OpenSubdiv/opensubdiv/osd/glslTransformFeedbackKernel.glsl
Nathan Litke b7a763853c Added the CATMARK_RESTRICTED_VERT_VERTEX_A, CATMARK_RESTRICTED_VERT_VERTEX_B1, and CATMARK_RESTRICTED_VERT_VERTEX_B2 kernels which compute vertices resulting from the refinement of a smooth or (fully) sharp vertex.
* CATMARK_RESTRICTED_VERT_VERTEX_A handles k_Crease and k_Corner rules
* CATMARK_RESTRICTED_VERT_VERTEX_B1 handles regular k_Smooth and k_Dart rules
* CATMARK_RESTRICTED_VERT_VERTEX_B2 handles irregular k_Smooth and k_Dart rules
2014-06-23 15:59:43 -07:00

589 lines
17 KiB
GLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#version 420
subroutine void computeKernelType();
subroutine uniform computeKernelType computeKernel;
uniform isamplerBuffer _F0_IT;
uniform isamplerBuffer _F0_ITa;
uniform isamplerBuffer _E0_IT;
uniform isamplerBuffer _V0_IT;
uniform isamplerBuffer _V0_ITa;
uniform samplerBuffer _E0_S;
uniform samplerBuffer _V0_S;
uniform isamplerBuffer _editIndices;
uniform samplerBuffer _editValues;
layout(size1x32) uniform imageBuffer _vertexBufferImage;
uniform int vertexOffset = 0; // vertex index offset for the batch
uniform int tableOffset = 0; // offset of subdivision table
uniform int indexStart = 0; // start index relative to tableOffset
uniform int vertexBaseOffset = 0; // base vbo offset of the vertex buffer
uniform int varyingBaseOffset = 0; // base vbo offset of the varying buffer
uniform bool vertexPass;
/*
+-----+---------------------------------+-----
n-1 | Level n |<batch range>| | n+1
+-----+---------------------------------+-----
^ ^
vertexOffset |
indexStart
NUM_VERTEX_ELEMENTS = 3
NUM_VARYING_ELEMENTS = 4
VERTEX_STRIDE = VARYING_STRIDE = 7
*/
//--------------------------------------------------------------------------------
struct Vertex
{
#if NUM_VERTEX_ELEMENTS > 0
float vertexData[NUM_VERTEX_ELEMENTS];
#endif
#if NUM_VARYING_ELEMENTS > 0
float varyingData[NUM_VARYING_ELEMENTS];
#endif
};
#if NUM_VERTEX_ELEMENTS > 0
uniform samplerBuffer vertexData; // float[NUM_VERTEX_ELEMENTS]
#endif
#if NUM_VARYING_ELEMENTS > 0
uniform samplerBuffer varyingData; // float[NUM_VARYING_ELEMENTS]
#endif
// output feedback (mapped as a subrange of vertices)
#if NUM_VERTEX_ELEMENTS > 0
out float outVertexData[NUM_VERTEX_ELEMENTS];
#endif
#if NUM_VARYING_ELEMENTS > 0
out float outVaryingData[NUM_VARYING_ELEMENTS];
#endif
void clear(out Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = 0;
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] = 0;
}
#endif
}
Vertex readVertex(int index)
{
// XXX: should be split into two parts for addWithWeight and addVaryingWithWeight
Vertex v;
// unpacking
#if NUM_VERTEX_ELEMENTS > 0
int vertexIndex = index * VERTEX_STRIDE;
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = texelFetch(vertexData, vertexIndex+i+vertexBaseOffset).x;
}
#endif
#if NUM_VARYING_ELEMENTS > 0
int varyingIndex = index * VARYING_STRIDE;
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] = texelFetch(varyingData, varyingIndex+i+varyingBaseOffset).x;
}
#endif
return v;
}
void writeVertex(Vertex v)
{
// packing
#if NUM_VERTEX_ELEMENTS > 0
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
outVertexData[i] = v.vertexData[i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
outVaryingData[i] = v.varyingData[i];
}
#endif
}
void writeVertexByImageStore(Vertex v, int index)
{
#if NUM_VERTEX_ELEMENTS > 0
int p = index * VERTEX_STRIDE + vertexBaseOffset;
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
imageStore(_vertexBufferImage, p+i, vec4(v.vertexData[i], 0, 0, 0));
}
#endif
}
void addWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VERTEX_ELEMENTS > 0
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] += weight * src.vertexData[i];
}
#endif
}
void addVaryingWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] += weight * src.varyingData[i];
}
#endif
}
//--------------------------------------------------------------------------------
// Face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeFace()
{
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_F0_ITa, 2*i).x;
int n = texelFetch(_F0_ITa, 2*i+1).x;
float weight = 1.0/n;
Vertex dst;
clear(dst);
for(int j=0; j<n; ++j){
int index = texelFetch(_F0_IT, h+j).x;
addWithWeight(dst, readVertex(index), weight);
addVaryingWithWeight(dst, readVertex(index), weight);
}
writeVertex(dst);
}
// Quad face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeQuadFace()
{
int i = gl_VertexID + indexStart;
int fidx0 = texelFetch(_F0_IT, tableOffset + 4 * i + 0).x;
int fidx1 = texelFetch(_F0_IT, tableOffset + 4 * i + 1).x;
int fidx2 = texelFetch(_F0_IT, tableOffset + 4 * i + 2).x;
int fidx3 = texelFetch(_F0_IT, tableOffset + 4 * i + 3).x;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(fidx0), 0.25);
addWithWeight(dst, readVertex(fidx1), 0.25);
addWithWeight(dst, readVertex(fidx2), 0.25);
addWithWeight(dst, readVertex(fidx3), 0.25);
addVaryingWithWeight(dst, readVertex(fidx0), 0.25);
addVaryingWithWeight(dst, readVertex(fidx1), 0.25);
addVaryingWithWeight(dst, readVertex(fidx2), 0.25);
addVaryingWithWeight(dst, readVertex(fidx3), 0.25);
writeVertex(dst);
}
// Tri-quad face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeTriQuadFace()
{
int i = gl_VertexID + indexStart;
int fidx0 = texelFetch(_F0_IT, tableOffset + 4 * i + 0).x;
int fidx1 = texelFetch(_F0_IT, tableOffset + 4 * i + 1).x;
int fidx2 = texelFetch(_F0_IT, tableOffset + 4 * i + 2).x;
int fidx3 = texelFetch(_F0_IT, tableOffset + 4 * i + 3).x;
bool triangle = (fidx2 == fidx3);
float weight = triangle ? 1.0f / 3.0f : 1.0f / 4.0f;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(fidx0), weight);
addWithWeight(dst, readVertex(fidx1), weight);
addWithWeight(dst, readVertex(fidx2), weight);
addVaryingWithWeight(dst, readVertex(fidx0), weight);
addVaryingWithWeight(dst, readVertex(fidx1), weight);
addVaryingWithWeight(dst, readVertex(fidx2), weight);
if (!triangle) {
addWithWeight(dst, readVertex(fidx3), weight);
addVaryingWithWeight(dst, readVertex(fidx3), weight);
}
writeVertex(dst);
}
// Edge-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeEdge()
{
int i = gl_VertexID + indexStart + tableOffset;
Vertex dst;
clear(dst);
#ifdef OPT_E0_IT_VEC4
ivec4 eidx = texelFetch(_E0_IT, i);
#else
int eidx0 = texelFetch(_E0_IT, 4*i+0).x;
int eidx1 = texelFetch(_E0_IT, 4*i+1).x;
int eidx2 = texelFetch(_E0_IT, 4*i+2).x;
int eidx3 = texelFetch(_E0_IT, 4*i+3).x;
ivec4 eidx = ivec4(eidx0, eidx1, eidx2, eidx3);
#endif
#ifdef OPT_E0_S_VEC2
vec2 weight = texelFetch(_E0_S, i).xy;
float vertWeight = weight.x;
#else
float vertWeight = texelFetch(_E0_S, i*2+0).x;
#endif
// Fully sharp edge : vertWeight = 0.5f;
addWithWeight(dst, readVertex(eidx.x), vertWeight);
addWithWeight(dst, readVertex(eidx.y), vertWeight);
if(eidx.z != -1){
#ifdef OPT_E0_S_VEC2
float faceWeight = weight.y;
#else
float faceWeight = texelFetch(_E0_S, i*2+1).x;
#endif
addWithWeight(dst, readVertex(eidx.z), faceWeight);
addWithWeight(dst, readVertex(eidx.w), faceWeight);
}
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(dst);
}
// Restricted edge-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeRestrictedEdge()
{
int i = gl_VertexID + indexStart + tableOffset;
Vertex dst;
clear(dst);
#ifdef OPT_E0_IT_VEC4
ivec4 eidx = texelFetch(_E0_IT, i);
#else
int eidx0 = texelFetch(_E0_IT, 4*i+0).x;
int eidx1 = texelFetch(_E0_IT, 4*i+1).x;
int eidx2 = texelFetch(_E0_IT, 4*i+2).x;
int eidx3 = texelFetch(_E0_IT, 4*i+3).x;
ivec4 eidx = ivec4(eidx0, eidx1, eidx2, eidx3);
#endif
addWithWeight(dst, readVertex(eidx.x), 0.25f);
addWithWeight(dst, readVertex(eidx.y), 0.25f);
addWithWeight(dst, readVertex(eidx.z), 0.25f);
addWithWeight(dst, readVertex(eidx.w), 0.25f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(dst);
}
// Edge-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeEdge()
{
int i = gl_VertexID + indexStart + tableOffset;
Vertex dst;
clear(dst);
#ifdef OPT_E0_IT_VEC4
ivec2 eidx = texelFetch(_E0_IT, i).xy;
#else
ivec2 eidx = ivec2(texelFetch(_E0_IT, 2*i+0).x,
texelFetch(_E0_IT, 2*i+1).x);
#endif
addWithWeight(dst, readVertex(eidx.x), 0.5f);
addWithWeight(dst, readVertex(eidx.y), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(dst);
}
// Vertex-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeVertex()
{
int i = gl_VertexID + indexStart + tableOffset;
Vertex dst;
clear(dst);
int p = texelFetch(_V0_ITa, i).x;
addWithWeight(dst, readVertex(p), 1.0f);
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
subroutine(computeKernelType)
void catmarkComputeVertexA()
{
int i = gl_VertexID + indexStart + tableOffset;
int vid = gl_VertexID + indexStart + vertexOffset;
int n = texelFetch(_V0_ITa, 5*i+1).x;
int p = texelFetch(_V0_ITa, 5*i+2).x;
int eidx0 = texelFetch(_V0_ITa, 5*i+3).x;
int eidx1 = texelFetch(_V0_ITa, 5*i+4).x;
float weight = vertexPass
? texelFetch(_V0_S, i).x
: 1.0 - texelFetch(_V0_S, i).x;
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0 && weight<1.0 && n > 0)
weight=1.0-weight;
Vertex dst;
if(! vertexPass)
clear(dst);
else
dst = readVertex(vid);
if (eidx0==-1 || (vertexPass==false && (n==-1)) ) {
addWithWeight(dst, readVertex(p), weight);
} else {
addWithWeight(dst, readVertex(p), weight * 0.75f);
addWithWeight(dst, readVertex(eidx0), weight * 0.125f);
addWithWeight(dst, readVertex(eidx1), weight * 0.125f);
}
if(! vertexPass)
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeVertexB()
{
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_V0_ITa, 5*i).x;
#ifdef OPT_CATMARK_V_IT_VEC2
int h2 = h/2;
#endif
int n = texelFetch(_V0_ITa, 5*i+1).x;
int p = texelFetch(_V0_ITa, 5*i+2).x;
float weight = texelFetch(_V0_S, i).x;
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * wv);
for(int j = 0; j < n; ++j){
#ifdef OPT_CATMARK_V_IT_VEC2
ivec2 v0it = texelFetch(_V0_IT, h2+j).xy;
addWithWeight(dst, readVertex(v0it.x), weight * wp);
addWithWeight(dst, readVertex(v0it.y), weight * wp);
#else
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2).x), weight * wp);
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2+1).x), weight * wp);
#endif
}
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Restricted vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
subroutine(computeKernelType)
void catmarkComputeRestrictedVertexA()
{
int i = gl_VertexID + indexStart + tableOffset;
int vid = gl_VertexID + indexStart + vertexOffset;
int p = texelFetch(_V0_ITa, 5*i+2).x;
int eidx0 = texelFetch(_V0_ITa, 5*i+3).x;
int eidx1 = texelFetch(_V0_ITa, 5*i+4).x;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), 0.75f);
addWithWeight(dst, readVertex(eidx0), 0.125f);
addWithWeight(dst, readVertex(eidx1), 0.125f);
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Restricted vertex-vertices compute Kernels 'B' / regular k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeRestrictedVertexB1()
{
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_V0_ITa, 5*i).x;
#ifdef OPT_CATMARK_V_IT_VEC2
int h2 = h/2;
#endif
int p = texelFetch(_V0_ITa, 5*i+2).x;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), 0.5f);
for(int j = 0; j < 4; ++j){
#ifdef OPT_CATMARK_V_IT_VEC2
ivec2 v0it = texelFetch(_V0_IT, h2+j).xy;
addWithWeight(dst, readVertex(v0it.x), 0.0625f);
addWithWeight(dst, readVertex(v0it.y), 0.0625f);
#else
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2).x), 0.0625f);
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2+1).x), 0.0625f);
#endif
}
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Restricted vertex-vertices compute Kernels 'B' / irregular k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeRestrictedVertexB2()
{
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_V0_ITa, 5*i).x;
#ifdef OPT_CATMARK_V_IT_VEC2
int h2 = h/2;
#endif
int n = texelFetch(_V0_ITa, 5*i+1).x;
int p = texelFetch(_V0_ITa, 5*i+2).x;
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), wv);
for(int j = 0; j < n; ++j){
#ifdef OPT_CATMARK_V_IT_VEC2
ivec2 v0it = texelFetch(_V0_IT, h2+j).xy;
addWithWeight(dst, readVertex(v0it.x), wp);
addWithWeight(dst, readVertex(v0it.y), wp);
#else
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2).x), wp);
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2+1).x), wp);
#endif
}
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void loopComputeVertexB()
{
float PI = 3.14159265358979323846264;
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_V0_ITa, 5*i).x;
int n = texelFetch(_V0_ITa, 5*i+1).x;
int p = texelFetch(_V0_ITa, 5*i+2).x;
float weight = texelFetch(_V0_S, i).x;
float wp = 1.0/n;
float beta = 0.25 * cos(PI*2.0f*wp)+0.375f;
beta = beta * beta;
beta = (0.625f-beta)*wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * (1.0-(beta*n)));
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j).x), weight * beta);
}
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// vertex edit kernel
uniform int editPrimVarOffset;
uniform int editPrimVarWidth;
subroutine(computeKernelType)
void editAdd()
{
int i = gl_VertexID + indexStart + tableOffset;
int v = texelFetch(_editIndices, i).x;
Vertex dst = readVertex(v + vertexOffset);
// this is tricky. _editValues array contains editPrimVarWidth count of values.
// i.e. if the vertex edit is just for pos Y, editPrimVarOffset = 1 and
// editPrimVarWidth = 1, then _editValues will be an one element array.
// below loops iterate over every elements regardless editing values to be applied or not,
// so we need to make out-of-range edits ineffective.
#if NUM_VERTEX_ELEMENTS > 0
for (int j = 0; j < NUM_VERTEX_ELEMENTS; ++j) {
int index = min(j-editPrimVarOffset, editPrimVarWidth-1);
float editValue = texelFetch(_editValues, i*editPrimVarOffset + index).x;
editValue *= float(j >= editPrimVarOffset);
editValue *= float(j < (editPrimVarWidth + editPrimVarOffset));
dst.vertexData[j] += editValue;
}
#endif
writeVertexByImageStore(dst, v + vertexOffset);
}
void main()
{
// call subroutine
computeKernel();
}