OpenSubdiv/opensubdiv/osd/cpuKernel.cpp
Nathan Litke b7a763853c Added the CATMARK_RESTRICTED_VERT_VERTEX_A, CATMARK_RESTRICTED_VERT_VERTEX_B1, and CATMARK_RESTRICTED_VERT_VERTEX_B2 kernels which compute vertices resulting from the refinement of a smooth or (fully) sharp vertex.
* CATMARK_RESTRICTED_VERT_VERTEX_A handles k_Crease and k_Corner rules
* CATMARK_RESTRICTED_VERT_VERTEX_B1 handles regular k_Smooth and k_Dart rules
* CATMARK_RESTRICTED_VERT_VERTEX_B2 handles irregular k_Smooth and k_Dart rules
2014-06-23 15:59:43 -07:00

613 lines
23 KiB
C++
Executable File

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../osd/cpuKernel.h"
#include "../osd/vertexDescriptor.h"
#include <algorithm>
#include <cmath>
#include <cstdlib>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
static inline void
clear(float *dst, OsdVertexBufferDescriptor const &desc) {
memset(dst, 0, desc.length*sizeof(float));
}
static inline void
addWithWeight(float *dst, const float *srcOrigin, int srcIndex, float weight,
OsdVertexBufferDescriptor const &desc) {
if (srcOrigin && dst) {
const float *src = srcOrigin + srcIndex * desc.stride;
for (int k = 0; k < desc.length; ++k) {
dst[k] += src[k] * weight;
}
}
}
static inline void
copy(float *dstOrigin, const float *src, int dstIndex,
OsdVertexBufferDescriptor const &desc) {
if (dstOrigin && src) {
float *dst = dstOrigin + dstIndex * desc.stride;
memcpy(dst, src, desc.length*sizeof(float));
}
}
void OsdCpuComputeFace(
float * vertex, float * varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *F_IT, const int *F_ITa, int vertexOffset, int tableOffset,
int start, int end) {
if(vertexDesc == OsdVertexBufferDescriptor(0, 4, 4) && varying == NULL) {
ComputeFaceKernel<4>
(vertex, F_IT, F_ITa, vertexOffset, tableOffset, start, end);
} else if(vertexDesc == OsdVertexBufferDescriptor(0, 8, 8) && varying == NULL) {
ComputeFaceKernel<8>
(vertex, F_IT, F_ITa, vertexOffset, tableOffset, start, end);
}
else {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = F_ITa[2*i];
int n = F_ITa[2*i+1];
float weight = 1.0f/n;
int dstIndex = i + vertexOffset - tableOffset;
// clear
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
// accum
for (int j = 0; j < n; ++j) {
int index = F_IT[h+j];
addWithWeight(vertexResults, vertex, index, weight, vertexDesc);
addWithWeight(varyingResults, varying, index, weight, varyingDesc);
}
// write results
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
}
void OsdCpuComputeQuadFace(
float * vertex, float * varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *F_IT, int vertexOffset, int tableOffset,
int start, int end) {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start; i < end; i++) {
int fidx0 = F_IT[tableOffset + 4 * i + 0];
int fidx1 = F_IT[tableOffset + 4 * i + 1];
int fidx2 = F_IT[tableOffset + 4 * i + 2];
int fidx3 = F_IT[tableOffset + 4 * i + 3];
int dstIndex = i + vertexOffset;
// clear
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
// accum
addWithWeight(vertexResults, vertex, fidx0, 0.25f, vertexDesc);
addWithWeight(vertexResults, vertex, fidx1, 0.25f, vertexDesc);
addWithWeight(vertexResults, vertex, fidx2, 0.25f, vertexDesc);
addWithWeight(vertexResults, vertex, fidx3, 0.25f, vertexDesc);
addWithWeight(varyingResults, varying, fidx0, 0.25f, varyingDesc);
addWithWeight(varyingResults, varying, fidx1, 0.25f, varyingDesc);
addWithWeight(varyingResults, varying, fidx2, 0.25f, varyingDesc);
addWithWeight(varyingResults, varying, fidx3, 0.25f, varyingDesc);
// write results
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
void OsdCpuComputeTriQuadFace(
float * vertex, float * varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *F_IT, int vertexOffset, int tableOffset,
int start, int end) {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start; i < end; i++) {
int fidx0 = F_IT[tableOffset + 4 * i + 0];
int fidx1 = F_IT[tableOffset + 4 * i + 1];
int fidx2 = F_IT[tableOffset + 4 * i + 2];
int fidx3 = F_IT[tableOffset + 4 * i + 3];
bool triangle = (fidx2 == fidx3);
float weight = (triangle ? 1.0f / 3.0f : 1.0f / 4.0f);
int dstIndex = i + vertexOffset;
// clear
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
// accum
addWithWeight(vertexResults, vertex, fidx0, weight, vertexDesc);
addWithWeight(vertexResults, vertex, fidx1, weight, vertexDesc);
addWithWeight(vertexResults, vertex, fidx2, weight, vertexDesc);
addWithWeight(varyingResults, varying, fidx0, weight, varyingDesc);
addWithWeight(varyingResults, varying, fidx1, weight, varyingDesc);
addWithWeight(varyingResults, varying, fidx2, weight, varyingDesc);
if (!triangle) {
addWithWeight(vertexResults, vertex, fidx3, weight, vertexDesc);
addWithWeight(varyingResults, varying, fidx3, weight, varyingDesc);
}
// write results
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
void OsdCpuComputeEdge(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *E_IT, const float *E_W, int vertexOffset, int tableOffset,
int start, int end) {
if(vertexDesc == OsdVertexBufferDescriptor(0, 4, 4) && varying == NULL) {
ComputeEdgeKernel<4>(vertex, E_IT, E_W, vertexOffset, tableOffset,
start, end);
}
else if(vertexDesc == OsdVertexBufferDescriptor(0, 8, 8) && varying == NULL) {
ComputeEdgeKernel<8>(vertex, E_IT, E_W, vertexOffset, tableOffset,
start, end);
}
else {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int eidx0 = E_IT[4*i+0];
int eidx1 = E_IT[4*i+1];
int eidx2 = E_IT[4*i+2];
int eidx3 = E_IT[4*i+3];
float vertWeight = E_W[i*2+0];
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, eidx0, vertWeight, vertexDesc);
addWithWeight(vertexResults, vertex, eidx1, vertWeight, vertexDesc);
if (eidx2 != -1) {
float faceWeight = E_W[i*2+1];
addWithWeight(vertexResults, vertex, eidx2, faceWeight, vertexDesc);
addWithWeight(vertexResults, vertex, eidx3, faceWeight, vertexDesc);
}
addWithWeight(varyingResults, varying, eidx0, 0.5f, varyingDesc);
addWithWeight(varyingResults, varying, eidx1, 0.5f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
}
void OsdCpuComputeRestrictedEdge(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *E_IT, int vertexOffset, int tableOffset,
int start, int end) {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int eidx0 = E_IT[4*i+0];
int eidx1 = E_IT[4*i+1];
int eidx2 = E_IT[4*i+2];
int eidx3 = E_IT[4*i+3];
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, eidx0, 0.25f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx1, 0.25f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx2, 0.25f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx3, 0.25f, vertexDesc);
addWithWeight(varyingResults, varying, eidx0, 0.5f, varyingDesc);
addWithWeight(varyingResults, varying, eidx1, 0.5f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
void OsdCpuComputeVertexA(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *V_ITa, const float *V_W, int vertexOffset, int tableOffset,
int start, int end, int pass) {
if(vertexDesc == OsdVertexBufferDescriptor(0, 4, 4) && varying == NULL) {
ComputeVertexAKernel<4>(vertex, V_ITa, V_W, vertexOffset, tableOffset,
start, end, pass);
}
else if(vertexDesc == OsdVertexBufferDescriptor(0, 8, 8) && varying == NULL) {
ComputeVertexAKernel<8>(vertex, V_ITa, V_W, vertexOffset, tableOffset,
start, end, pass);
}
else {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
int eidx0 = V_ITa[5*i+3];
int eidx1 = V_ITa[5*i+4];
float weight = (pass == 1) ? V_W[i] : 1.0f - V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight > 0.0f && weight < 1.0f && n > 0)
weight = 1.0f - weight;
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
if (pass) {
// copy previous results
addWithWeight(vertexResults, vertex, dstIndex, 1.0f, vertexDesc);
}
if (eidx0 == -1 || (pass == 0 && (n == -1))) {
addWithWeight(vertexResults, vertex, p, weight, vertexDesc);
} else {
addWithWeight(vertexResults, vertex, p, weight * 0.75f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx0, weight * 0.125f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx1, weight * 0.125f, vertexDesc);
}
copy(vertex, vertexResults, dstIndex, vertexDesc);
if (not pass) {
addWithWeight(varyingResults, varying, p, 1.0f, varyingDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
}
}
void OsdCpuComputeVertexB(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *V_ITa, const int *V_IT, const float *V_W,
int vertexOffset, int tableOffset, int start, int end) {
if(vertexDesc == OsdVertexBufferDescriptor(0, 4, 4) && varying == NULL) {
ComputeVertexBKernel<4>(vertex, V_ITa, V_IT, V_W,
vertexOffset, tableOffset, start, end);
}
else if(vertexDesc == OsdVertexBufferDescriptor(0, 8, 8) && varying == NULL) {
ComputeVertexBKernel<8>(vertex, V_ITa, V_IT, V_W,
vertexOffset, tableOffset, start, end);
}
else {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = V_ITa[5*i];
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
float weight = V_W[i];
float wp = 1.0f/static_cast<float>(n*n);
float wv = (n-2.0f) * n * wp;
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, p, weight * wv, vertexDesc);
for (int j = 0; j < n; ++j) {
addWithWeight(vertexResults, vertex, V_IT[h+j*2], weight * wp, vertexDesc);
addWithWeight(vertexResults, vertex, V_IT[h+j*2+1], weight * wp, vertexDesc);
}
addWithWeight(varyingResults, varying, p, 1.0f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
}
void OsdCpuComputeRestrictedVertexB1(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *V_ITa, const int *V_IT,
int vertexOffset, int tableOffset, int start, int end) {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = V_ITa[5*i];
int p = V_ITa[5*i+2];
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, p, 0.5f, vertexDesc);
for (int j = 0; j < 8; ++j, ++h)
addWithWeight(vertexResults, vertex, V_IT[h], 0.0625f, vertexDesc);
addWithWeight(varyingResults, varying, p, 1.0f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
void OsdCpuComputeRestrictedVertexB2(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *V_ITa, const int *V_IT,
int vertexOffset, int tableOffset, int start, int end) {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = V_ITa[5*i];
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
float wp = 1.0f/static_cast<float>(n*n);
float wv = (n-2.0f) * n * wp;
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, p, wv, vertexDesc);
for (int j = 0; j < n; ++j) {
addWithWeight(vertexResults, vertex, V_IT[h+j*2], wp, vertexDesc);
addWithWeight(vertexResults, vertex, V_IT[h+j*2+1], wp, vertexDesc);
}
addWithWeight(varyingResults, varying, p, 1.0f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
void OsdCpuComputeRestrictedVertexA(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *V_ITa,
int vertexOffset, int tableOffset, int start, int end) {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int p = V_ITa[5*i+2];
int eidx0 = V_ITa[5*i+3];
int eidx1 = V_ITa[5*i+4];
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, p, 0.75f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx0, 0.125f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx1, 0.125f, vertexDesc);
addWithWeight(varyingResults, varying, p, 1.0f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
void OsdCpuComputeLoopVertexB(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *V_ITa, const int *V_IT, const float *V_W,
int vertexOffset, int tableOffset, int start, int end) {
if(vertexDesc == OsdVertexBufferDescriptor(0, 4, 4) && varying == NULL) {
ComputeLoopVertexBKernel<4>(vertex, V_ITa, V_IT, V_W, vertexOffset,
tableOffset, start, end);
}
else if(vertexDesc == OsdVertexBufferDescriptor(0, 8, 8) && varying == NULL) {
ComputeLoopVertexBKernel<8>(vertex, V_ITa, V_IT, V_W, vertexOffset,
tableOffset, start, end);
}
else {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int h = V_ITa[5*i];
int n = V_ITa[5*i+1];
int p = V_ITa[5*i+2];
float weight = V_W[i];
float wp = 1.0f/static_cast<float>(n);
float beta = 0.25f * cosf(static_cast<float>(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, p, weight * (1.0f - (beta * n)), vertexDesc);
for (int j = 0; j < n; ++j)
addWithWeight(vertexResults, vertex, V_IT[h+j], weight * beta, vertexDesc);
addWithWeight(varyingResults, varying, p, 1.0f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
}
void OsdCpuComputeBilinearEdge(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *E_IT, int vertexOffset, int tableOffset, int start, int end) {
if(vertexDesc == OsdVertexBufferDescriptor(0, 4, 4) && varying == NULL) {
ComputeBilinearEdgeKernel<4>(vertex, E_IT, vertexOffset, tableOffset,
start, end);
}
else if(vertexDesc == OsdVertexBufferDescriptor(0, 8, 8) && varying == NULL) {
ComputeBilinearEdgeKernel<8>(vertex, E_IT, vertexOffset, tableOffset,
start, end);
}
else {
float *vertexResults = (float*)alloca(vertexDesc.length * sizeof(float));
float *varyingResults = (float*)alloca(varyingDesc.length * sizeof(float));
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int eidx0 = E_IT[2*i+0];
int eidx1 = E_IT[2*i+1];
int dstIndex = i + vertexOffset - tableOffset;
clear(vertexResults, vertexDesc);
clear(varyingResults, varyingDesc);
addWithWeight(vertexResults, vertex, eidx0, 0.5f, vertexDesc);
addWithWeight(vertexResults, vertex, eidx1, 0.5f, vertexDesc);
addWithWeight(varyingResults, varying, eidx0, 0.5f, varyingDesc);
addWithWeight(varyingResults, varying, eidx1, 0.5f, varyingDesc);
copy(vertex, vertexResults, dstIndex, vertexDesc);
copy(varying, varyingResults, dstIndex, varyingDesc);
}
}
}
void OsdCpuComputeBilinearVertex(
float *vertex, float *varying,
OsdVertexBufferDescriptor const &vertexDesc,
OsdVertexBufferDescriptor const &varyingDesc,
const int *V_ITa, int vertexOffset, int tableOffset, int start, int end) {
float *src, *des;
for (int i = start + tableOffset; i < end + tableOffset; i++) {
int p = V_ITa[i];
int dstIndex = i + vertexOffset - tableOffset;
if (vertex) {
src = vertex + p * vertexDesc.stride;
des = vertex + dstIndex * vertexDesc.stride;
memcpy(des, src, sizeof(float)*vertexDesc.length);
}
if (varying) {
src = varying + p * varyingDesc.stride;
des = varying + dstIndex * varyingDesc.stride;
memcpy(des, src, sizeof(float)*varyingDesc.length);
}
}
}
void OsdCpuEditVertexAdd(
float *vertex,
OsdVertexBufferDescriptor const &vertexDesc,
int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset,
int start, int end,
const unsigned int *editIndices, const float *editValues) {
for (int i = start+tableOffset; i < end+tableOffset; i++) {
if (vertex) {
int editIndex = editIndices[i] + vertexOffset;
float *dst = vertex + editIndex * vertexDesc.stride + primVarOffset;
for (int j = 0; j < primVarWidth; ++j) {
dst[j] += editValues[j];
}
}
}
}
void OsdCpuEditVertexSet(
float *vertex,
OsdVertexBufferDescriptor const &vertexDesc,
int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset,
int start, int end,
const unsigned int *editIndices, const float *editValues) {
for (int i = start+tableOffset; i < end+tableOffset; i++) {
if (vertex) {
int editIndex = editIndices[i] + vertexOffset;
float *dst = vertex + editIndex * vertexDesc.stride + primVarOffset;
for (int j = 0; j < primVarWidth; ++j) {
dst[j] = editValues[j];
}
}
}
}
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv