mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-17 19:50:06 +00:00
866b88b7c9
- also updated the dxViewer code example note: dxPtexViewer still needs to be updated
421 lines
12 KiB
HLSL
421 lines
12 KiB
HLSL
//
|
|
// Copyright 2013 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
#ifdef OSD_TRANSITION_TRIANGLE_SUBPATCH
|
|
#define HS_DOMAIN "tri"
|
|
#else
|
|
#define HS_DOMAIN "quad"
|
|
#endif
|
|
|
|
#if defined OSD_FRACTIONAL_ODD_SPACING
|
|
#define HS_PARTITION "fractional_odd"
|
|
#elif defined OSD_FRACTIONAL_EVEN_SPACING
|
|
#define HS_PARTITION "fractional_even"
|
|
#else
|
|
#define HS_PARTITION "integer"
|
|
#endif
|
|
|
|
//----------------------------------------------------------
|
|
// Patches.Vertex
|
|
//----------------------------------------------------------
|
|
|
|
void vs_main_patches( in InputVertex input,
|
|
out HullVertex output )
|
|
{
|
|
output.position = mul(OsdModelViewMatrix(), input.position);
|
|
OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(input.position);
|
|
}
|
|
|
|
//----------------------------------------------------------
|
|
// Patches.HullBSpline
|
|
//----------------------------------------------------------
|
|
|
|
// Regular
|
|
static float4x4 Q = {
|
|
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
|
|
0.f, 4.f/6.f, 2.f/6.f, 0.f,
|
|
0.f, 2.f/6.f, 4.f/6.f, 0.f,
|
|
0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f
|
|
};
|
|
|
|
// Infinite sharp
|
|
static float4x4 Mi = {
|
|
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
|
|
0.f, 4.f/6.f, 2.f/6.f, 0.f,
|
|
0.f, 2.f/6.f, 4.f/6.f, 0.f,
|
|
0.f, 0.f, 1.f, 0.f
|
|
};
|
|
|
|
// Boundary / Corner
|
|
static float4x3 B = {
|
|
1.f, 0.f, 0.f,
|
|
4.f/6.f, 2.f/6.f, 0.f,
|
|
2.f/6.f, 4.f/6.f, 0.f,
|
|
1.f/6.f, 4.f/6.f, 1.f/6.f
|
|
};
|
|
|
|
// compute single-crease patch matrix
|
|
float4x4
|
|
ComputeMatrixSimplified(float sharpness)
|
|
{
|
|
float s = pow(2.0f, sharpness);
|
|
float s2 = s*s;
|
|
float s3 = s2*s;
|
|
|
|
float4x4 m ={
|
|
0, s + 1 + 3*s2 - s3, 7*s - 2 - 6*s2 + 2*s3, (1-s)*(s-1)*(s-1),
|
|
0, (1+s)*(1+s), 6*s - 2 - 2*s2, (s-1)*(s-1),
|
|
0, 1+s, 6*s - 2, 1-s,
|
|
0, 1, 6*s - 2, 1 };
|
|
|
|
m /= (s*6.0);
|
|
m[0][0] = 1.0/6.0;
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
#ifdef OSD_PATCH_TRANSITION
|
|
HS_CONSTANT_TRANSITION_FUNC_OUT
|
|
#else
|
|
HS_CONSTANT_FUNC_OUT
|
|
#endif
|
|
HSConstFunc(
|
|
InputPatch<HullVertex, OSD_PATCH_INPUT_SIZE> patch,
|
|
uint primitiveID : SV_PrimitiveID)
|
|
{
|
|
#ifdef OSD_PATCH_TRANSITION
|
|
HS_CONSTANT_TRANSITION_FUNC_OUT output;
|
|
#else
|
|
HS_CONSTANT_FUNC_OUT output;
|
|
#endif
|
|
int patchLevel = GetPatchLevel(primitiveID);
|
|
|
|
#ifdef OSD_TRANSITION_TRIANGLE_SUBPATCH
|
|
OSD_PATCH_CULL_TRIANGLE(OSD_PATCH_INPUT_SIZE);
|
|
#else
|
|
OSD_PATCH_CULL(OSD_PATCH_INPUT_SIZE);
|
|
#endif
|
|
|
|
#ifdef OSD_PATCH_TRANSITION
|
|
float3 cp[OSD_PATCH_INPUT_SIZE];
|
|
for(int k = 0; k < OSD_PATCH_INPUT_SIZE; ++k) cp[k] = patch[k].position.xyz;
|
|
SetTransitionTessLevels(output, cp, patchLevel, primitiveID);
|
|
#else
|
|
#if defined OSD_PATCH_BOUNDARY
|
|
const int p[4] = { 1, 2, 5, 6 };
|
|
#elif defined OSD_PATCH_CORNER
|
|
const int p[4] = { 1, 2, 4, 5 };
|
|
#else
|
|
const int p[4] = { 5, 6, 9, 10 };
|
|
#endif
|
|
|
|
#ifdef OSD_ENABLE_SCREENSPACE_TESSELLATION
|
|
output.tessLevelOuter[0] = TessAdaptive(patch[p[0]].position.xyz, patch[p[2]].position.xyz);
|
|
output.tessLevelOuter[1] = TessAdaptive(patch[p[0]].position.xyz, patch[p[1]].position.xyz);
|
|
output.tessLevelOuter[2] = TessAdaptive(patch[p[1]].position.xyz, patch[p[3]].position.xyz);
|
|
output.tessLevelOuter[3] = TessAdaptive(patch[p[2]].position.xyz, patch[p[3]].position.xyz);
|
|
output.tessLevelInner[0] = max(output.tessLevelOuter[1], output.tessLevelOuter[3]);
|
|
output.tessLevelInner[1] = max(output.tessLevelOuter[0], output.tessLevelOuter[2]);
|
|
#else
|
|
output.tessLevelInner[0] = GetTessLevel(patchLevel);
|
|
output.tessLevelInner[1] = GetTessLevel(patchLevel);
|
|
output.tessLevelOuter[0] = GetTessLevel(patchLevel);
|
|
output.tessLevelOuter[1] = GetTessLevel(patchLevel);
|
|
output.tessLevelOuter[2] = GetTessLevel(patchLevel);
|
|
output.tessLevelOuter[3] = GetTessLevel(patchLevel);
|
|
#endif
|
|
#endif
|
|
|
|
return output;
|
|
}
|
|
|
|
[domain(HS_DOMAIN)]
|
|
[partitioning(HS_PARTITION)]
|
|
[outputtopology("triangle_cw")]
|
|
[outputcontrolpoints(16)]
|
|
[patchconstantfunc("HSConstFunc")]
|
|
HullVertex hs_main_patches(
|
|
in InputPatch<HullVertex, OSD_PATCH_INPUT_SIZE> patch,
|
|
uint primitiveID : SV_PrimitiveID,
|
|
in uint ID : SV_OutputControlPointID )
|
|
{
|
|
int i = ID%4;
|
|
int j = ID/4;
|
|
|
|
#if defined OSD_PATCH_BOUNDARY
|
|
float3 H[3];
|
|
for (int l=0; l<3; ++l) {
|
|
H[l] = float3(0,0,0);
|
|
for (int k=0; k<4; ++k) {
|
|
H[l] += Q[i][k] * patch[l*4 + k].position.xyz;
|
|
}
|
|
}
|
|
|
|
float3 pos = float3(0,0,0);
|
|
for (int k=0; k<3; ++k) {
|
|
pos += B[j][k]*H[k];
|
|
}
|
|
|
|
#elif defined OSD_PATCH_CORNER
|
|
float3 H[3];
|
|
for (int l=0; l<3; ++l) {
|
|
H[l] = float3(0,0,0);
|
|
for (int k=0; k<3; ++k) {
|
|
H[l] += B[3-i][2-k] * patch[l*3 + k].position.xyz;
|
|
}
|
|
}
|
|
|
|
float3 pos = float3(0,0,0);
|
|
for (int k=0; k<3; ++k) {
|
|
pos += B[j][k]*H[k];
|
|
}
|
|
|
|
#else // not OSD_PATCH_BOUNDARY, not OSD_PATCH_CORNER
|
|
float3 H[4];
|
|
for (int l=0; l<4; ++l) {
|
|
H[l] = float3(0,0,0);
|
|
for(int k=0; k<4; ++k) {
|
|
H[l] += Q[i][k] * patch[l*4 + k].position.xyz;
|
|
}
|
|
}
|
|
|
|
#if defined OSD_PATCH_SINGLE_CREASE
|
|
float sharpness = GetSharpness(primitiveID);
|
|
float Sf = floor(sharpness);
|
|
float Sc = ceil(sharpness);
|
|
float Sr = frac(sharpness);
|
|
float4x4 Mf = ComputeMatrixSimplified(Sf);
|
|
float4x4 Mc = ComputeMatrixSimplified(Sc);
|
|
float4x4 Mj = (1-Sr) * Mf + Sr * Mi;
|
|
float4x4 Ms = (1-Sr) * Mf + Sr * Mc;
|
|
|
|
float3 pos = float3(0,0,0);
|
|
float3 P1 = float3(0,0,0);
|
|
float3 P2 = float3(0,0,0);
|
|
for (int k=0; k<4; ++k) {
|
|
pos += Mi[j][k]*H[k]; // 0 to 1-2^(-Sf)
|
|
P1 += Mj[j][k]*H[k]; // 1-2^(-Sf) to 1-2^(-Sc)
|
|
P2 += Ms[j][k]*H[k]; // 1-2^(-Sc) to 1
|
|
}
|
|
#else
|
|
float3 pos = float3(0,0,0);
|
|
for (int k=0; k<4; ++k){
|
|
pos += Q[j][k]*H[k];
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
HullVertex output;
|
|
output.position = float4(pos, 1.0);
|
|
#if defined OSD_PATCH_SINGLE_CREASE
|
|
output.P1 = float4(P1, 1.0);
|
|
output.P2 = float4(P2, 1.0);
|
|
output.sharpness = sharpness;
|
|
#endif
|
|
|
|
int patchLevel = GetPatchLevel(primitiveID);
|
|
|
|
// +0.5 to avoid interpolation error of integer value
|
|
output.patchCoord = float4(0, 0,
|
|
patchLevel+0.5,
|
|
GetPrimitiveID(primitiveID)+0.5);
|
|
|
|
OSD_COMPUTE_PTEX_COORD_HULL_SHADER;
|
|
|
|
return output;
|
|
}
|
|
|
|
//----------------------------------------------------------
|
|
// Patches.DomainBSpline
|
|
//----------------------------------------------------------
|
|
|
|
[domain(HS_DOMAIN)]
|
|
void ds_main_patches(
|
|
#ifdef OSD_PATCH_TRANSITION
|
|
in HS_CONSTANT_TRANSITION_FUNC_OUT input,
|
|
#else
|
|
in HS_CONSTANT_FUNC_OUT input,
|
|
#endif
|
|
in OutputPatch<HullVertex, 16> patch,
|
|
#ifdef OSD_TRANSITION_TRIANGLE_SUBPATCH
|
|
in float3 domainCoord : SV_DomainLocation,
|
|
#else
|
|
in float2 domainCoord : SV_DomainLocation,
|
|
#endif
|
|
out OutputVertex output )
|
|
{
|
|
#ifdef OSD_PATCH_TRANSITION
|
|
float2 UV = GetTransitionSubpatchUV(domainCoord);
|
|
#else
|
|
float2 UV = domainCoord;
|
|
#endif
|
|
|
|
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
|
|
float B[4], D[4], C[4];
|
|
float3 BUCP[4] = {float3(0,0,0), float3(0,0,0), float3(0,0,0), float3(0,0,0)},
|
|
DUCP[4] = {float3(0,0,0), float3(0,0,0), float3(0,0,0), float3(0,0,0)},
|
|
CUCP[4] = {float3(0,0,0), float3(0,0,0), float3(0,0,0), float3(0,0,0)};
|
|
Univar4x4(UV.x, B, D, C);
|
|
#else
|
|
float B[4], D[4];
|
|
float3 BUCP[4] = {float3(0,0,0), float3(0,0,0), float3(0,0,0), float3(0,0,0)},
|
|
DUCP[4] = {float3(0,0,0), float3(0,0,0), float3(0,0,0), float3(0,0,0)};
|
|
Univar4x4(UV.x, B, D);
|
|
#endif
|
|
|
|
#if defined OSD_PATCH_SINGLE_CREASE
|
|
float sharpness = patch[0].sharpness;
|
|
float s0 = 1.0 - pow(2.0f, -floor(sharpness));
|
|
float s1 = 1.0 - pow(2.0f, -ceil(sharpness));
|
|
#endif
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
#if defined OSD_PATCH_SINGLE_CREASE
|
|
#if OSD_TRANSITION_ROTATE == 1
|
|
int k = 4*(3-j) + i;
|
|
float s = 1-UV.x;
|
|
#elif OSD_TRANSITION_ROTATE == 2
|
|
int k = 4*(3-i) + (3-j);
|
|
float s = 1-UV.y;
|
|
#elif OSD_TRANSITION_ROTATE == 3
|
|
int k = 4*j + (3-i);
|
|
float s = UV.x;
|
|
#else // ROTATE=0 or non-transition
|
|
int k = 4*i + j;
|
|
float s = UV.y;
|
|
#endif
|
|
float3 A = (s < s0) ?
|
|
patch[k].position.xyz :
|
|
((s < s1) ?
|
|
patch[k].P1.xyz :
|
|
patch[k].P2.xyz);
|
|
|
|
#else // !SINGLE_CREASE
|
|
#if OSD_TRANSITION_ROTATE == 1
|
|
float3 A = patch[4*(3-j) + i].position.xyz;
|
|
#elif OSD_TRANSITION_ROTATE == 2
|
|
float3 A = patch[4*(3-i) + (3-j)].position.xyz;
|
|
#elif OSD_TRANSITION_ROTATE == 3
|
|
float3 A = patch[4*j + (3-i)].position.xyz;
|
|
#else // OSD_TRANSITION_ROTATE == 0, or non-transition patch
|
|
float3 A = patch[4*i + j].position.xyz;
|
|
#endif
|
|
#endif
|
|
BUCP[i] += A * B[j];
|
|
DUCP[i] += A * D[j];
|
|
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
|
|
CUCP[i] += A * C[j];
|
|
#endif
|
|
}
|
|
}
|
|
|
|
float3 WorldPos = float3(0,0,0);
|
|
float3 Tangent = float3(0,0,0);
|
|
float3 BiTangent = float3(0,0,0);
|
|
|
|
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
|
|
// used for weingarten term
|
|
Univar4x4(UV.y, B, D, C);
|
|
|
|
float3 dUU = float3(0,0,0);
|
|
float3 dVV = float3(0,0,0);
|
|
float3 dUV = float3(0,0,0);
|
|
|
|
for (int k=0; k<4; ++k) {
|
|
WorldPos += B[k] * BUCP[k];
|
|
Tangent += B[k] * DUCP[k];
|
|
BiTangent += D[k] * BUCP[k];
|
|
|
|
dUU += B[k] * CUCP[k];
|
|
dVV += C[k] * BUCP[k];
|
|
dUV += D[k] * DUCP[k];
|
|
}
|
|
|
|
int level = int(patch[0].ptexInfo.z);
|
|
Tangent *= 3 * level;
|
|
BiTangent *= 3 * level;
|
|
dUU *= 6 * level;
|
|
dVV *= 6 * level;
|
|
dUV *= 9 * level;
|
|
|
|
float3 n = cross(Tangent, BiTangent);
|
|
float3 normal = normalize(n);
|
|
|
|
float E = dot(Tangent, Tangent);
|
|
float F = dot(Tangent, BiTangent);
|
|
float G = dot(BiTangent, BiTangent);
|
|
float e = dot(normal, dUU);
|
|
float f = dot(normal, dUV);
|
|
float g = dot(normal, dVV);
|
|
|
|
float3 Nu = (f*F-e*G)/(E*G-F*F) * Tangent + (e*F-f*E)/(E*G-F*F) * BiTangent;
|
|
float3 Nv = (g*F-f*G)/(E*G-F*F) * Tangent + (f*F-g*E)/(E*G-F*F) * BiTangent;
|
|
|
|
Nu = Nu/length(n) - n * (dot(Nu,n)/pow(dot(n,n), 1.5));
|
|
Nv = Nv/length(n) - n * (dot(Nv,n)/pow(dot(n,n), 1.5));
|
|
|
|
OSD_COMPUTE_PTEX_COMPATIBLE_DERIVATIVES(OSD_TRANSITION_ROTATE);
|
|
#else
|
|
Univar4x4(UV.y, B, D);
|
|
|
|
for (int k=0; k<4; ++k) {
|
|
WorldPos += B[k] * BUCP[k];
|
|
Tangent += B[k] * DUCP[k];
|
|
BiTangent += D[k] * BUCP[k];
|
|
}
|
|
int level = int(patch[0].ptexInfo.z);
|
|
Tangent *= 3 * level;
|
|
BiTangent *= 3 * level;
|
|
|
|
float3 normal = normalize(cross(Tangent, BiTangent));
|
|
|
|
OSD_COMPUTE_PTEX_COMPATIBLE_TANGENT(OSD_TRANSITION_ROTATE);
|
|
#endif
|
|
|
|
output.position = float4(WorldPos, 1.0f);
|
|
output.normal = normal;
|
|
|
|
output.patchCoord = patch[0].patchCoord;
|
|
|
|
#if OSD_TRANSITION_ROTATE == 1
|
|
output.patchCoord.xy = float2(UV.y, 1.0-UV.x);
|
|
#elif OSD_TRANSITION_ROTATE == 2
|
|
output.patchCoord.xy = float2(1.0-UV.x, 1.0-UV.y);
|
|
#elif OSD_TRANSITION_ROTATE == 3
|
|
output.patchCoord.xy = float2(1.0-UV.y, UV.x);
|
|
#else // OSD_TRANNSITION_ROTATE == 0, or non-transition patch
|
|
output.patchCoord.xy = float2(UV.x, UV.y);
|
|
#endif
|
|
|
|
OSD_COMPUTE_PTEX_COORD_DOMAIN_SHADER;
|
|
|
|
OSD_DISPLACEMENT_CALLBACK;
|
|
output.edgeDistance = 0;
|
|
output.positionOut = mul(OsdProjectionMatrix(),
|
|
float4(output.position.xyz, 1.0f));
|
|
}
|