OpenSubdiv/opensubdiv/osd/cpuEvalLimitController.cpp
Takahito Tejima 24f9dc154b Enable GregoryBasis patch.
PatchTablesFactory fills 20 indices topology into patchtable, and use it for eval and draw.

note: currently screen-space adaptive tessellation of gregory basis patches is
broken and cracks appear around them.
2015-04-08 17:07:10 -07:00

290 lines
14 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../osd/cpuEvalLimitController.h"
#include "../osd/cpuEvalLimitContext.h"
#include "../osd/cpuEvalLimitKernel.h"
#include "../far/patchTables.h"
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Osd {
CpuEvalLimitController::CpuEvalLimitController() {
}
CpuEvalLimitController::~CpuEvalLimitController() {
}
// Vertex interpolation of a sample at the limit
int
CpuEvalLimitController::EvalLimitSample( LimitLocation const & coord,
CpuEvalLimitContext * context,
VertexBufferDescriptor const & outDesc,
float * outQ,
float * outDQU,
float * outDQV ) const {
typedef Far::PatchDescriptor Desc;
float s=coord.s,
t=coord.t;
Far::PatchMap::Handle const * handle = context->GetPatchMap().FindPatch( coord.ptexIndex, s, t );
if (not handle) {
return 0; // no handle if there is a hole or 'coord' is incorrect
}
VertexData const & vertexData = _currentBindState.vertexData;
if (vertexData.in) {
Far::PatchTables const & ptables = context->GetPatchTables();
Far::PatchParam pparam = ptables.GetPatchParam(*handle);
Far::ConstIndexArray cvs = ptables.GetPatchVertices(*handle);
Far::PatchDescriptor desc = ptables.GetPatchDescriptor(*handle);
switch (desc.GetType()) {
case Desc::REGULAR : evalBSpline( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
outDesc,
outQ, outDQU, outDQV );
break;
case Desc::BOUNDARY : evalBoundary( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
outDesc,
outQ, outDQU, outDQV );
break;
case Desc::CORNER : evalCorner( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
outDesc,
outQ, outDQU, outDQV );
break;
case Desc::GREGORY : evalGregory( pparam.bitField, t, s, cvs.begin(),
&ptables.GetVertexValenceTable()[0],
ptables.GetPatchQuadOffsets(*handle).begin(),
ptables.GetMaxValence(),
vertexData.inDesc,
vertexData.in,
outDesc,
outQ, outDQU, outDQV );
break;
case Desc::GREGORY_BOUNDARY : evalGregoryBoundary( pparam.bitField, t, s, cvs.begin(),
&ptables.GetVertexValenceTable()[0],
ptables.GetPatchQuadOffsets(*handle).begin(),
ptables.GetMaxValence(),
vertexData.inDesc,
vertexData.in,
outDesc,
outQ, outDQU, outDQV );
break;
case Desc::GREGORY_BASIS : {
evalGregoryBasis( pparam.bitField, s, t,
cvs.begin(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
outQ, outDQU, outDQV );
} break;
case Desc::QUADS : evalBilinear( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
outDesc,
outQ, outDQU, outDQV );
break;
default:
assert(0);
}
}
assert(0);
return 1;
}
// Vertex interpolation of samples at the limit
int
CpuEvalLimitController::_EvalLimitSample( LimitLocation const & coords,
CpuEvalLimitContext * context,
unsigned int index ) const {
typedef Far::PatchDescriptor Desc;
float s=coords.s,
t=coords.t;
Far::PatchMap::Handle const * handle = context->GetPatchMap().FindPatch( coords.ptexIndex, s, t );
if (not handle) {
return 0; // no handle if there is a hole or 'coord' is incorrect
}
VertexData const & vertexData = _currentBindState.vertexData;
Far::PatchTables const & ptables = context->GetPatchTables();
Far::PatchParam pparam = ptables.GetPatchParam(*handle);
Far::PatchDescriptor desc = ptables.GetPatchDescriptor(*handle);
Far::ConstIndexArray cvs = ptables.GetPatchVertices(*handle);
if (vertexData.in) {
int offset = vertexData.outDesc.stride * index,
doffset = vertexData.outDesc.length * index;
if (vertexData.out) {
// note : don't apply outDesc.offset here, it's done inside patch
// evaluation
float * out = vertexData.out+offset,
* outDu = vertexData.outDu ? vertexData.outDu+doffset : 0,
* outDv = vertexData.outDv ? vertexData.outDv+doffset : 0;
switch (desc.GetType()) {
case Desc::REGULAR : evalBSpline( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case Desc::BOUNDARY : evalBoundary( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case Desc::CORNER : evalCorner( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case Desc::GREGORY : evalGregory( pparam.bitField, t, s, cvs.begin(),
&ptables.GetVertexValenceTable()[0],
ptables.GetPatchQuadOffsets(*handle).begin(),
ptables.GetMaxValence(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case Desc::GREGORY_BOUNDARY : evalGregoryBoundary( pparam.bitField, t, s, cvs.begin(),
&ptables.GetVertexValenceTable()[0],
ptables.GetPatchQuadOffsets(*handle).begin(),
ptables.GetMaxValence(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case Desc::GREGORY_BASIS : {
evalGregoryBasis( pparam.bitField, s, t,
cvs.begin(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
} break;
case Desc::QUADS : evalBilinear( pparam.bitField, s, t, cvs.begin(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
default:
assert(0);
}
}
}
VaryingData const & varyingData = _currentBindState.varyingData;
if (varyingData.in and varyingData.out) {
static int const zeroRings[6][4] = { {5, 6,10, 9}, // regular
{1, 2, 6, 5}, // boundary / single-crease
{1, 2, 5, 4}, // corner
{0, 1, 2, 3}, // no permutation
{0, 5, 10, 15} }; // gregory basis
int const * permute = 0;
switch (desc.GetType()) {
case Desc::REGULAR : permute = zeroRings[0]; break;
case Desc::SINGLE_CREASE :
case Desc::BOUNDARY : permute = zeroRings[1]; break;
case Desc::CORNER : permute = zeroRings[2]; break;
case Desc::GREGORY :
case Desc::GREGORY_BOUNDARY : permute = zeroRings[3]; break;
case Desc::GREGORY_BASIS : permute = zeroRings[4]; break;
default:
assert(0);
};
int offset = varyingData.outDesc.stride * index;
Far::Index zeroRing[4] = { cvs[permute[0]],
cvs[permute[1]],
cvs[permute[2]],
cvs[permute[3]] };
evalBilinear( pparam.bitField, s, t, zeroRing,
varyingData.inDesc,
varyingData.in,
varyingData.outDesc,
varyingData.out+offset, 0, 0);
}
// Note : currently we only support bilinear boundary interpolation rules
// for limit face-varying data.
FacevaryingData const & facevaryingData = _currentBindState.facevaryingData;
if (facevaryingData.in and facevaryingData.out) {
int offset = facevaryingData.outDesc.stride * index;
static int const zeroRing[4] = {0,1,2,3};
// XXXX manuelk this assumes FVar data is ordered with 4 CVs / patch :
// bi-cubic FVar interpolation will require proper topology
// accessors in Far::PatchTables and this code will change
evalBilinear( pparam.bitField, s, t, zeroRing,
facevaryingData.inDesc,
&facevaryingData.in[handle->patchIndex*4*facevaryingData.outDesc.stride],
facevaryingData.outDesc,
facevaryingData.out+offset, 0, 0);
}
return 1;
}
} // end namespace Osd
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv