OpenSubdiv/opensubdiv/osd/glslPatchCommon.glsl
David G Yu c185968809 Updated glsl code texelFetchBuffer -> texelFetch
This allows us to remove unnecessary directives
to require GL_EXT_gpu_shader4
2013-06-10 16:21:47 -07:00

487 lines
14 KiB
GLSL

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
//----------------------------------------------------------
// Patches.Common
//----------------------------------------------------------
#ifndef OSD_NUM_VARYINGS
#define OSD_NUM_VARYINGS 0
#endif
#define M_PI 3.14159265359f
struct ControlVertex {
vec4 position;
centroid vec4 patchCoord; // u, v, level, faceID
ivec4 ptexInfo; // U offset, V offset, 2^ptexlevel', rotation
ivec3 clipFlag;
#if OSD_NUM_VARYINGS > 0
float varyings[OSD_NUM_VARYINGS];
#endif
};
struct OutputVertex {
vec4 position;
vec3 normal;
vec3 tangent;
centroid vec4 patchCoord; // u, v, level, faceID
centroid vec2 tessCoord; // tesscoord.st
noperspective vec4 edgeDistance;
#if OSD_NUM_VARYINGS > 0
float varyings[OSD_NUM_VARYINGS];
#endif
};
struct GregControlVertex {
vec3 position;
vec3 hullPosition;
ivec3 clipFlag;
int valence;
vec3 e0;
vec3 e1;
uint zerothNeighbor;
vec3 org;
#if OSD_MAX_VALENCE > 0
vec3 r[OSD_MAX_VALENCE];
#endif
};
struct GregEvalVertex {
vec3 position;
vec3 Ep;
vec3 Em;
vec3 Fp;
vec3 Fm;
centroid vec4 patchCoord;
ivec4 ptexInfo;
#if OSD_NUM_VARYINGS > 0
float varyings[OSD_NUM_VARYINGS];
#endif
};
layout(std140) uniform Transform {
mat4 ModelViewMatrix;
mat4 ProjectionMatrix;
mat4 ModelViewProjectionMatrix;
mat4 ModelViewInverseMatrix;
#ifdef OSD_USER_TRANSFORM_UNIFORMS
OSD_USER_TRANSFORM_UNIFORMS
#endif
};
layout(std140) uniform Tessellation {
float TessLevel;
};
//layout(std140) uniform PrimitiveBufferOffset {
uniform int GregoryQuadOffsetBase;
uniform int LevelBase;
//};
float GetTessLevel(int patchLevel)
{
#if OSD_ENABLE_SCREENSPACE_TESSELLATION
return TessLevel;
#else
return TessLevel / pow(2, patchLevel-1);
#endif
}
float GetPostProjectionSphereExtent(vec3 center, float diameter)
{
vec4 p = ProjectionMatrix * vec4(center, 1.0);
return abs(diameter * ProjectionMatrix[1][1] / p.w);
}
float TessAdaptive(vec3 p0, vec3 p1, int patchLevel)
{
// Adaptive factor can be any computation that depends only on arg values.
// Project the diameter of the edge's bounding sphere instead of using the
// length of the projected edge itself to avoid problems near silhouettes.
vec3 center = (p0 + p1) / 2.0;
float diameter = distance(p0, p1);
return max(1.0, TessLevel * GetPostProjectionSphereExtent(center, diameter));
}
#ifndef OSD_DISPLACEMENT_CALLBACK
#define OSD_DISPLACEMENT_CALLBACK
#endif
uniform isamplerBuffer g_ptexIndicesBuffer;
int GetPatchLevel()
{
ivec2 ptexIndex = texelFetch(g_ptexIndicesBuffer,
gl_PrimitiveID + LevelBase).xy;
return (ptexIndex.y & 0xf);
}
#define OSD_COMPUTE_PTEX_COORD_TESSCONTROL_SHADER \
{ \
ivec2 ptexIndex = texelFetch(g_ptexIndicesBuffer, \
gl_PrimitiveID + LevelBase).xy; \
int faceID = ptexIndex.x; \
int lv = 1 << (ptexIndex.y & 0xf); \
int u = (ptexIndex.y >> 17) & 0x3ff; \
int v = (ptexIndex.y >> 7) & 0x3ff; \
int rotation = (ptexIndex.y >> 5) & 0x3; \
output[ID].v.patchCoord.w = faceID+0.5; \
output[ID].v.ptexInfo = ivec4(u, v, lv, rotation); \
}
#define OSD_COMPUTE_PTEX_COORD_TESSEVAL_SHADER \
{ \
vec2 uv = output.v.patchCoord.xy; \
ivec2 p = input[0].v.ptexInfo.xy; \
int lv = input[0].v.ptexInfo.z; \
int rot = input[0].v.ptexInfo.w; \
output.v.tessCoord.xy = uv; \
uv.xy = float(rot==0)*uv.xy \
+ float(rot==1)*vec2(1.0-uv.y, uv.x) \
+ float(rot==2)*vec2(1.0-uv.x, 1.0-uv.y) \
+ float(rot==3)*vec2(uv.y, 1.0-uv.x); \
output.v.patchCoord.xy = (uv * vec2(1.0)/lv) + vec2(p.x, p.y)/lv; \
}
#define OSD_COMPUTE_PTEX_COMPATIBLE_TANGENT(ROTATE) \
{ \
int rot = (input[0].v.ptexInfo.w + 4 - ROTATE)%4; \
if (rot == 1) { \
output.v.tangent = -normalize(Tangent); \
} else if (rot == 2) { \
output.v.tangent = -normalize(BiTangent); \
} else if (rot == 3) { \
output.v.tangent = normalize(Tangent); \
} else { \
output.v.tangent = normalize(BiTangent); \
} \
}
#ifdef OSD_ENABLE_PATCH_CULL
#define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P) \
vec4 clipPos = ModelViewProjectionMatrix * P; \
bvec3 clip0 = lessThan(clipPos.xyz, vec3(clipPos.w)); \
bvec3 clip1 = greaterThan(clipPos.xyz, -vec3(clipPos.w)); \
output.v.clipFlag = ivec3(clip0) + 2*ivec3(clip1); \
#define OSD_PATCH_CULL(N) \
ivec3 clipFlag = ivec3(0); \
for(int i = 0; i < N; ++i) { \
clipFlag |= input[i].v.clipFlag; \
} \
if (clipFlag != ivec3(3) ) { \
gl_TessLevelInner[0] = 0; \
gl_TessLevelInner[1] = 0; \
gl_TessLevelOuter[0] = 0; \
gl_TessLevelOuter[1] = 0; \
gl_TessLevelOuter[2] = 0; \
gl_TessLevelOuter[3] = 0; \
return; \
}
#else
#define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P)
#define OSD_PATCH_CULL(N)
#endif
// ----------------------------------------------------------------------------
//----------------------------------------------------------
// Patches.Coefficients
//----------------------------------------------------------
// Regular
uniform mat4 Q = mat4(
1.f/6.f, 2.f/3.f, 1.f/6.f, 0.f,
0.f, 2.f/3.f, 1.f/3.f, 0.f,
0.f, 1.f/3.f, 2.f/3.f, 0.f,
0.f, 1.f/6.f, 2.f/3.f, 1.f/6.f
);
// Boundary
uniform mat4x3 B = mat4x3(
1.0f, 0.0f, 0.0f,
2.f/3.f, 1.f/3.f, 0.0f,
1.f/3.f, 2.f/3.f, 0.0f,
1.f/6.f, 2.f/3.f, 1.f/6.f
);
// Corner
uniform mat4 R = mat4(
1.f/6.f, 2.f/3.f, 1.f/6.f, 0.0f,
0.0f, 2.f/3.f, 1.f/3.f, 0.0f,
0.0f, 1.f/3.f, 2.f/3.f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f
);
#if OSD_MAX_VALENCE<=10
uniform float ef[7] = {
0.813008, 0.500000, 0.363636, 0.287505,
0.238692, 0.204549, 0.179211
};
#else
uniform float ef[27] = {
0.812816, 0.500000, 0.363644, 0.287514,
0.238688, 0.204544, 0.179229, 0.159657,
0.144042, 0.131276, 0.120632, 0.111614,
0.103872, 0.09715, 0.0912559, 0.0860444,
0.0814022, 0.0772401, 0.0734867, 0.0700842,
0.0669851, 0.0641504, 0.0615475, 0.0591488,
0.0569311, 0.0548745, 0.0529621
};
#endif
float csf(uint n, uint j)
{
if (j%2 == 0) {
return cos((2.0f * M_PI * float(float(j-0)/2.0f))/(float(n)+3.0f));
} else {
return sin((2.0f * M_PI * float(float(j-1)/2.0f))/(float(n)+3.0f));
}
}
void
Univar4x4(in float u, out float B[4], out float D[4])
{
float t = u;
float s = 1.0f - u;
float A0 = s * s;
float A1 = 2 * s * t;
float A2 = t * t;
B[0] = s * A0;
B[1] = t * A0 + s * A1;
B[2] = t * A1 + s * A2;
B[3] = t * A2;
D[0] = - A0;
D[1] = A0 - A1;
D[2] = A1 - A2;
D[3] = A2;
}
vec4
EvalBSpline(vec2 uv, vec4 cp[16])
{
float B[4], D[4];
Univar4x4(uv.x, B, D);
vec3 BUCP[4], DUCP[4];
for (int i=0; i<4; ++i) {
BUCP[i] = vec3(0.0f, 0.0f, 0.0f);
DUCP[i] = vec3(0.0f, 0.0f, 0.0f);
for (int j=0; j<4; ++j) {
/*
#if ROTATE == 1
vec3 A = cp[4*(3-j) + (3-j)].xyz;
#elif ROTATE == 2
vec3 A = cp[4*i + (3-j)].xyz;
#elif ROTATE == 3
vec3 A = cp[4*j + i].xyz;
#else
vec3 A = cp[4*i + j].xyz;
#endif
*/
vec3 A = cp[4*i + j].xyz;
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
}
}
vec3 val = vec3(0);
Univar4x4(uv.y, B, D);
for (int i=0; i<4; ++i) {
val += B[i] * BUCP[i];
}
return vec4(val, 1);
}
void EvalBSpline(vec2 uv, vec3 cp[16],
out vec3 position,
out vec3 utangent,
out vec3 vtangent)
{
float B[4], D[4];
Univar4x4(uv.x, B, D);
vec3 BUCP[4], DUCP[4];
for (int i=0; i<4; ++i) {
BUCP[i] = vec3(0);
DUCP[i] = vec3(0);
for (int j=0; j<4; ++j) {
#if ROTATE == 1
vec3 A = cp[4*(3-j) + (3-i)];
#elif ROTATE == 2
vec3 A = cp[4*i + (3-j)];
#elif ROTATE == 3
vec3 A = cp[4*j + i];
#else
vec3 A = cp[4*i + j];
#endif
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
}
}
position = vec3(0);
utangent = vec3(0);
vtangent = vec3(0);
Univar4x4(uv.y, B, D);
for (int i=0; i<4; ++i) {
position += B[i] * BUCP[i];
utangent += B[i] * DUCP[i];
vtangent += D[i] * BUCP[i];
}
}
vec4 EvalGregory(vec2 uv, GregEvalVertex ev[4])
{
float u = uv.x;
float v = uv.y;
vec3 p[20];
p[0] = ev[0].position;
p[1] = ev[0].Ep;
p[2] = ev[0].Em;
p[3] = ev[0].Fp;
p[4] = ev[0].Fm;
p[5] = ev[1].position;
p[6] = ev[1].Ep;
p[7] = ev[1].Em;
p[8] = ev[1].Fp;
p[9] = ev[1].Fm;
p[10] = ev[2].position;
p[11] = ev[2].Ep;
p[12] = ev[2].Em;
p[13] = ev[2].Fp;
p[14] = ev[2].Fm;
p[15] = ev[3].position;
p[16] = ev[3].Ep;
p[17] = ev[3].Em;
p[18] = ev[3].Fp;
p[19] = ev[3].Fm;
vec3 q[16];
float U = 1-u, V=1-v;
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
q[ 5] = (u*p[3] + v*p[4])/d11;
q[ 6] = (U*p[9] + v*p[8])/d12;
q[ 9] = (u*p[19] + V*p[18])/d21;
q[10] = (U*p[13] + V*p[14])/d22;
q[ 0] = p[0];
q[ 1] = p[1];
q[ 2] = p[7];
q[ 3] = p[5];
q[ 4] = p[2];
q[ 7] = p[6];
q[ 8] = p[16];
q[11] = p[12];
q[12] = p[15];
q[13] = p[17];
q[14] = p[11];
q[15] = p[10];
float B[4], D[4];
Univar4x4(u, B, D);
vec3 BUCP[4], DUCP[4];
for (int i=0; i<4; ++i) {
BUCP[i] = vec3(0, 0, 0);
DUCP[i] = vec3(0, 0, 0);
for (uint j=0; j<4; ++j) {
// reverse face front
vec3 A = q[i + 4*j];
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
}
}
vec3 WorldPos = vec3(0);
Univar4x4(v, B, D);
for (uint i=0; i<4; ++i) {
WorldPos += B[i] * BUCP[i];
}
return vec4(WorldPos, 1);
}