OpenSubdiv/opensubdiv/osd/glslComputeKernel.glsl
Nathan Litke b7a763853c Added the CATMARK_RESTRICTED_VERT_VERTEX_A, CATMARK_RESTRICTED_VERT_VERTEX_B1, and CATMARK_RESTRICTED_VERT_VERTEX_B2 kernels which compute vertices resulting from the refinement of a smooth or (fully) sharp vertex.
* CATMARK_RESTRICTED_VERT_VERTEX_A handles k_Crease and k_Corner rules
* CATMARK_RESTRICTED_VERT_VERTEX_B1 handles regular k_Smooth and k_Dart rules
* CATMARK_RESTRICTED_VERT_VERTEX_B2 handles irregular k_Smooth and k_Dart rules
2014-06-23 15:59:43 -07:00

559 lines
16 KiB
GLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#version 430
subroutine void computeKernelType();
subroutine uniform computeKernelType computeKernel;
uniform int vertexOffset = 0; // vertex index offset for the batch
uniform int tableOffset = 0; // offset of subdivision table
uniform int indexStart = 0; // start index relative to tableOffset
uniform int indexEnd = 0; // end index relative to tableOffset
uniform int vertexBaseOffset = 0; // base vbo offset of the vertex buffer
uniform int varyingBaseOffset = 0; // base vbo offset of the varying buffer
uniform bool vertexPass;
/*
+-----+---------------------------------+-----
n-1 | Level n |<batch range>| | n+1
+-----+---------------------------------+-----
^ ^ ^
vertexOffset | |
indexStart indexEnd
interleaved buffer example
+---------------------------+
| x | y | z | r | g | b | a |
+---------------------------+
^
vertexBaseOffset
^
varyingBaseOffset
NUM_VERTEX_ELEMENTS = 3
NUM_VARYING_ELEMENTS = 4
VERTEX_STRIDE = VARYING_STRIDE = 7
*/
layout(binding=0) buffer vertex_buffer { float vertexBuffer[]; };
layout(binding=1) buffer varying_buffer { float varyingBuffer[]; };
layout(binding=2) buffer _F0_IT { int _F_IT[]; };
layout(binding=3) buffer _F0_ITa { int _F_ITa[]; };
layout(binding=4) buffer _E0_IT { int _E_IT[]; };
layout(binding=5) buffer _V0_IT { int _V_IT[]; };
layout(binding=6) buffer _V0_ITa { int _V_ITa[]; };
layout(binding=7) buffer _E0_S { float _E_W[]; };
layout(binding=8) buffer _V0_S { float _V_W[]; };
layout(binding=9) buffer _editIndices_buffer { int _editIndices[]; };
layout(binding=10) buffer _editValues_buffer { float _editValues[]; };
layout(local_size_x=WORK_GROUP_SIZE, local_size_y=1, local_size_z=1) in;
//--------------------------------------------------------------------------------
struct Vertex
{
#if NUM_VERTEX_ELEMENTS > 0
float vertexData[NUM_VERTEX_ELEMENTS];
#endif
#if NUM_VARYING_ELEMENTS > 0
float varyingData[NUM_VARYING_ELEMENTS];
#endif
};
void clear(out Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = 0;
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] = 0;
}
#endif
}
Vertex readVertex(int index)
{
Vertex v;
#if NUM_VERTEX_ELEMENTS > 0
int vertexIndex = index * VERTEX_STRIDE + vertexBaseOffset;
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = vertexBuffer[vertexIndex + i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
int varyingIndex = index * VARYING_STRIDE + varyingBaseOffset;
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
v.varyingData[i] = varyingBuffer[varyingIndex + i];
}
#endif
return v;
}
void writeVertex(int index, Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
int vertexIndex = index * VERTEX_STRIDE + vertexBaseOffset;
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
vertexBuffer[vertexIndex + i] = v.vertexData[i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
int varyingIndex = index * VARYING_STRIDE + varyingBaseOffset;
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
varyingBuffer[varyingIndex + i] = v.varyingData[i];
}
#endif
}
void addWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] += weight * src.vertexData[i];
}
#endif
}
void addVaryingWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VARYING_ELEMENTS > 0
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
v.varyingData[i] += weight * src.varyingData[i];
}
#endif
}
//--------------------------------------------------------------------------------
// Face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeFace()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _F_ITa[2*i];
int n = _F_ITa[2*i+1];
float weight = 1.0/n;
Vertex dst;
clear(dst);
for(int j=0; j<n; ++j){
int index = _F_IT[h+j];
addWithWeight(dst, readVertex(index), weight);
addVaryingWithWeight(dst, readVertex(index), weight);
}
writeVertex(vid, dst);
}
// Quad face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeQuadFace()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
int fidx0 = _F_IT[tableOffset + i * 4 + 0];
int fidx1 = _F_IT[tableOffset + i * 4 + 1];
int fidx2 = _F_IT[tableOffset + i * 4 + 2];
int fidx3 = _F_IT[tableOffset + i * 4 + 3];
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(fidx0), 0.25);
addWithWeight(dst, readVertex(fidx1), 0.25);
addWithWeight(dst, readVertex(fidx2), 0.25);
addWithWeight(dst, readVertex(fidx3), 0.25);
addVaryingWithWeight(dst, readVertex(fidx0), 0.25);
addVaryingWithWeight(dst, readVertex(fidx1), 0.25);
addVaryingWithWeight(dst, readVertex(fidx2), 0.25);
addVaryingWithWeight(dst, readVertex(fidx3), 0.25);
writeVertex(vid, dst);
}
// Tri-quad face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeTriQuadFace()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
int fidx0 = _F_IT[tableOffset + i * 4 + 0];
int fidx1 = _F_IT[tableOffset + i * 4 + 1];
int fidx2 = _F_IT[tableOffset + i * 4 + 2];
int fidx3 = _F_IT[tableOffset + i * 4 + 3];
bool triangle = (fidx2 == fidx3);
float weight = triangle ? 1.0f / 3.0f : 1.0f / 4.0f;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(fidx0), weight);
addWithWeight(dst, readVertex(fidx1), weight);
addWithWeight(dst, readVertex(fidx2), weight);
addVaryingWithWeight(dst, readVertex(fidx0), weight);
addVaryingWithWeight(dst, readVertex(fidx1), weight);
addVaryingWithWeight(dst, readVertex(fidx2), weight);
if (!triangle) {
addWithWeight(dst, readVertex(fidx3), weight);
addVaryingWithWeight(dst, readVertex(fidx3), weight);
}
writeVertex(vid, dst);
}
// Edge-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeEdge()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
Vertex dst;
clear(dst);
int eidx0 = _E_IT[4*i+0];
int eidx1 = _E_IT[4*i+1];
int eidx2 = _E_IT[4*i+2];
int eidx3 = _E_IT[4*i+3];
ivec4 eidx = ivec4(eidx0, eidx1, eidx2, eidx3);
float vertWeight = _E_W[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
addWithWeight(dst, readVertex(eidx.x), vertWeight);
addWithWeight(dst, readVertex(eidx.y), vertWeight);
if(eidx.z != -1){
float faceWeight = _E_W[i*2+1];
addWithWeight(dst, readVertex(eidx.z), faceWeight);
addWithWeight(dst, readVertex(eidx.w), faceWeight);
}
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(vid, dst);
}
// Restricted edge-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeRestrictedEdge()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
Vertex dst;
clear(dst);
int eidx0 = _E_IT[4*i+0];
int eidx1 = _E_IT[4*i+1];
int eidx2 = _E_IT[4*i+2];
int eidx3 = _E_IT[4*i+3];
ivec4 eidx = ivec4(eidx0, eidx1, eidx2, eidx3);
addWithWeight(dst, readVertex(eidx.x), 0.25f);
addWithWeight(dst, readVertex(eidx.y), 0.25f);
addWithWeight(dst, readVertex(eidx.z), 0.25f);
addWithWeight(dst, readVertex(eidx.w), 0.25f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(vid, dst);
}
// Edge-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeEdge()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
Vertex dst;
clear(dst);
ivec2 eidx = ivec2(_E_IT[2*i+0],
_E_IT[2*i+1]);
addWithWeight(dst, readVertex(eidx.x), 0.5f);
addWithWeight(dst, readVertex(eidx.y), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(vid, dst);
}
// Vertex-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeVertex()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
Vertex dst;
clear(dst);
int p = _V_ITa[i];
addWithWeight(dst, readVertex(p), 1.0f);
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(vid, dst);
}
// Vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
subroutine(computeKernelType)
void catmarkComputeVertexA()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int n = _V_ITa[5*i+1];
int p = _V_ITa[5*i+2];
int eidx0 = _V_ITa[5*i+3];
int eidx1 = _V_ITa[5*i+4];
float weight = vertexPass ? _V_W[i] : 1.0 - _V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0 && weight<1.0 && n > 0)
weight=1.0-weight;
Vertex dst;
if(! vertexPass)
clear(dst);
else
dst = readVertex(vid);
if (eidx0==-1 || (vertexPass==false && (n==-1)) ) {
addWithWeight(dst, readVertex(p), weight);
} else {
addWithWeight(dst, readVertex(p), weight * 0.75f);
addWithWeight(dst, readVertex(eidx0), weight * 0.125f);
addWithWeight(dst, readVertex(eidx1), weight * 0.125f);
}
if(! vertexPass)
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeVertexB()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _V_ITa[5*i];
int n = _V_ITa[5*i+1];
int p = _V_ITa[5*i+2];
float weight = _V_W[i];
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * wv);
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(_V_IT[h+j*2]), weight * wp);
addWithWeight(dst, readVertex(_V_IT[h+j*2+1]), weight * wp);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
// Restricted vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
subroutine(computeKernelType)
void catmarkComputeRestrictedVertexA()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int p = _V_ITa[5*i+2];
int eidx0 = _V_ITa[5*i+3];
int eidx1 = _V_ITa[5*i+4];
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), 0.75f);
addWithWeight(dst, readVertex(eidx0), 0.125f);
addWithWeight(dst, readVertex(eidx1), 0.125f);
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
// Vertex-vertices compute Kernels 'B' / regular k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeRestrictedVertexB1()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _V_ITa[5*i];
int p = _V_ITa[5*i+2];
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), 0.5f);
for(int j = 0; j < 8; ++j)
addWithWeight(dst, readVertex(_V_IT[h+j]), 0.0625f);
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
// Vertex-vertices compute Kernels 'B' / irregular k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeRestrictedVertexB2()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _V_ITa[5*i];
int n = _V_ITa[5*i+1];
int p = _V_ITa[5*i+2];
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), wv);
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(_V_IT[h+j*2]), wp);
addWithWeight(dst, readVertex(_V_IT[h+j*2+1]), wp);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void loopComputeVertexB()
{
float PI = 3.14159265358979323846264;
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _V_ITa[5*i];
int n = _V_ITa[5*i+1];
int p = _V_ITa[5*i+2];
float weight = _V_W[i];
float wp = 1.0/n;
float beta = 0.25 * cos(PI*2.0f*wp)+0.375f;
beta = beta * beta;
beta = (0.625f-beta)*wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * (1.0-(beta*n)));
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(_V_IT[h+j]), weight * beta);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
// vertex edit kernel
uniform int editPrimVarOffset;
uniform int editPrimVarWidth;
subroutine(computeKernelType)
void editAdd()
{
int i = int(gl_GlobalInvocationID.x) + indexStart;
if (i >= indexEnd) return;
i += tableOffset;
int v = _editIndices[i];
Vertex dst = readVertex(v + vertexOffset);
// seemingly we can't iterate dynamically over vertexData[n]
// due to mysterious glsl runtime limitation...?
#if NUM_VERTEX_ELEMENTS > 0
for (int j = 0; j < NUM_VERTEX_ELEMENTS; ++j) {
float editValue = _editValues[i*editPrimVarWidth + min(j, editPrimVarWidth)];
editValue *= float(j >= editPrimVarOffset);
editValue *= float(j < (editPrimVarWidth + editPrimVarOffset));
dst.vertexData[j] += editValue;
}
writeVertex(v + vertexOffset, dst);
#endif
}
void main()
{
// call subroutine
computeKernel();
}