OpenSubdiv/opensubdiv/far/patchTables.h

682 lines
24 KiB
C++

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#ifndef FAR_PATCH_TABLES_H
#define FAR_PATCH_TABLES_H
#include "../version.h"
#include <cstdlib>
#include <cassert>
#include <vector>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
/// \brief Flattened ptex coordinates indexing system
///
/// Bitfield layout :
///
/// level:4 - the subdivision level of the patch
/// nonquad:1; - whether the patch is the child of a non-quad face
/// rotation:2; - patch rotations necessary to match CCW face-winding
/// v:10; - log2 value of u parameter at first patch corner
/// u:10; - log2 value of v parameter at first patch corner
/// reserved1:5; - padding
///
/// Note : the bitfield is not expanded in the struct due to differences in how
/// GPU & CPU compilers pack bit-fields and endian-ness.
///
struct FarPtexCoord {
unsigned int faceIndex:32; // Ptex face index
struct BitField {
unsigned int field:32;
/// Sets the values of the bit fields
///
/// @param u value of the u parameter for the first corner of the face
/// @param v value of the v parameter for the first corner of the face
///
/// @param rots rotations required to reproduce CCW face-winding
/// @param depth subdivision level of the patch
/// @param nonquad true if the root face is not a quad
///
void Set( short u, short v, unsigned char rots, unsigned char depth, bool nonquad ) {
field = (u << 17) |
(v << 7) |
(rots << 5) |
((nonquad ? 1:0) << 4) |
(nonquad ? depth+1 : depth);
}
/// Returns the log2 value of the u parameter at the top left corner of
/// the patch
unsigned short GetU() const { return (field >> 17) & 0x3ff; }
/// Returns the log2 value of the v parameter at the top left corner of
/// the patch
unsigned short GetV() const { return (field >> 7) & 0x3ff; }
/// Returns the rotation of the patch (the number of CCW parameter winding)
unsigned char GetRotation() const { return (field >> 5) & 0x3; }
/// True if the parent coarse face is a non-quad
bool NonQuadRoot() const { return (field >> 4) & 0x1; }
/// Returns the level of subdivision of the patch
unsigned char GetDepth() const { return (field & 0xf); }
/// Resets the values to 0
void Clear() { field = 0; }
} bitField;
/// Sets the values of the bit fields
///
/// @param faceid ptex face index
///
/// @param u value of the u parameter for the first corner of the face
/// @param v value of the v parameter for the first corner of the face
///
/// @param rots rotations required to reproduce CCW face-winding
/// @param depth subdivision level of the patch
/// @param nonquad true if the root face is not a quad
///
void Set( unsigned int faceid, short u, short v, unsigned char rots, unsigned char depth, bool nonquad ) {
faceIndex = faceid;
bitField.Set(u,v,rots,depth,nonquad);
}
/// Resets everything to 0
void Clear() {
faceIndex = 0;
bitField.Clear();
}
};
/// \brief Container for patch vertex indices tables
///
/// FarPatchTables contain the lists of vertices for each patch of an adaptive
/// mesh representation.
///
class FarPatchTables {
public:
typedef std::vector<unsigned int> PTable;
typedef std::vector<int> VertexValenceTable;
typedef std::vector<unsigned int> QuadOffsetTable;
typedef std::vector<FarPtexCoord> PtexCoordinateTable;
typedef std::vector<float> FVarDataTable;
enum Type {
NON_PATCH = 0, // undefined
POLYGONS, // general polygon mesh
QUADS, // bilinear quads-only patches
TRIANGLES, // bilinear triangles-only mesh
LOOP, // Loop patch (unsupported)
REGULAR, // feature-adaptive bicubic patches
BOUNDARY,
CORNER,
GREGORY,
GREGORY_BOUNDARY
};
enum TransitionPattern {
NON_TRANSITION = 0,
PATTERN0,
PATTERN1,
PATTERN2,
PATTERN3,
PATTERN4,
};
/// \brief Describes the type of a patch
///
/// Uniquely identifies all the types of patches in a mesh :
///
/// * Raw polygon meshes are identified as POLYGONS and can contain faces
/// with arbitrary number of vertices
///
/// * Uniformly subdivided meshes contain bilinear patches of either QUADS
/// or TRIANGLES
///
/// * Adaptively subdivided meshes contain bicubic patches of types REGULAR,
/// BOUNDARY, CORNER, GREGORY, GREGORY_BOUNDARY. These bicubic patches are
/// also further distinguished by a transition pattern as well as a rotational
/// orientation.
///
/// An iterator class is provided as a convenience to enumerate over the set
/// of valid feature adaptive patch descriptors.
///
class Descriptor {
public:
/// Default constructor.
Descriptor() :
_type(NON_PATCH), _pattern(NON_TRANSITION), _rotation(0) {}
/// Constructor
Descriptor(int type, int pattern, unsigned char rotation) :
_type(type), _pattern(pattern), _rotation(rotation) { }
/// Copy Constructor
Descriptor( Descriptor const & d ) :
_type(d.GetType()), _pattern(d.GetPattern()), _rotation(d.GetRotation()) { }
/// Returns the type of the patch
Type GetType() const {
return (Type)_type;
}
/// Returns the transition pattern of the patch if any (5 types)
TransitionPattern GetPattern() const {
return (TransitionPattern)_pattern;
}
/// Returns the rotation of the patch (4 rotations)
unsigned char GetRotation() const {
return _rotation;
}
/// Returns the number of control vertices expected for a patch of the
/// type described
static short GetNumControlVertices( Type t );
/// Returns the number of control vertices expected for a patch of the
/// type described
short GetNumControlVertices() const {
return GetNumControlVertices( this->GetType() );
}
/// Iterates through the patches in the following preset order
///
/// NON_TRANSITION ( REGULAR
/// BOUNDARY
/// CORNER
/// GREGORY
/// GREGORY_BOUNDARY )
///
/// PATTERN0 ( REGULAR
/// BOUNDARY ROT0 ROT1 ROT2 ROT3
/// CORNER ROT0 ROT1 ROT2 ROT3 )
///
/// PATTERN1 ( REGULAR
/// BOUNDARY ROT0 ROT1 ROT2 ROT3
/// CORNER ROT0 ROT1 ROT2 ROT3 )
/// ...
///
/// NON_TRANSITION NON_PATCH ROT0 (end)
///
Descriptor & operator ++ ();
/// Allows ordering of patches by type
bool operator < ( Descriptor const other ) const;
/// True if the descriptors are identical
bool operator == ( Descriptor const other ) const;
/// Descriptor Iterator
class iterator;
/// Returns an iterator to the first type of patch (REGULAR NON_TRANSITION ROT0)
static iterator begin() {
return iterator( Descriptor(REGULAR, NON_TRANSITION, 0) );
}
/// Returns an iterator to the end of the list of patch types (NON_PATCH)
static iterator end() {
return iterator( Descriptor() );
}
private:
template <class T> friend class FarPatchTablesFactory;
friend class iterator;
unsigned int _type:4;
unsigned int _pattern:3;
unsigned int _rotation:2;
};
/// \brief Descriptor iterator class
class Descriptor::iterator {
public:
/// Constructor
iterator() {}
/// Copy Constructor
iterator(Descriptor desc) : pos(desc) { }
/// Iteration increment operator
iterator & operator ++ () { ++pos; return *this; }
/// True of the two descriptors are identical
bool operator == ( iterator const & other ) const { return (pos==other.pos); }
/// True if the two descriptors are different
bool operator != ( iterator const & other ) const { return not (*this==other); }
/// Dereferencing operator
Descriptor * operator -> () { return &pos; }
/// Dereferencing operator
Descriptor & operator * () { return pos; }
private:
Descriptor pos;
};
/// \brief Describes an array of patches of the same type
class PatchArray {
public:
/// Constructor.
///
/// @param vertIndex absolute index to the first control vertex
/// of the first patch in the PTable
///
/// @param patchIndex absolute index of the first patch in the
/// array
///
/// @param npatches number of patches in the array
///
/// @param quadOffsetIndex absolute index of the first quad offset
/// entry
///
PatchArray( Descriptor desc, unsigned int vertIndex, unsigned int patchIndex, unsigned int npatches, unsigned int quadOffsetIndex ) :
_desc(desc), _range(vertIndex, patchIndex, npatches, quadOffsetIndex) { }
/// Returns a patch descriptor defining the type of patches in the array
Descriptor GetDescriptor() const {
return _desc;
}
/// \brief Describes the range of patches in a PatchArray
struct ArrayRange {
/// Constructor
///
/// @param vertIndex absolute index to the first control vertex
/// of the first patch in the PTable
///
/// @param patchIndex absolute index of the first patch in the
/// array
///
/// @param npatches number of patches in the array
///
/// @param quadOffsetIndex absolute index of the first quad offset
/// entry
///
ArrayRange( unsigned int vertIndex, unsigned int patchIndex, unsigned int npatches, unsigned int quadOffsetIndex ) :
vertIndex(vertIndex), patchIndex(patchIndex), npatches(npatches), quadOffsetIndex(quadOffsetIndex) { }
unsigned int vertIndex, // absolute index to the first control vertex of the first patch in the PTable
patchIndex, // absolute index of the first patch in the array
npatches, // number of patches in the array
quadOffsetIndex; // absolute index of the first quad offset entry
};
/// Returns a array range struct
ArrayRange const & GetArrayRange() const {
return _range;
}
/// Returns the index of the first control vertex of the first patch
/// of this array in the global PTable
unsigned int GetVertIndex() const {
return _range.vertIndex;
}
/// Returns the global index of the first patch in this array (Used to
/// access ptex / fvar table data)
unsigned int GetPatchIndex() const {
return _range.patchIndex;
}
/// Returns the number of patches in the array
unsigned int GetNumPatches() const {
return _range.npatches;
}
unsigned int GetQuadOffsetIndex() const {
return _range.quadOffsetIndex;
}
private:
template <class T> friend class FarPatchTablesFactory;
Descriptor _desc; // type of patches in the array
ArrayRange _range; // index locators in the array
};
typedef std::vector<PatchArray> PatchArrayVector;
/// Unique patch identifier within a PatchArrayVector
struct PatchHandle {
unsigned int array, // OsdPatchArray containing the patch
vertexOffset, // Offset to the first CV of the patch
serialIndex; // Serialized Index of the patch
};
/// Get the table of patch control vertices
PTable const & GetPatchTable() const { return _patches; }
/// Returns a pointer to the array of patches matching the descriptor
PatchArray const * GetPatchArray( Descriptor desc ) const {
return const_cast<FarPatchTables *>(this)->findPatchArray( desc );
}
/// Returns all arrays of patches
PatchArrayVector const & GetPatchArrayVector() const {
return _patchArrays;
}
/// Returns a pointer to the vertex indices of uniformly subdivided faces
///
/// @param level the level of subdivision of the faces
///
/// @return a pointer to the first vertex index or NULL if the mesh
/// is not uniformly subdivided or the level cannot be found.
///
unsigned int const * GetFaceVertices(int level) const;
/// Returns the number of faces in a uniformly subdivided mesh at a given level
///
/// @param level the level of subdivision of the faces
///
/// @return the number of faces in the mesh given the subdivision level
/// or -1 if the mesh is not uniform or the level incorrect.
///
int GetNumFaces(int level) const;
/// Returns a vertex valence table used by Gregory patches
VertexValenceTable const & GetVertexValenceTable() const { return _vertexValenceTable; }
/// Returns a quad offsets table used by Gregory patches
QuadOffsetTable const & GetQuadOffsetTable() const { return _quadOffsetTable; }
/// Returns a PtexCoordinateTable for each type of patch
PtexCoordinateTable const & GetPtexCoordinatesTable() const { return _ptexTable; }
/// Returns an FVarDataTable for each type of patch
/// The data is stored as a run of totalFVarWidth floats per-vertex per-face
/// e.g.: for UV data it has the structure of float[p][4][2] where
/// p=primitiveID and totalFVarWidth=2:
/// [ [ uv uv uv uv ] [ uv uv uv uv ] [ ... ] ]
/// prim 0 prim 1
FVarDataTable const & GetFVarDataTable() const { return _fvarTable; }
/// Ringsize of Regular Patches in table.
static int GetRegularPatchRingsize() { return 16; }
/// Ringsize of Boundary Patches in table.
static int GetBoundaryPatchRingsize() { return 12; }
/// Ringsize of Boundary Patches in table.
static int GetCornerPatchRingsize() { return 9; }
/// Ringsize of Gregory (and Gregory Boundary) Patches in table.
static int GetGregoryPatchRingsize() { return 4; }
/// Returns the total number of patches stored in the tables
int GetNumPatches() const;
/// Returns the total number of control vertex indices in the tables
int GetNumControlVertices() const;
/// Returns max vertex valence
int GetMaxValence() const { return _maxValence; }
/// True if the patches are of feature adaptive types
bool IsFeatureAdaptive() const;
private:
template <class T> friend class FarPatchTablesFactory;
template <class T, class U> friend class FarMultiMeshFactory;
// Returns the array of patches of type "desc", or NULL if there aren't any in the primitive
PatchArray * findPatchArray( Descriptor desc );
// Private constructor
FarPatchTables( int maxvalence ) : _maxValence(maxvalence) { }
PatchArrayVector _patchArrays; // Vector of descriptors for arrays of patches
PTable _patches; // Indices of the control vertices of the patches
VertexValenceTable _vertexValenceTable; // vertex valence table (for Gregory patches)
QuadOffsetTable _quadOffsetTable; // quad offsets table (for Gregory patches)
PtexCoordinateTable _ptexTable;
FVarDataTable _fvarTable;
// highest vertex valence allowed in the mesh (used for Gregory
// vertexValance & quadOffset tables)
int _maxValence;
};
inline bool
FarPatchTables::IsFeatureAdaptive() const {
return ((not _vertexValenceTable.empty()) and (not _quadOffsetTable.empty()));
}
// Returns the number of control vertices expected for a patch of this type
inline short
FarPatchTables::Descriptor::GetNumControlVertices( FarPatchTables::Type type ) {
switch (type) {
case REGULAR : return FarPatchTables::GetRegularPatchRingsize();
case QUADS : return 4;
case GREGORY :
case GREGORY_BOUNDARY : return FarPatchTables::GetGregoryPatchRingsize();
case BOUNDARY : return FarPatchTables::GetBoundaryPatchRingsize();
case CORNER : return FarPatchTables::GetCornerPatchRingsize();
case TRIANGLES : return 3;
default : return -1;
}
}
// Iterates in order through the patch types, patterns and rotation in a preset order
inline FarPatchTables::Descriptor &
FarPatchTables::Descriptor::operator ++ () {
if (GetPattern()==NON_TRANSITION) {
if (GetType()==GREGORY_BOUNDARY) {
_type=REGULAR;
++_pattern;
} else
++_type;
} else {
switch (GetType()) {
case REGULAR : ++_type;
_rotation=0;
break;
case BOUNDARY : if (GetRotation()==3) {
++_type;
_rotation=0;
} else {
++_rotation;
}; break;
case CORNER : if (GetRotation()==3) {
if (GetPattern()!=PATTERN4) {
_type=REGULAR;
_rotation=0;
++_pattern;
} else {
*this = Descriptor();
}
} else {
++_rotation;
}; break;
case NON_PATCH : break;
default:
assert(0);
}
}
return *this;
}
// Returns a pointer to the vertex indices of uniformly subdivided faces
inline unsigned int const *
FarPatchTables::GetFaceVertices(int level) const {
if (IsFeatureAdaptive())
return NULL;
PatchArrayVector const & parrays = GetPatchArrayVector();
if ( (level-1) < (int)parrays.size() ) {
return &GetPatchTable()[ parrays[level-1].GetVertIndex() ];
}
return NULL;
}
// Returns the number of faces in a uniformly subdivided mesh at a given level
inline int
FarPatchTables::GetNumFaces(int level) const {
if (IsFeatureAdaptive())
return -1;
PatchArrayVector const & parrays = GetPatchArrayVector();
if ( (level-1) < (int)parrays.size() ) {
return parrays[level-1].GetNumPatches();
}
return -1;
}
// Allows ordering of patches by type
inline bool
FarPatchTables::Descriptor::operator < ( Descriptor const other ) const {
return _pattern < other._pattern or ((_pattern == other._pattern) and
(_type < other._type or ((_type == other._type) and
(_rotation < other._rotation))));
}
// True if the descriptors are identical
inline bool
FarPatchTables::Descriptor::operator == ( Descriptor const other ) const {
return _pattern == other._pattern and
_type == other._type and
_rotation == other._rotation;
}
// Returns a pointer to the array of patches matching the descriptor
inline FarPatchTables::PatchArray *
FarPatchTables::findPatchArray( FarPatchTables::Descriptor desc ) {
for (int i=0; i<(int)_patchArrays.size(); ++i) {
if (_patchArrays[i].GetDescriptor()==desc)
return &_patchArrays[i];
}
return 0;
}
// Returns the total number of patches stored in the tables
inline int
FarPatchTables::GetNumPatches() const {
int result=0;
for (int i=0; i<(int)_patchArrays.size(); ++i) {
result += _patchArrays[i].GetNumPatches();
}
return result;
}
// Returns the total number of control vertex indices in the tables
inline int
FarPatchTables::GetNumControlVertices() const {
int result=0;
for (int i=0; i<(int)_patchArrays.size(); ++i) {
result += _patchArrays[i].GetDescriptor().GetNumControlVertices() *
_patchArrays[i].GetNumPatches();
}
return result;
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_PATCH_TABLES */