertex()->GetID()];
} else {
E_IT[4*i+2]= -1;
E_IT[4*i+3]= -1;
}
E_W[2*i+0] = endPtWeight;
E_W[2*i+1] = oppPtWeight;
}
result->_E_IT.SetMarker(level, &E_IT[4*batch->kernelE]);
result->_E_W.SetMarker(level, &E_W[2*batch->kernelE]);
// Vertex vertices
batch->InitVertexKernels( (int)tablesFactory._vertVertsList[level].size(), 0 );
int offset = 0;
int * V_ITa = result->_V_ITa[level-1];
unsigned int * V_IT = result->_V_IT[level-1];
float * V_W = result->_V_W[level-1];
int nverts = (int)tablesFactory._vertVertsList[level].size();
for (int i=0; i < nverts; ++i) {
HbrVertex<T> * v = tablesFactory._vertVertsList[level][i],
* pv = v->GetParentVertex();
assert(v and pv);
// Look at HbrCatmarkSubdivision<T>::Subdivide for more details about
// the multi-pass interpolation
int masks[2], npasses;
float weights[2];
masks[0] = pv->GetMask(false);
masks[1] = pv->GetMask(true);
// If the masks are identical, only a single pass is necessary. If the
// vertex is transitioning to another rule, two passes are necessary,
// except when transitioning from k_Dart to k_Smooth : the same
// compute kernel is applied twice. Combining this special case allows
// to batch the compute kernels into fewer calls.
if (masks[0] != masks[1] and (
not (masks[0]==HbrVertex<T>::k_Smooth and
masks[1]==HbrVertex<T>::k_Dart))) {
weights[1] = pv->GetFractionalMask();
weights[0] = 1.0f - weights[1];
npasses = 2;
} else {
weights[0] = 1.0f;
weights[1] = 0.0f;
npasses = 1;
}
int rank = FarSubdivisionTablesFactory<T,U>::GetMaskRanking(masks[0], masks[1]);
V_ITa[5*i+0] = offset;
V_ITa[5*i+1] = 0;
V_ITa[5*i+2] = remap[ pv->GetID() ];
V_ITa[5*i+3] = -1;
V_ITa[5*i+4] = -1;
for (int p=0; p<npasses; ++p)
switch (masks[p]) {
case HbrVertex<T>::k_Smooth :
case HbrVertex<T>::k_Dart : {
HbrHalfedge<T> *e = pv->GetIncidentEdge(),
*start = e;
while (e) {
V_ITa[5*i+1]++;
V_IT[offset++] = remap[ e->GetDestVertex()->GetID() ];
e = e->GetPrev()->GetOpposite();
if (e==start) break;
}
break;
}
case HbrVertex<T>::k_Crease : {
class GatherCreaseEdgesOperator : public HbrHalfedgeOperator<T> {
public:
HbrVertex<T> * vertex; int eidx[2]; int count; bool next;
GatherCreaseEdgesOperator(HbrVertex<T> * v, bool n) : vertex(v), count(0), next(n) { eidx[0]=-1; eidx[1]=-1; }
virtual void operator() (HbrHalfedge<T> &e) {
if (e.IsSharp(next) and count < 2) {
HbrVertex<T> * a = e.GetDestVertex();
if (a==vertex)
a = e.GetOrgVertex();
eidx[count++]=a->GetID();
}
}
};
GatherCreaseEdgesOperator op( pv, p==1 );
pv->ApplyOperatorSurroundingEdges( op );
assert(V_ITa[5*i+3]==-1 and V_ITa[5*i+4]==-1);
assert(op.eidx[0]!=-1 and op.eidx[1]!=-1);
V_ITa[5*i+3] = remap[op.eidx[0]];
V_ITa[5*i+4] = remap[op.eidx[1]];
break;
}
case HbrVertex<T>::k_Corner :
// in the case of a k_Crease / k_Corner pass combination, we
// need to set the valence to -1 to tell the "B" Kernel to
// switch to k_Corner rule (as edge indices won't be -1)
if (V_ITa[5*i+1]==0)
V_ITa[5*i+1] = -1;
default : break;
}
if (rank>7)
// the k_Corner and k_Crease single-pass cases apply a weight of 1.0
// but this value is inverted in the kernel
V_W[i] = 0.0;
else
V_W[i] = weights[0];
batch->AddVertex( i, rank );
}
result->_V_ITa.SetMarker(level, &V_ITa[5*nverts]);
result->_V_IT.SetMarker(level, &V_IT[offset]);
result->_V_W.SetMarker(level, &V_W[nverts]);
if (nverts>0) {
batch->kernelB.second++;
batch->kernelA1.second++;
batch->kernelA2.second++;
}
}
return result;
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H */