OpenSubdiv/examples/glEvalLimit/glEvalLimit.cpp
barry 329fd509a1 Updated GL examples for common command line arguments:
- updated all examples/gl* to make use of common/argOptions.h
    - implemented -yup where user-supplied geometry is imported
    - updated glPtexViewer to use ObjAnim class for animated geometry
2019-04-24 19:39:18 -07:00

1579 lines
56 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../common/glUtils.h"
#include <GLFW/glfw3.h>
GLFWwindow* g_window=0;
GLFWmonitor* g_primary=0;
#include <opensubdiv/osd/cpuEvaluator.h>
#include <opensubdiv/osd/cpuVertexBuffer.h>
#include <opensubdiv/osd/cpuPatchTable.h>
#include <opensubdiv/osd/cpuGLVertexBuffer.h>
#include <opensubdiv/osd/mesh.h>
#ifdef OPENSUBDIV_HAS_TBB
#include <opensubdiv/osd/tbbEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_OPENMP
#include <opensubdiv/osd/ompEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_CUDA
#include <opensubdiv/osd/cudaEvaluator.h>
#include <opensubdiv/osd/cudaVertexBuffer.h>
#include <opensubdiv/osd/cudaGLVertexBuffer.h>
#include <opensubdiv/osd/cudaPatchTable.h>
#include "../common/cudaDeviceContext.h"
CudaDeviceContext g_cudaDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
#include <opensubdiv/osd/clVertexBuffer.h>
#include <opensubdiv/osd/clGLVertexBuffer.h>
#include <opensubdiv/osd/clEvaluator.h>
#include <opensubdiv/osd/clPatchTable.h>
#include "../common/clDeviceContext.h"
CLDeviceContext g_clDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
#include <opensubdiv/osd/glXFBEvaluator.h>
#include <opensubdiv/osd/glVertexBuffer.h>
#include <opensubdiv/osd/glPatchTable.h>
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
#include <opensubdiv/osd/glComputeEvaluator.h>
#include <opensubdiv/osd/glVertexBuffer.h>
#include <opensubdiv/osd/glPatchTable.h>
#endif
#include <opensubdiv/far/topologyRefiner.h>
#include <opensubdiv/far/stencilTableFactory.h>
#include <opensubdiv/far/patchTableFactory.h>
#include <opensubdiv/far/error.h>
#include "../../regression/common/far_utils.h"
#include "../common/argOptions.h"
#include "../common/viewerArgsUtils.h"
#include "../common/stopwatch.h"
#include "../common/simple_math.h"
#include "../common/glControlMeshDisplay.h"
#include "../common/glHud.h"
#include "init_shapes.h"
#include "particles.h"
#include <cfloat>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <stdlib.h>
using namespace OpenSubdiv;
//------------------------------------------------------------------------------
enum KernelType { kCPU = 0,
kOPENMP = 1,
kTBB = 2,
kCUDA = 3,
kCL = 4,
kGLXFB = 5,
kGLCompute = 6 };
enum EndCap { kEndCapBilinearBasis,
kEndCapBSplineBasis,
kEndCapGregoryBasis };
enum HudCheckBox { kHUD_CB_DISPLAY_CONTROL_MESH_EDGES,
kHUD_CB_DISPLAY_CONTROL_MESH_VERTS,
kHUD_CB_ANIMATE_VERTICES,
kHUD_CB_ANIMATE_PARTICLES,
kHUD_CB_RANDOM_START,
kHUD_CB_FREEZE,
kHUD_CB_ADAPTIVE,
kHUD_CB_SMOOTH_CORNER_PATCH,
kHUD_CB_SINGLE_CREASE_PATCH,
kHUD_CB_INF_SHARP_PATCH };
enum DrawMode { kUV,
kVARYING,
kNORMAL,
kSHADE,
kFACEVARYING,
kMEAN_CURVATURE };
std::vector<float> g_orgPositions,
g_positions,
g_varyingColors;
int g_currentShape = 0,
g_adaptive = 1,
g_level = 2,
g_kernel = kCPU,
g_endCap = kEndCapGregoryBasis,
g_smoothCornerPatch = 0,
g_singleCreasePatch = 0,
g_infSharpPatch = 0,
g_numElements = 3;
int g_running = 1,
g_width = 1024,
g_height = 1024,
g_fullscreen = 0,
g_drawMode = kUV,
g_prev_x = 0,
g_prev_y = 0,
g_mbutton[3] = {0, 0, 0},
g_frame=0,
g_freeze=0,
g_repeatCount;
float g_rotate[2] = {0, 0},
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0,
g_moveScale = 0.0f;
bool g_yup = false;
GLuint g_transformUB = 0,
g_transformBinding = 0;
struct Transform {
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
} g_transformData;
OpenSubdiv::Sdc::Options::FVarLinearInterpolation g_fvarBoundary =
//OpenSubdiv::Sdc::Options::FVAR_LINEAR_ALL;
OpenSubdiv::Sdc::Options::FVAR_LINEAR_CORNERS_ONLY;
// performance
float g_evalTime = 0;
float g_computeTime = 0;
float g_prevTime = 0;
float g_currentTime = 0;
Stopwatch g_fpsTimer;
//------------------------------------------------------------------------------
int g_nParticles = 65536;
bool g_randomStart = true;//false;
bool g_animParticles = true;
GLuint g_samplesVAO=0;
GLhud g_hud;
GLControlMeshDisplay g_controlMeshDisplay;
//------------------------------------------------------------------------------
struct Program {
GLuint program;
GLuint uniformModelViewMatrix;
GLuint uniformProjectionMatrix;
GLuint uniformDrawMode;
GLuint attrPosition;
GLuint attrColor;
GLuint attrDu;
GLuint attrDv;
GLuint attrDuu;
GLuint attrDuv;
GLuint attrDvv;
GLuint attrPatchCoord;
GLuint attrFVarData;
} g_defaultProgram;
//------------------------------------------------------------------------------
static void
createRandomColors(int nverts, int stride, float * colors) {
// large Pell prime number
srand( static_cast<int>(2147483647) );
for (int i=0; i<nverts; ++i) {
colors[i*stride+0] = (float)rand()/(float)RAND_MAX;
colors[i*stride+1] = (float)rand()/(float)RAND_MAX;
colors[i*stride+2] = (float)rand()/(float)RAND_MAX;
}
}
//------------------------------------------------------------------------------
Far::PatchTable const * g_patchTable = NULL;
// input and output vertex data
class EvalOutputBase {
public:
virtual ~EvalOutputBase() {}
virtual GLuint BindSourceData() const = 0;
virtual GLuint BindVertexData() const = 0;
virtual GLuint Bind1stDerivatives() const = 0;
virtual GLuint Bind2ndDerivatives() const = 0;
virtual GLuint BindFaceVaryingData() const = 0;
virtual GLuint BindPatchCoords() const = 0;
virtual void UpdateData(const float *src, int startVertex, int numVertices) = 0;
virtual void UpdateVaryingData(const float *src, int startVertex, int numVertices) = 0;
virtual void UpdateFaceVaryingData(const float *src, int startVertex, int numVertices) = 0;
virtual bool HasFaceVaryingData() const = 0;
virtual void Refine() = 0;
virtual void EvalPatches() = 0;
virtual void EvalPatchesWith1stDerivatives() = 0;
virtual void EvalPatchesWith2ndDerivatives() = 0;
virtual void EvalPatchesVarying() = 0;
virtual void EvalPatchesFaceVarying() = 0;
virtual void UpdatePatchCoords(
std::vector<Osd::PatchCoord> const &patchCoords) = 0;
};
// note: Since we don't have a class for device-patchcoord container in osd,
// we cheat to use vertexbuffer as a patch-coord (5int) container.
//
// Please don't follow the pattern in your actual application.
//
template<typename SRC_VERTEX_BUFFER, typename EVAL_VERTEX_BUFFER,
typename STENCIL_TABLE, typename PATCH_TABLE, typename EVALUATOR,
typename DEVICE_CONTEXT = void>
class EvalOutput : public EvalOutputBase {
public:
typedef OpenSubdiv::Osd::EvaluatorCacheT<EVALUATOR> EvaluatorCache;
EvalOutput(Far::StencilTable const *vertexStencils,
Far::StencilTable const *varyingStencils,
Far::StencilTable const *faceVaryingStencils,
int fvarChannel, int fvarWidth,
int numParticles, Far::PatchTable const *patchTable,
EvaluatorCache *evaluatorCache = NULL,
DEVICE_CONTEXT *deviceContext = NULL)
: _srcDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 3),
_srcVaryingDesc(/*offset*/ 0, /*length*/ 3, /*stride*/ 3),
_srcFVarDesc( /*offset*/ 0, /*length*/ fvarWidth, /*stride*/ fvarWidth),
_vertexDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 6),
_varyingDesc( /*offset*/ 3, /*length*/ 3, /*stride*/ 6),
_fvarDesc( /*offset*/ 0, /*length*/ fvarWidth, /*stride*/ fvarWidth),
_duDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 6),
_dvDesc( /*offset*/ 3, /*length*/ 3, /*stride*/ 6),
_duuDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 9),
_duvDesc( /*offset*/ 3, /*length*/ 3, /*stride*/ 9),
_dvvDesc( /*offset*/ 6, /*length*/ 3, /*stride*/ 9),
_deviceContext(deviceContext) {
// total number of vertices = coarse points + refined points + local points
int numTotalVerts = vertexStencils->GetNumControlVertices()
+ vertexStencils->GetNumStencils();
_srcData = SRC_VERTEX_BUFFER::Create(3, numTotalVerts, _deviceContext);
_srcVaryingData = SRC_VERTEX_BUFFER::Create(3, numTotalVerts, _deviceContext);
_vertexData = EVAL_VERTEX_BUFFER::Create(6, numParticles, _deviceContext);
_deriv1 = EVAL_VERTEX_BUFFER::Create(6, numParticles, _deviceContext);
_deriv2 = EVAL_VERTEX_BUFFER::Create(9, numParticles, _deviceContext);
_patchTable = PATCH_TABLE::Create(patchTable, _deviceContext);
_patchCoords = NULL;
_numCoarseVerts = vertexStencils->GetNumControlVertices();
_vertexStencils =
Osd::convertToCompatibleStencilTable<STENCIL_TABLE>(vertexStencils, _deviceContext);
_varyingStencils =
Osd::convertToCompatibleStencilTable<STENCIL_TABLE>(varyingStencils, _deviceContext);
if (faceVaryingStencils) {
_numCoarseFVarVerts = faceVaryingStencils->GetNumControlVertices();
int numTotalFVarVerts = faceVaryingStencils->GetNumControlVertices()
+ faceVaryingStencils->GetNumStencils();
_srcFVarData = EVAL_VERTEX_BUFFER::Create(2, numTotalFVarVerts, _deviceContext);
_fvarData = EVAL_VERTEX_BUFFER::Create(fvarWidth, numParticles, _deviceContext);
_faceVaryingStencils =
Osd::convertToCompatibleStencilTable<STENCIL_TABLE>(faceVaryingStencils, _deviceContext);
_fvarChannel = fvarChannel;
_fvarWidth = fvarWidth;
} else {
_numCoarseFVarVerts = 0;
_srcFVarData = NULL;
_fvarData = NULL;
_faceVaryingStencils = NULL;
_fvarChannel = 0;
_fvarWidth = 0;
}
_evaluatorCache = evaluatorCache;
}
~EvalOutput() {
delete _srcData;
delete _srcVaryingData;
delete _srcFVarData;
delete _vertexData;
delete _deriv1;
delete _deriv2;
delete _fvarData;
delete _patchTable;
delete _patchCoords;
delete _vertexStencils;
delete _varyingStencils;
delete _faceVaryingStencils;
}
virtual GLuint BindSourceData() const {
return _srcData->BindVBO();
}
virtual GLuint BindVertexData() const {
return _vertexData->BindVBO();
}
virtual GLuint Bind1stDerivatives() const {
return _deriv1->BindVBO();
}
virtual GLuint Bind2ndDerivatives() const {
return _deriv2->BindVBO();
}
virtual GLuint BindFaceVaryingData() const {
return _fvarData->BindVBO();
}
virtual GLuint BindPatchCoords() const {
return _patchCoords->BindVBO();
}
virtual void UpdateData(const float *src, int startVertex, int numVertices) {
_srcData->UpdateData(src, startVertex, numVertices, _deviceContext);
}
virtual void UpdateVaryingData(const float *src, int startVertex, int numVertices) {
_srcVaryingData->UpdateData(src, startVertex, numVertices, _deviceContext);
}
virtual void UpdateFaceVaryingData(const float *src, int startVertex, int numVertices) {
_srcFVarData->UpdateData(src, startVertex, numVertices, _deviceContext);
}
virtual bool HasFaceVaryingData() const {
return _faceVaryingStencils != NULL;
}
virtual void Refine() {
Osd::BufferDescriptor dstDesc = _srcDesc;
dstDesc.offset += _numCoarseVerts * _srcDesc.stride;
EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcDesc, dstDesc, _deviceContext);
EVALUATOR::EvalStencils(_srcData, _srcDesc,
_srcData, dstDesc,
_vertexStencils,
evalInstance,
_deviceContext);
dstDesc = _srcVaryingDesc;
dstDesc.offset += _numCoarseVerts * _srcVaryingDesc.stride;
evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcVaryingDesc, dstDesc, _deviceContext);
EVALUATOR::EvalStencils(_srcVaryingData, _srcVaryingDesc,
_srcVaryingData, dstDesc,
_varyingStencils,
evalInstance,
_deviceContext);
if (HasFaceVaryingData()) {
Osd::BufferDescriptor dstFVarDesc = _srcFVarDesc;
dstFVarDesc.offset += _numCoarseFVarVerts * _srcFVarDesc.stride;
evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcFVarDesc, dstFVarDesc, _deviceContext);
EVALUATOR::EvalStencils(_srcFVarData, _srcFVarDesc,
_srcFVarData, dstFVarDesc,
_faceVaryingStencils,
evalInstance,
_deviceContext);
}
}
virtual void EvalPatches() {
EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcDesc, _vertexDesc, _deviceContext);
EVALUATOR::EvalPatches(
_srcData, _srcDesc,
_vertexData, _vertexDesc,
_patchCoords->GetNumVertices(),
_patchCoords,
_patchTable, evalInstance, _deviceContext);
}
virtual void EvalPatchesWith1stDerivatives() {
EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcDesc, _vertexDesc, _duDesc, _dvDesc, _deviceContext);
EVALUATOR::EvalPatches(
_srcData, _srcDesc,
_vertexData, _vertexDesc,
_deriv1, _duDesc,
_deriv1, _dvDesc,
_patchCoords->GetNumVertices(),
_patchCoords,
_patchTable, evalInstance, _deviceContext);
}
virtual void EvalPatchesWith2ndDerivatives() {
EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcDesc, _vertexDesc,
_duDesc, _dvDesc, _duuDesc, _duvDesc, _dvvDesc,
_deviceContext);
EVALUATOR::EvalPatches(
_srcData, _srcDesc,
_vertexData, _vertexDesc,
_deriv1, _duDesc,
_deriv1, _dvDesc,
_deriv2, _duuDesc,
_deriv2, _duvDesc,
_deriv2, _dvvDesc,
_patchCoords->GetNumVertices(),
_patchCoords,
_patchTable, evalInstance, _deviceContext);
}
virtual void EvalPatchesVarying() {
EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcVaryingDesc, _varyingDesc, _deviceContext);
EVALUATOR::EvalPatchesVarying(
_srcVaryingData, _srcVaryingDesc,
// varying data is interleaved in vertexData.
_vertexData, _varyingDesc,
_patchCoords->GetNumVertices(),
_patchCoords,
_patchTable, evalInstance, _deviceContext);
}
virtual void EvalPatchesFaceVarying() {
EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
_evaluatorCache, _srcFVarDesc, _fvarDesc, _deviceContext);
EVALUATOR::EvalPatchesFaceVarying(
_srcFVarData, _srcFVarDesc,
_fvarData, _fvarDesc,
_patchCoords->GetNumVertices(),
_patchCoords,
_patchTable, _fvarChannel, evalInstance, _deviceContext);
}
virtual void UpdatePatchCoords(
std::vector<Osd::PatchCoord> const &patchCoords) {
if (_patchCoords &&
_patchCoords->GetNumVertices() != (int)patchCoords.size()) {
delete _patchCoords;
_patchCoords = NULL;
}
if (! _patchCoords) {
_patchCoords = EVAL_VERTEX_BUFFER::Create(5,
(int)patchCoords.size(),
_deviceContext);
}
_patchCoords->UpdateData((float*)&patchCoords[0], 0, (int)patchCoords.size(), _deviceContext);
}
private:
SRC_VERTEX_BUFFER *_srcData;
SRC_VERTEX_BUFFER *_srcVaryingData;
EVAL_VERTEX_BUFFER *_srcFVarData;
EVAL_VERTEX_BUFFER *_vertexData;
EVAL_VERTEX_BUFFER *_deriv1;
EVAL_VERTEX_BUFFER *_deriv2;
EVAL_VERTEX_BUFFER *_fvarData;
EVAL_VERTEX_BUFFER *_patchCoords;
PATCH_TABLE *_patchTable;
Osd::BufferDescriptor _srcDesc;
Osd::BufferDescriptor _srcVaryingDesc;
Osd::BufferDescriptor _srcFVarDesc;
Osd::BufferDescriptor _vertexDesc;
Osd::BufferDescriptor _varyingDesc;
Osd::BufferDescriptor _fvarDesc;
Osd::BufferDescriptor _duDesc;
Osd::BufferDescriptor _dvDesc;
Osd::BufferDescriptor _duuDesc;
Osd::BufferDescriptor _duvDesc;
Osd::BufferDescriptor _dvvDesc;
int _numCoarseVerts;
int _numCoarseFVarVerts;
STENCIL_TABLE const *_vertexStencils;
STENCIL_TABLE const *_varyingStencils;
STENCIL_TABLE const *_faceVaryingStencils;
int _fvarChannel;
int _fvarWidth;
EvaluatorCache *_evaluatorCache;
DEVICE_CONTEXT *_deviceContext;
};
// This example uses one shared interleaved buffer for evaluated
// 1st derivatives and a second shared interleaved buffer for
// evaluated 2nd derivatives. We use this specialized device
// context to allow the XFB evaluator to take advantage of this
// and make more efficient use of available XFB buffer bindings.
struct XFBDeviceContext {
bool AreInterleavedDerivativeBuffers() const { return true; }
} g_xfbDeviceContext;
EvalOutputBase *g_evalOutput = NULL;
STParticles * g_particles=0;
//------------------------------------------------------------------------------
static void
updateGeom() {
int nverts = (int)g_orgPositions.size() / 3;
const float *p = &g_orgPositions[0];
float r = sin(g_frame*0.1f) * g_moveScale;
for (int i = 0; i < nverts; ++i) {
//float move = 0.05f*cosf(p[0]*20+g_frame*0.01f);
float ct = cos(p[2] * r);
float st = sin(p[2] * r);
g_positions[i*3+0] = p[0]*ct + p[1]*st;
g_positions[i*3+1] = -p[0]*st + p[1]*ct;
g_positions[i*3+2] = p[2];
p+=3;
}
// Run Compute pass to pose the control vertices ---------------------------
Stopwatch s;
s.Start();
// update coarse vertices
g_evalOutput->UpdateData(&g_positions[0], 0, nverts);
// update coarse varying
if (g_drawMode == kVARYING) {
g_evalOutput->UpdateVaryingData(&g_varyingColors[0], 0, nverts);
}
// Refine
g_evalOutput->Refine();
s.Stop();
g_computeTime = float(s.GetElapsed() * 1000.0f);
// Run Eval pass to get the samples locations ------------------------------
s.Start();
// Apply 'dynamics' update
assert(g_particles);
float elapsed = g_currentTime - g_prevTime;
g_particles->Update(elapsed);
g_prevTime = g_currentTime;
std::vector<OpenSubdiv::Osd::PatchCoord> const &patchCoords
= g_particles->GetPatchCoords();
// update patchcoord to be evaluated
g_evalOutput->UpdatePatchCoords(patchCoords);
// Evaluate the positions of the samples on the limit surface
if (g_drawMode == kMEAN_CURVATURE) {
// evaluate positions and 2nd derivatives
g_evalOutput->EvalPatchesWith2ndDerivatives();
} else if (g_drawMode == kNORMAL || g_drawMode == kSHADE) {
// evaluate positions and 1st derivatives
g_evalOutput->EvalPatchesWith1stDerivatives();
} else {
// evaluate positions
g_evalOutput->EvalPatches();
}
// color
if (g_drawMode == kVARYING) {
g_evalOutput->EvalPatchesVarying();
} else if (g_drawMode == kFACEVARYING && g_evalOutput->HasFaceVaryingData()) {
g_evalOutput->EvalPatchesFaceVarying();
}
s.Stop();
g_evalTime = float(s.GetElapsed());
}
//------------------------------------------------------------------------------
static void
createOsdMesh(ShapeDesc const & shapeDesc, int level) {
Shape * shape = Shape::parseObj(shapeDesc);
// create Far mesh (topology)
Sdc::SchemeType sdctype = GetSdcType(*shape);
Sdc::Options sdcoptions = GetSdcOptions(*shape);
sdcoptions.SetFVarLinearInterpolation(g_fvarBoundary);
Far::TopologyRefiner *topologyRefiner =
Far::TopologyRefinerFactory<Shape>::Create(*shape,
Far::TopologyRefinerFactory<Shape>::Options(sdctype, sdcoptions));
g_orgPositions=shape->verts;
g_positions.resize(g_orgPositions.size(), 0.0f);
// compute model bounding
float min[3] = { FLT_MAX, FLT_MAX, FLT_MAX};
float max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i=0; i <g_orgPositions.size()/3; ++i) {
for(int j=0; j<3; ++j) {
float v = g_orgPositions[i*3+j];
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
}
for (int j=0; j<3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
float speed = g_particles ? g_particles->GetSpeed() : 0.2f;
// save coarse topology (used for coarse mesh drawing)
g_controlMeshDisplay.SetTopology(topologyRefiner->GetLevel(0));
// create random varying color
{
int numCoarseVerts = topologyRefiner->GetLevel(0).GetNumVertices();
g_varyingColors.resize(numCoarseVerts*3);
createRandomColors(numCoarseVerts, 3, &g_varyingColors[0]);
}
Far::StencilTable const * vertexStencils = NULL;
Far::StencilTable const * varyingStencils = NULL;
Far::StencilTable const * faceVaryingStencils = NULL;
int fvarChannel = 0;
int fvarWidth = shape->GetFVarWidth();
bool hasFVarData = !shape->uvs.empty();
{
if (g_adaptive) {
// Apply feature adaptive refinement to the mesh so that we can use the
// limit evaluation API features.
Far::TopologyRefiner::AdaptiveOptions options(level);
options.considerFVarChannels = hasFVarData;
options.useSingleCreasePatch = g_singleCreasePatch;
options.useInfSharpPatch = g_infSharpPatch;
topologyRefiner->RefineAdaptive(options);
} else {
Far::TopologyRefiner::UniformOptions options(level);
topologyRefiner->RefineUniform(options);
}
// Generate stencil table to update the bi-cubic patches control
// vertices after they have been re-posed (both for vertex & varying
// interpolation)
Far::StencilTableFactory::Options soptions;
soptions.generateOffsets=true;
soptions.generateIntermediateLevels=g_adaptive;
vertexStencils =
Far::StencilTableFactory::Create(*topologyRefiner, soptions);
soptions.interpolationMode = Far::StencilTableFactory::INTERPOLATE_VARYING;
varyingStencils =
Far::StencilTableFactory::Create(*topologyRefiner, soptions);
if (hasFVarData) {
soptions.interpolationMode = Far::StencilTableFactory::INTERPOLATE_FACE_VARYING;
soptions.fvarChannel = fvarChannel;
faceVaryingStencils =
Far::StencilTableFactory::Create(*topologyRefiner, soptions);
}
// Generate bi-cubic patch table for the limit surface
Far::PatchTableFactory::Options poptions(level);
if (g_endCap == kEndCapBilinearBasis) {
poptions.SetEndCapType(
Far::PatchTableFactory::Options::ENDCAP_BILINEAR_BASIS);
} else if (g_endCap == kEndCapBSplineBasis) {
poptions.SetEndCapType(
Far::PatchTableFactory::Options::ENDCAP_BSPLINE_BASIS);
} else {
poptions.SetEndCapType(
Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS);
}
poptions.generateLegacySharpCornerPatches = !g_smoothCornerPatch;
poptions.useSingleCreasePatch = g_singleCreasePatch;
poptions.useInfSharpPatch = g_infSharpPatch;
poptions.generateFVarTables = hasFVarData;
poptions.generateFVarLegacyLinearPatches = false;
poptions.includeFVarBaseLevelIndices = true;;
Far::PatchTable const * patchTable =
Far::PatchTableFactory::Create(*topologyRefiner, poptions);
// append local points stencils
if (Far::StencilTable const *localPointStencilTable =
patchTable->GetLocalPointStencilTable()) {
Far::StencilTable const *table =
Far::StencilTableFactory::AppendLocalPointStencilTable(
*topologyRefiner, vertexStencils, localPointStencilTable);
delete vertexStencils;
vertexStencils = table;
}
if (Far::StencilTable const *localPointVaryingStencilTable =
patchTable->GetLocalPointVaryingStencilTable()) {
Far::StencilTable const *table =
Far::StencilTableFactory::AppendLocalPointStencilTable(
*topologyRefiner,
varyingStencils, localPointVaryingStencilTable);
delete varyingStencils;
varyingStencils = table;
}
if (Far::StencilTable const *localPointFaceVaryingStencilTable =
patchTable->GetLocalPointFaceVaryingStencilTable()) {
Far::StencilTable const *table =
Far::StencilTableFactory::AppendLocalPointStencilTableFaceVarying(
*topologyRefiner,
faceVaryingStencils, localPointFaceVaryingStencilTable);
delete faceVaryingStencils;
faceVaryingStencils = table;
}
if (g_patchTable) delete g_patchTable;
g_patchTable = patchTable;
}
// In following template instantiations, same type of vertex buffers are
// used for both source and destination (first and second template
// parameters), since we'd like to draw control mesh wireframe too in
// this example viewer.
// If we don't need to draw the coarse control mesh, the src buffer doesn't
// have to be interoperable to GL (it can be CpuVertexBuffer etc).
delete g_evalOutput;
if (g_kernel == kCPU) {
g_evalOutput = new EvalOutput<Osd::CpuGLVertexBuffer,
Osd::CpuGLVertexBuffer,
Far::StencilTable,
Osd::CpuPatchTable,
Osd::CpuEvaluator>
(vertexStencils, varyingStencils, faceVaryingStencils,
fvarChannel, fvarWidth,
g_nParticles, g_patchTable);
#ifdef OPENSUBDIV_HAS_OPENMP
} else if (g_kernel == kOPENMP) {
g_evalOutput = new EvalOutput<Osd::CpuGLVertexBuffer,
Osd::CpuGLVertexBuffer,
Far::StencilTable,
Osd::CpuPatchTable,
Osd::OmpEvaluator>
(vertexStencils, varyingStencils, faceVaryingStencils,
fvarChannel, fvarWidth,
g_nParticles, g_patchTable);
#endif
#ifdef OPENSUBDIV_HAS_TBB
} else if (g_kernel == kTBB) {
g_evalOutput = new EvalOutput<Osd::CpuGLVertexBuffer,
Osd::CpuGLVertexBuffer,
Far::StencilTable,
Osd::CpuPatchTable,
Osd::TbbEvaluator>
(vertexStencils, varyingStencils, faceVaryingStencils,
fvarChannel, fvarWidth,
g_nParticles, g_patchTable);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
} else if (g_kernel == kCUDA) {
g_evalOutput = new EvalOutput<Osd::CudaGLVertexBuffer,
Osd::CudaGLVertexBuffer,
Osd::CudaStencilTable,
Osd::CudaPatchTable,
Osd::CudaEvaluator>
(vertexStencils, varyingStencils, faceVaryingStencils,
fvarChannel, fvarWidth,
g_nParticles, g_patchTable);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
} else if (g_kernel == kCL) {
static Osd::EvaluatorCacheT<Osd::CLEvaluator> clEvaluatorCache;
g_evalOutput = new EvalOutput<Osd::CLGLVertexBuffer,
Osd::CLGLVertexBuffer,
Osd::CLStencilTable,
Osd::CLPatchTable,
Osd::CLEvaluator,
CLDeviceContext>
(vertexStencils, varyingStencils, faceVaryingStencils,
fvarChannel, fvarWidth,
g_nParticles, g_patchTable,
&clEvaluatorCache, &g_clDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
} else if (g_kernel == kGLXFB) {
static Osd::EvaluatorCacheT<Osd::GLXFBEvaluator> glXFBEvaluatorCache;
g_evalOutput = new EvalOutput<Osd::GLVertexBuffer,
Osd::GLVertexBuffer,
Osd::GLStencilTableTBO,
Osd::GLPatchTable,
Osd::GLXFBEvaluator,
XFBDeviceContext>
(vertexStencils, varyingStencils, faceVaryingStencils,
fvarChannel, fvarWidth,
g_nParticles, g_patchTable,
&glXFBEvaluatorCache, &g_xfbDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
} else if (g_kernel == kGLCompute) {
static Osd::EvaluatorCacheT<Osd::GLComputeEvaluator> glComputeEvaluatorCache;
g_evalOutput = new EvalOutput<Osd::GLVertexBuffer,
Osd::GLVertexBuffer,
Osd::GLStencilTableSSBO,
Osd::GLPatchTable,
Osd::GLComputeEvaluator>
(vertexStencils, varyingStencils, faceVaryingStencils,
fvarChannel, fvarWidth,
g_nParticles, g_patchTable,
&glComputeEvaluatorCache);
#endif
}
if (g_evalOutput->HasFaceVaryingData()) {
g_evalOutput->UpdateFaceVaryingData(
&shape->uvs[0], 0, (int)shape->uvs.size()/shape->GetFVarWidth());
}
delete shape;
// Create the 'uv particles' manager - this class manages the limit
// location samples (ptex face index, (s,t) and updates them between frames.
// Note: the number of limit locations can be entirely arbitrary
delete g_particles;
g_particles = new STParticles(*topologyRefiner, g_patchTable,
g_nParticles, !g_randomStart);
g_nParticles = g_particles->GetNumParticles();
g_particles->SetSpeed(speed);
g_prevTime = -1;
g_currentTime = 0;
updateGeom();
delete topologyRefiner;
}
//------------------------------------------------------------------------------
static bool
linkDefaultProgram() {
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
#define GLSL_VERSION_DEFINE "#version 400\n"
#else
#define GLSL_VERSION_DEFINE "#version 150\n"
#endif
static const char *vsSrc =
GLSL_VERSION_DEFINE
"in vec3 position;\n"
"in vec3 color;\n"
"in vec3 du;\n"
"in vec3 dv;\n"
"in vec3 duu;\n"
"in vec3 duv;\n"
"in vec3 dvv;\n"
"in vec2 patchCoord;\n"
"in vec2 fvarData;\n"
"out vec4 fragColor;\n"
"uniform mat4 ModelViewMatrix;\n"
"uniform mat4 ProjectionMatrix;\n"
"uniform int DrawMode;\n"
"void main() {\n"
" vec3 normal = (ModelViewMatrix * "
" vec4(normalize(cross(du, dv)), 0)).xyz;\n"
" gl_Position = ProjectionMatrix * ModelViewMatrix * "
" vec4(position, 1);\n"
" if (DrawMode == 0) {\n" // UV
" fragColor = vec4(patchCoord.x, patchCoord.y, 0, 1);\n"
" } else if (DrawMode == 2) {\n"
" fragColor = vec4(normal*0.5+vec3(0.5), 1);\n"
" } else if (DrawMode == 3) {\n"
" fragColor = vec4(vec3(1)*dot(normal, vec3(0,0,1)), 1);\n"
" } else if (DrawMode == 4) {\n" // face varying
" // generating a checkerboard pattern\n"
" int checker = int(floor(20*fvarData.r)+floor(20*fvarData.g))&1;\n"
" fragColor = vec4(fvarData.rg*checker, 1-checker, 1);\n"
" } else if (DrawMode == 5) {\n" // mean curvature
" vec3 N = normalize(cross(du, dv));\n"
" float E = dot(du, du);\n"
" float F = dot(du, dv);\n"
" float G = dot(dv, dv);\n"
" float e = dot(N, duu);\n"
" float f = dot(N, duv);\n"
" float g = dot(N, dvv);\n"
" float H = 0.5 * abs(0.5 * (E*g - 2*F*f - G*e) / (E*G - F*F));\n"
" fragColor = vec4(H, H, H, 1.0);\n"
" } else {\n" // varying
" fragColor = vec4(color, 1);\n"
" }\n"
"}\n";
static const char *fsSrc =
GLSL_VERSION_DEFINE
"in vec4 fragColor;\n"
"out vec4 color;\n"
"void main() {\n"
" color = fragColor;\n"
"}\n";
GLuint program = glCreateProgram();
GLuint vertexShader = GLUtils::CompileShader(GL_VERTEX_SHADER, vsSrc);
GLuint fragmentShader = GLUtils::CompileShader(GL_FRAGMENT_SHADER, fsSrc);
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glBindAttribLocation(program, 0, "position");
glBindAttribLocation(program, 1, "color");
glBindAttribLocation(program, 2, "du");
glBindAttribLocation(program, 3, "dv");
glBindAttribLocation(program, 4, "duu");
glBindAttribLocation(program, 5, "duv");
glBindAttribLocation(program, 6, "dvv");
glBindAttribLocation(program, 7, "patchCoord");
glBindAttribLocation(program, 8, "fvarData");
glBindFragDataLocation(program, 0, "color");
glLinkProgram(program);
GLint status;
glGetProgramiv(program, GL_LINK_STATUS, &status);
if (status == GL_FALSE) {
GLint infoLogLength;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &infoLogLength);
char *infoLog = new char[infoLogLength];
glGetProgramInfoLog(program, infoLogLength, NULL, infoLog);
printf("%s\n", infoLog);
delete[] infoLog;
exit(1);
}
g_defaultProgram.program = program;
g_defaultProgram.uniformModelViewMatrix =
glGetUniformLocation(program, "ModelViewMatrix");
g_defaultProgram.uniformProjectionMatrix =
glGetUniformLocation(program, "ProjectionMatrix");
g_defaultProgram.uniformDrawMode =
glGetUniformLocation(program, "DrawMode");
g_defaultProgram.attrPosition = glGetAttribLocation(program, "position");
g_defaultProgram.attrColor = glGetAttribLocation(program, "color");
g_defaultProgram.attrDu = glGetAttribLocation(program, "du");
g_defaultProgram.attrDv = glGetAttribLocation(program, "dv");
g_defaultProgram.attrDuu = glGetAttribLocation(program, "duu");
g_defaultProgram.attrDuv = glGetAttribLocation(program, "duv");
g_defaultProgram.attrDvv = glGetAttribLocation(program, "dvv");
g_defaultProgram.attrPatchCoord = glGetAttribLocation(program, "patchCoord");
g_defaultProgram.attrFVarData = glGetAttribLocation(program, "fvarData");
return true;
}
//------------------------------------------------------------------------------
static void
drawSamples() {
glUseProgram(g_defaultProgram.program);
glUniformMatrix4fv(g_defaultProgram.uniformModelViewMatrix,
1, GL_FALSE, g_transformData.ModelViewMatrix);
glUniformMatrix4fv(g_defaultProgram.uniformProjectionMatrix,
1, GL_FALSE, g_transformData.ProjectionMatrix);
glUniform1i(g_defaultProgram.uniformDrawMode, g_drawMode);
glBindVertexArray(g_samplesVAO);
glEnableVertexAttribArray(g_defaultProgram.attrPosition);
glEnableVertexAttribArray(g_defaultProgram.attrColor);
glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->BindVertexData());
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (float*)12);
glEnableVertexAttribArray(g_defaultProgram.attrDu);
glEnableVertexAttribArray(g_defaultProgram.attrDv);
glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->Bind1stDerivatives());
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0);
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (float*)12);
glEnableVertexAttribArray(g_defaultProgram.attrDuu);
glEnableVertexAttribArray(g_defaultProgram.attrDuv);
glEnableVertexAttribArray(g_defaultProgram.attrDvv);
glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->Bind2ndDerivatives());
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 9, 0);
glVertexAttribPointer(5, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 9, (float*)12);
glVertexAttribPointer(6, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 9, (float*)24);
glEnableVertexAttribArray(g_defaultProgram.attrPatchCoord);
glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->BindPatchCoords());
glVertexAttribPointer(7, 2, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 5, (float*)12);
if (g_evalOutput->HasFaceVaryingData()) {
glEnableVertexAttribArray(g_defaultProgram.attrFVarData);
glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->BindFaceVaryingData());
glVertexAttribPointer(8, 2, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 2, 0);
}
glPointSize(2.0f);
int nPatchCoords = (int)g_particles->GetPatchCoords().size();
glDrawArrays(GL_POINTS, 0, nPatchCoords);
glPointSize(1.0f);
glDisableVertexAttribArray(g_defaultProgram.attrPosition);
glDisableVertexAttribArray(g_defaultProgram.attrColor);
glDisableVertexAttribArray(g_defaultProgram.attrDu);
glDisableVertexAttribArray(g_defaultProgram.attrDv);
glDisableVertexAttribArray(g_defaultProgram.attrDuu);
glDisableVertexAttribArray(g_defaultProgram.attrDuv);
glDisableVertexAttribArray(g_defaultProgram.attrDvv);
glDisableVertexAttribArray(g_defaultProgram.attrPatchCoord);
glDisableVertexAttribArray(g_defaultProgram.attrFVarData);
glBindVertexArray(0);
glUseProgram(0);
}
//------------------------------------------------------------------------------
static void
display() {
Stopwatch s;
s.Start();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(0, 0, g_width, g_height);
g_hud.FillBackground();
double aspect = g_width/(double)g_height;
identity(g_transformData.ModelViewMatrix);
translate(g_transformData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(g_transformData.ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(g_transformData.ModelViewMatrix, g_rotate[0], 0, 1, 0);
if (!g_yup) {
rotate(g_transformData.ModelViewMatrix, -90, 1, 0, 0);
}
translate(g_transformData.ModelViewMatrix,
-g_center[0], -g_center[1], -g_center[2]);
perspective(g_transformData.ProjectionMatrix,
45.0f, (float)aspect, 0.01f, 500.0f);
multMatrix(g_transformData.ModelViewProjectionMatrix,
g_transformData.ModelViewMatrix,
g_transformData.ProjectionMatrix);
glEnable(GL_DEPTH_TEST);
s.Stop();
float drawCpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
glFinish();
s.Stop();
float drawGpuTime = float(s.GetElapsed() * 1000.0f);
drawSamples();
// draw the control mesh
g_controlMeshDisplay.Draw(
g_evalOutput->BindSourceData(), 3*sizeof(float),
g_transformData.ModelViewProjectionMatrix);
if (g_hud.IsVisible()) {
g_fpsTimer.Stop();
double elapsed = g_fpsTimer.GetElapsed();
g_fpsTimer.Start();
double fps = 1.0/elapsed;
if (g_animParticles) g_currentTime += (float)elapsed;
int nPatchCoords = (int)g_particles->GetPatchCoords().size();
g_hud.DrawString(10, -150, "Particle Speed ([) (]): %.1f", g_particles->GetSpeed());
g_hud.DrawString(10, -120, "# Samples : (%d / %d)", nPatchCoords, g_nParticles);
g_hud.DrawString(10, -100, "Compute : %.3f ms", g_computeTime);
g_hud.DrawString(10, -80, "Eval : %.3f ms", g_evalTime * 1000.f);
g_hud.DrawString(10, -60, "GPU Draw : %.3f ms", drawGpuTime);
g_hud.DrawString(10, -40, "CPU Draw : %.3f ms", drawCpuTime);
g_hud.DrawString(10, -20, "FPS : %3.1f", fps);
g_hud.Flush();
}
glFinish();
GLUtils::CheckGLErrors("display leave");
}
//------------------------------------------------------------------------------
static void
idle() {
if (! g_freeze)
g_frame++;
updateGeom();
if (g_repeatCount != 0 && g_frame >= g_repeatCount)
g_running = 0;
}
//------------------------------------------------------------------------------
static void
motion(GLFWwindow *, double dx, double dy) {
int x=(int)dx, y=(int)dy;
if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) ||
(!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if(g_dolly <= 0.01) g_dolly = 0.01f;
}
g_prev_x = x;
g_prev_y = y;
}
//------------------------------------------------------------------------------
static void
mouse(GLFWwindow *, int button, int state, int /* mods */) {
if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y))
return;
if (button < 3) {
g_mbutton[button] = (state == GLFW_PRESS);
}
}
//------------------------------------------------------------------------------
static void
reshape(GLFWwindow *, int width, int height) {
g_width = width;
g_height = height;
int windowWidth = g_width, windowHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
g_hud.Rebuild(windowWidth, windowHeight, width, height);
}
//------------------------------------------------------------------------------
void windowClose(GLFWwindow*) {
g_running = false;
}
//------------------------------------------------------------------------------
static void
setSamples(bool add) {
if (add) {
g_nParticles = g_nParticles * 2;
} else {
g_nParticles = std::max(1, g_nParticles / 2);
}
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
}
//------------------------------------------------------------------------------
static void
fitFrame() {
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
}
//------------------------------------------------------------------------------
static void
keyboard(GLFWwindow *, int key, int /* scancode */, int event, int /* mods */) {
if (event == GLFW_RELEASE) return;
if (g_hud.KeyDown(tolower(key))) return;
switch (key) {
case 'Q': g_running = 0; break;
case 'F': fitFrame(); break;
case '=': setSamples(true); break;
case '-': setSamples(false); break;
case '[': if (g_particles) {
g_particles->SetSpeed(g_particles->GetSpeed()-0.1f);
} break;
case ']': if (g_particles) {
g_particles->SetSpeed(g_particles->GetSpeed()+0.1f);
} break;
case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break;
}
}
//------------------------------------------------------------------------------
static void
callbackError(OpenSubdiv::Far::ErrorType err, const char *message) {
printf("OpenSubdiv Error: %d\n", err);
printf(" %s\n", message);
}
//------------------------------------------------------------------------------
static void
callbackModel(int m) {
if (m < 0)
m = 0;
if (m >= (int)g_defaultShapes.size())
m = (int)g_defaultShapes.size() - 1;
g_currentShape = m;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
}
//------------------------------------------------------------------------------
static void
callbackEndCap(int endCap) {
g_endCap = endCap;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
}
//------------------------------------------------------------------------------
static void
callbackKernel(int k) {
g_kernel = k;
#ifdef OPENSUBDIV_HAS_OPENCL
if (g_kernel == kCL && (!g_clDeviceContext.IsInitialized())) {
if (g_clDeviceContext.Initialize() == false) {
printf("Error in initializing OpenCL\n");
exit(1);
}
}
#endif
#ifdef OPENSUBDIV_HAS_CUDA
if (g_kernel == kCUDA && (!g_cudaDeviceContext.IsInitialized())) {
if (g_cudaDeviceContext.Initialize() == false) {
printf("Error in initializing Cuda\n");
exit(1);
}
}
#endif
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
}
//------------------------------------------------------------------------------
static void
callbackLevel(int l) {
g_level = l;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
}
//------------------------------------------------------------------------------
static void
callbackDisplayVaryingColors(int mode) {
g_drawMode = mode;
}
//------------------------------------------------------------------------------
static void
callbackCheckBox(bool checked, int button) {
switch (button) {
case kHUD_CB_DISPLAY_CONTROL_MESH_EDGES:
g_controlMeshDisplay.SetEdgesDisplay(checked);
break;
case kHUD_CB_DISPLAY_CONTROL_MESH_VERTS:
g_controlMeshDisplay.SetVerticesDisplay(checked);
break;
case kHUD_CB_ANIMATE_VERTICES:
g_moveScale = checked;
break;
case kHUD_CB_ANIMATE_PARTICLES:
g_animParticles = checked;
break;
case kHUD_CB_RANDOM_START:
g_randomStart = checked;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
break;
case kHUD_CB_FREEZE:
g_freeze = checked;
break;
case kHUD_CB_ADAPTIVE:
g_adaptive = checked;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
break;
case kHUD_CB_SMOOTH_CORNER_PATCH:
g_smoothCornerPatch = checked;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
return;
case kHUD_CB_SINGLE_CREASE_PATCH:
g_singleCreasePatch = checked;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
return;
case kHUD_CB_INF_SHARP_PATCH:
g_infSharpPatch = checked;
createOsdMesh(g_defaultShapes[g_currentShape], g_level);
return;
}
}
//------------------------------------------------------------------------------
static void
initHUD() {
int windowWidth = g_width, windowHeight = g_height,
frameBufferWidth = g_width, frameBufferHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
glfwGetFramebufferSize(g_window, &frameBufferWidth, &frameBufferHeight);
g_hud.Init(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight);
g_hud.AddCheckBox("Control edges (H)",
g_controlMeshDisplay.GetEdgesDisplay(),
10, 10, callbackCheckBox,
kHUD_CB_DISPLAY_CONTROL_MESH_EDGES, 'h');
g_hud.AddCheckBox("Control vertices (J)",
g_controlMeshDisplay.GetVerticesDisplay(),
10, 30, callbackCheckBox,
kHUD_CB_DISPLAY_CONTROL_MESH_VERTS, 'j');
g_hud.AddCheckBox("Animate vertices (M)", g_moveScale != 0,
10, 50, callbackCheckBox, kHUD_CB_ANIMATE_VERTICES, 'm');
g_hud.AddCheckBox("Animate particles (P)", g_animParticles != 0,
10, 70, callbackCheckBox, kHUD_CB_ANIMATE_PARTICLES, 'p');
g_hud.AddCheckBox("Freeze (spc)", g_freeze != 0,
10, 90, callbackCheckBox, kHUD_CB_FREEZE, ' ');
g_hud.AddCheckBox("Random Start", g_randomStart,
10, 110, callbackCheckBox, kHUD_CB_RANDOM_START);
int compute_pulldown = g_hud.AddPullDown("Compute (K)", 475, 10, 300,
callbackKernel, 'k');
g_hud.AddPullDownButton(compute_pulldown, "CPU", kCPU);
#ifdef OPENSUBDIV_HAS_OPENMP
g_hud.AddPullDownButton(compute_pulldown, "OPENMP", kOPENMP);
#endif
#ifdef OPENSUBDIV_HAS_TBB
g_hud.AddPullDownButton(compute_pulldown, "TBB", kTBB);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
g_hud.AddPullDownButton(compute_pulldown, "CUDA", kCUDA);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
if (CLDeviceContext::HAS_CL_VERSION_1_1()) {
g_hud.AddPullDownButton(compute_pulldown, "OpenCL", kCL);
}
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
g_hud.AddPullDownButton(compute_pulldown, "GL XFB", kGLXFB);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
if (GLUtils::GL_ARBComputeShaderOrGL_VERSION_4_3()) {
g_hud.AddPullDownButton(compute_pulldown, "GL Compute", kGLCompute);
}
#endif
int shading_pulldown = g_hud.AddPullDown("Shading (W)", 250, 10, 250, callbackDisplayVaryingColors, 'w');
g_hud.AddPullDownButton(shading_pulldown, "(u,v)", kUV, g_drawMode==kUV);
g_hud.AddPullDownButton(shading_pulldown, "Varying", kVARYING, g_drawMode==kVARYING);
g_hud.AddPullDownButton(shading_pulldown, "Normal", kNORMAL, g_drawMode==kNORMAL);
g_hud.AddPullDownButton(shading_pulldown, "Shade", kSHADE, g_drawMode==kSHADE);
g_hud.AddPullDownButton(shading_pulldown, "FaceVarying", kFACEVARYING, g_drawMode==kFACEVARYING);
g_hud.AddPullDownButton(shading_pulldown, "Mean Curvature", kMEAN_CURVATURE, g_drawMode==kMEAN_CURVATURE);
g_hud.AddCheckBox("Adaptive (`)", g_adaptive != 0, 10, 150, callbackCheckBox, kHUD_CB_ADAPTIVE, '`');
g_hud.AddCheckBox("Smooth Corner Patch (O)", g_smoothCornerPatch!=0,
10, 170, callbackCheckBox, kHUD_CB_SMOOTH_CORNER_PATCH, 'o');
// g_hud.AddCheckBox("Single Crease Patch (S)", g_singleCreasePatch!=0,
// 10, 190, callbackCheckBox, kHUD_CB_SINGLE_CREASE_PATCH, 's');
g_hud.AddCheckBox("Inf Sharp Patch (I)", g_infSharpPatch!=0,
10, 190, callbackCheckBox, kHUD_CB_INF_SHARP_PATCH, 'i');
int endcap_pulldown = g_hud.AddPullDown("End cap (E)", 10, 230, 200,
callbackEndCap, 'e');
g_hud.AddPullDownButton(endcap_pulldown, "Linear", kEndCapBilinearBasis,
g_endCap == kEndCapBilinearBasis);
g_hud.AddPullDownButton(endcap_pulldown, "Regular", kEndCapBSplineBasis,
g_endCap == kEndCapBSplineBasis);
g_hud.AddPullDownButton(endcap_pulldown, "Gregory", kEndCapGregoryBasis,
g_endCap == kEndCapGregoryBasis);
for (int i = 1; i < 11; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud.AddRadioButton(3, level, i==g_level, 10, 270+i*20, callbackLevel, i, '0'+(i%10));
}
int pulldown_handle = g_hud.AddPullDown("Shape (N)", -300, 10, 300, callbackModel, 'n');
for (int i = 0; i < (int)g_defaultShapes.size(); ++i) {
g_hud.AddPullDownButton(pulldown_handle, g_defaultShapes[i].name.c_str(),i);
}
g_hud.Rebuild(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight);
}
//------------------------------------------------------------------------------
static void
initGL() {
glClearColor(0.1f, 0.1f, 0.1f, 0.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
glGenVertexArrays(1, &g_samplesVAO);
}
//------------------------------------------------------------------------------
static void
uninitGL() {
glDeleteVertexArrays(1, &g_samplesVAO);
}
//------------------------------------------------------------------------------
static void
callbackErrorGLFW(int error, const char* description) {
fprintf(stderr, "GLFW Error (%d) : %s\n", error, description);
}
//------------------------------------------------------------------------------
int main(int argc, char **argv) {
ArgOptions args;
args.Parse(argc, argv);
args.PrintUnrecognizedArgsWarnings();
g_yup = args.GetYUp();
g_adaptive = args.GetAdaptive();
g_level = args.GetLevel();
g_repeatCount = args.GetRepeatCount();
ViewerArgsUtils::PopulateShapes(args, &g_defaultShapes);
initShapes();
Far::SetErrorCallback(callbackError);
glfwSetErrorCallback(callbackErrorGLFW);
if (! glfwInit()) {
printf("Failed to initialize GLFW\n");
return 1;
}
static const char windowTitle[] = "OpenSubdiv glEvalLimit " OPENSUBDIV_VERSION_STRING;
GLUtils::SetMinimumGLVersion();
if (args.GetFullScreen()) {
g_primary = glfwGetPrimaryMonitor();
// apparently glfwGetPrimaryMonitor fails under linux : if no primary,
// settle for the first one in the list
if (! g_primary) {
int count=0;
GLFWmonitor ** monitors = glfwGetMonitors(&count);
if (count)
g_primary = monitors[0];
}
if (g_primary) {
GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary);
g_width = vidmode->width;
g_height = vidmode->height;
}
}
if (! (g_window=glfwCreateWindow(g_width, g_height, windowTitle,
args.GetFullScreen() && g_primary ? g_primary : NULL, NULL))) {
std::cerr << "Failed to create OpenGL context.\n";
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(g_window);
GLUtils::PrintGLVersion();
// accommodate high DPI displays (e.g. mac retina displays)
glfwGetFramebufferSize(g_window, &g_width, &g_height);
glfwSetFramebufferSizeCallback(g_window, reshape);
glfwSetKeyCallback(g_window, keyboard);
glfwSetCursorPosCallback(g_window, motion);
glfwSetMouseButtonCallback(g_window, mouse);
glfwSetWindowCloseCallback(g_window, windowClose);
#if defined(OSD_USES_GLEW)
#ifdef CORE_PROFILE
// this is the only way to initialize glew correctly under core profile context.
glewExperimental = true;
#endif
if (GLenum r = glewInit() != GLEW_OK) {
printf("Failed to initialize glew. Error = %s\n", glewGetErrorString(r));
exit(1);
}
#ifdef CORE_PROFILE
// clear GL errors which was generated during glewInit()
glGetError();
#endif
#endif
//std::string & data = g_defaultShapes[ g_currentShape ].data;
//Scheme scheme = g_defaultShapes[ g_currentShape ].scheme;
//createOsdMesh( data, g_level, scheme );
initGL();
linkDefaultProgram();
glfwSwapInterval(0);
initHUD();
callbackModel(g_currentShape);
g_fpsTimer.Start();
while (g_running) {
idle();
display();
glfwPollEvents();
glfwSwapBuffers(g_window);
glFinish();
}
uninitGL();
glfwTerminate();
}