OpenSubdiv/opensubdiv/far/patchTablesFactory.h
manuelk 25f79e7ff2 - change adaptive refinement in FarMeshFactory to not refine inside holes,
while retaining a necessary 1-ring on the inside of a hole edge

- add IsInsideHole() function to HbrHalfEdge

- add HasChild() function to HbrVertex and HbrHalfedge

- add a regression shape with adjacent holes and creases (tests dart, crease & boundaries)

Note : this does not address hierarchical edits inside holes or hole tags in hierarchical edits

fixes #78
2013-02-20 14:12:09 -08:00

1016 lines
40 KiB
C++

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#ifndef FAR_PTACH_TABLES_FACTORY_H
#define FAR_PTACH_TABLES_FACTORY_H
#include "../version.h"
#include "../far/patchTables.h"
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
/// \brief A specialized factory for feature adaptive FarPatchTables
///
/// FarPatchTables contain the lists of vertices for each patch of an adaptive
/// mesh representation. This specialized factory is a private helper for FarMeshFactory.
///
/// Separating the factory allows us to isolate Far data structures from Hbr dependencies.
///
template <class T> class FarPatchTablesFactory {
protected:
template <class X, class Y> friend class FarMeshFactory;
/// Factory constructor
/// @param mesh Hbr mesh to generate tables for
/// @param nfaces Number of faces in the mesh (cached for speed)
/// @param remapTable Vertex remapping table generated by FarMeshFactory
FarPatchTablesFactory( HbrMesh<T> const * mesh, int nfaces, std::vector<int> const & remapTable );
/// Returns a FarPatchTables instance
/// @param maxlevel Highest level of refinement processed
/// @param maxvalence Maximum vertex valence in the mesh
/// @param requirePtexCoordinate Flag for generating ptex coordinate
/// @param requireFVarData Flag for generating face-varying data
FarPatchTables * Create( int maxlevel, int maxvalence, bool requirePtexCoordinate=false,
bool requireFVarData=false );
private:
// Returns true if one of v's neighboring faces has vertices carrying the tag "wasTagged"
static bool vertexHasTaggedNeighbors(HbrVertex<T> * v);
// Returns the rotation for a boundary patch
static unsigned char computeBoundaryPatchRotation( HbrFace<T> * f );
// Returns the rotation for a corner patch
static unsigned char computeCornerPatchRotation( HbrFace<T> * f );
// Populates an array of indices with the "one-ring" vertices for the given face
void getOneRing( HbrFace<T> * f, int ringsize, unsigned int const * remap, unsigned int * result );
// Populates the Gregory patch quad offsets table
static void getQuadOffsets( HbrFace<T> * f, unsigned int * result );
// Hbr mesh accessor
HbrMesh<T> const * getMesh() const { return _mesh; }
// Number of faces in the Hbr mesh (cached for speed)
int getNumFaces() const { return _nfaces; }
template<class X> struct Pointers {
X R_P, // regular patch
B_P[4], // boundary patch (4 rotations)
C_P[4], // corner patch (4 rotations)
G_P[2]; // gregory patch (boundary & corner)
Pointers() { memset(this, 0, sizeof(Pointers<X>)); }
};
typedef Pointers<unsigned int*> IndexPointers;
typedef Pointers<int *> PtexPointers;
typedef Pointers<float *> FVarPointers;
// Sets the FarTable level markers for the given level using index pointers
void setMarkers(int level, FarPatchTables * result, IndexPointers const & fptrs, IndexPointers const * tptrs);
struct Counters {
int R_C, // regular patch
B_C[4], // boundary patch (4 rotations)
C_C[4], // corner patch (4 rotations)
G_C[2]; // gregory patch (boundary & corner)
Counters() { memset(this, 0, sizeof(Counters)); }
};
Counters _fullCtr,
_transitionCtr[5];
HbrMesh<T> const * _mesh;
// Reference to the vertex remapping table generated by FarMeshFactory
std::vector<int> const &_remapTable;
int _nfaces;
};
template <class T> bool
FarPatchTablesFactory<T>::vertexHasTaggedNeighbors(HbrVertex<T> * v) {
assert(v);
HbrHalfedge<T> * start = v->GetIncidentEdge(),
* next=start;
do {
HbrFace<T> * right = next->GetRightFace(),
* left = next->GetLeftFace();
if (right and (not right->hasTaggedVertices()))
return true;
if (left and (not left->hasTaggedVertices()))
return true;
next = v->GetNextEdge(next);
} while (next and next!=start);
return false;
}
// Returns a rotation index for boundary patches (range [0-3])
template <class T> unsigned char
FarPatchTablesFactory<T>::computeBoundaryPatchRotation( HbrFace<T> * f ) {
unsigned char rot=0;
for (unsigned char i=0; i<4;++i) {
if (f->GetVertex(i)->OnBoundary() and
f->GetVertex((i+1)%4)->OnBoundary())
break;
++rot;
}
return rot;
}
// Returns a rotation index for corner patches (range [0-3])
template <class T> unsigned char
FarPatchTablesFactory<T>::computeCornerPatchRotation( HbrFace<T> * f ) {
unsigned char rot=0;
for (unsigned char i=0; i<4; ++i) {
if (not f->GetVertex((i+3)%4)->OnBoundary())
break;
++rot;
}
return rot;
}
template <class T>
FarPatchTablesFactory<T>::FarPatchTablesFactory( HbrMesh<T> const * mesh, int nfaces, std::vector<int> const & remapTable ) :
_mesh(mesh),
_remapTable(remapTable),
_nfaces(nfaces)
{
assert(mesh and nfaces>0);
// First pass : identify transition / watertight-critical
for (int i=0; i<nfaces; ++i) {
HbrFace<T> * f = mesh->GetFace(i);
if (f->_adaptiveFlags.isTagged and (not f->IsHole())) {
HbrVertex<T> * v = f->Subdivide();
assert(v);
v->_adaptiveFlags.wasTagged=true;
}
int nv = f->GetNumVertices();
for (int j=0; j<nv; ++j) {
if (f->IsCoarse())
f->GetVertex(j)->_adaptiveFlags.wasTagged=true;
HbrHalfedge<T> * e = f->GetEdge(j);
// Flag transition edge that require a triangulated transition
if (f->_adaptiveFlags.isTagged) {
e->_adaptiveFlags.isTriangleHead=true;
// Both half-edges need to be tagged if an opposite exists
if (e->GetOpposite())
e->GetOpposite()->_adaptiveFlags.isTriangleHead=true;
}
HbrFace<T> * left = e->GetLeftFace(),
* right = e->GetRightFace();
if (not (left and right))
continue;
// a tagged edge w/ no children is inside a hole
if (e->HasChild() and (left->_adaptiveFlags.isTagged ^ right->_adaptiveFlags.isTagged)) {
e->_adaptiveFlags.isTransition = true;
HbrVertex<T> * child = e->Subdivide();
assert(child);
// These edges will require extra rows of CVs to maintain water-tightness
// Note : vertices inside holes have no children
if (e->GetOrgVertex()->HasChild()) {
HbrHalfedge<T> * org = child->GetEdge(e->GetOrgVertex()->Subdivide());
if (org)
org->_adaptiveFlags.isWatertightCritical=true;
}
if (e->GetDestVertex()->HasChild()) {
HbrHalfedge<T> * dst = child->GetEdge(e->GetDestVertex()->Subdivide());
if (dst)
dst->_adaptiveFlags.isWatertightCritical=true;
}
}
}
}
// Second pass : count boundaries / identify transition constellation
for (int i=0; i<nfaces; ++i) {
HbrFace<T> * f = mesh->GetFace(i);
if (mesh->GetSubdivision()->FaceIsExtraordinary(mesh,f))
continue;
if (f->IsHole())
continue;
bool isTagged=0, wasTagged=0, isConnected=0, isWatertightCritical=0, isExtraordinary=0;
int triangleHeads=0, boundaryVerts=0;
int nv = f->GetNumVertices();
for (int j=0; j<nv; ++j) {
HbrVertex<T> * v = f->GetVertex(j);
if (v->OnBoundary()) {
boundaryVerts++;
// Boundary vertices with valence higher than 3 aren't Full Boundary
// patches, they are Gregory Boundary patches.
if (v->IsSingular() or v->GetValence()>3)
isExtraordinary=true;
} else if (v->IsExtraordinary())
isExtraordinary=true;
if (f->GetParent() and (not isWatertightCritical))
isWatertightCritical = vertexHasTaggedNeighbors(v);
if (v->_adaptiveFlags.isTagged)
isTagged=1;
if (v->_adaptiveFlags.wasTagged)
wasTagged=1;
// Count the number of triangle heads to find which transition
// pattern to use.
HbrHalfedge<T> * e = f->GetEdge(j);
if (e->_adaptiveFlags.isTriangleHead) {
++triangleHeads;
if (f->GetEdge((j+1)%4)->_adaptiveFlags.isTriangleHead)
isConnected=true;
}
}
f->_adaptiveFlags.bverts=boundaryVerts;
f->_adaptiveFlags.isCritical=isWatertightCritical;
// Regular Boundary Patch
if (wasTagged)
// XXXX manuelk - need to implement end patches
f->_adaptiveFlags.patchType = HbrFace<T>::kEnd;
if (f->_adaptiveFlags.isTagged)
continue;
assert(f->_adaptiveFlags.rots==0 and nv==4);
if (not isTagged and wasTagged) {
if (triangleHeads==0) {
if (not isExtraordinary and boundaryVerts!=1) {
// Full Patches
f->_adaptiveFlags.patchType = HbrFace<T>::kFull;
switch (boundaryVerts) {
case 0 : { // Regular patch
_fullCtr.R_C++;
} break;
case 2 : { // Boundary patch
f->_adaptiveFlags.rots=computeBoundaryPatchRotation(f);
_fullCtr.B_C[0]++;
} break;
case 3 : { // Corner patch
f->_adaptiveFlags.rots=computeCornerPatchRotation(f);
_fullCtr.C_C[0]++;
} break;
default : break;
}
} else {
// Default to Gregory Patch
f->_adaptiveFlags.patchType = HbrFace<T>::kGregory;
switch (boundaryVerts) {
case 0 : { // Regular Gregory patch
_fullCtr.G_C[0]++;
} break;
default : { // Boundary Gregory patch
_fullCtr.G_C[1]++;
} break;
}
}
} else {
// Transition Patch
// Resolve transition constellation : 5 types (see p.5 fig. 7)
switch (triangleHeads) {
case 1 : { for (unsigned char j=0; j<4; ++j) {
if (f->GetEdge(j)->IsTriangleHead())
break;
f->_adaptiveFlags.rots++;
}
f->_adaptiveFlags.transitionType = HbrFace<T>::kTransition0;
} break;
case 2 : { for (unsigned char j=0; j<4; ++j) {
if (isConnected) {
if (f->GetEdge(j)->IsTriangleHead() and
f->GetEdge((j+3)%4)->IsTriangleHead())
break;
} else {
if (f->GetEdge(j)->IsTriangleHead())
break;
}
f->_adaptiveFlags.rots++;
}
if (isConnected)
f->_adaptiveFlags.transitionType = HbrFace<T>::kTransition1;
else
f->_adaptiveFlags.transitionType = HbrFace<T>::kTransition4;
} break;
case 3 : { for (unsigned char j=0; j<4; ++j) {
if (not f->GetEdge(j)->IsTriangleHead())
break;
f->_adaptiveFlags.rots++;
}
f->_adaptiveFlags.transitionType = HbrFace<T>::kTransition2;
} break;
case 4 : f->_adaptiveFlags.transitionType = HbrFace<T>::kTransition3;
break;
default: break;
}
int tidx = f->_adaptiveFlags.transitionType;
assert(tidx>=0);
// Correct rotations for corners & boundaries
if (not isExtraordinary and boundaryVerts!=1) {
switch (boundaryVerts) {
case 0 : { // regular patch
_transitionCtr[tidx].R_C++;
} break;
case 2 : { // boundary patch
unsigned char rot=computeBoundaryPatchRotation(f);
f->_adaptiveFlags.brots=(4-f->_adaptiveFlags.rots+rot)%4;
f->_adaptiveFlags.rots=rot; // override the transition rotation
_transitionCtr[tidx].B_C[f->_adaptiveFlags.brots]++;
} break;
case 3 : { // corner patch
unsigned char rot=computeCornerPatchRotation(f);
f->_adaptiveFlags.brots=(4-f->_adaptiveFlags.rots+rot)%4;
f->_adaptiveFlags.rots=rot; // override the transition rotation
_transitionCtr[tidx].C_C[f->_adaptiveFlags.brots]++;
} break;
default : assert(0); break;
}
} else {
// Use Gregory Patch transition ?
}
}
}
}
}
// Sets the FarTable markers when all the patches of a given level are processed
template <class T> void
FarPatchTablesFactory<T>::setMarkers(int level, FarPatchTables * result, IndexPointers const & fptrs, IndexPointers const * tptrs) {
result->_full._R_IT.SetMarker(level, fptrs.R_P);
result->_full._B_IT.SetMarker(level, fptrs.B_P[0]);
result->_full._C_IT.SetMarker(level, fptrs.C_P[0]);
result->_full._G_IT.SetMarker(level, fptrs.G_P[0]);
result->_full._G_B_IT.SetMarker(level, fptrs.G_P[1]);
for (unsigned char i=0; i<5; ++i) {
result->_transition[i]._R_IT.SetMarker(level, tptrs[i].R_P);
for (unsigned char j=0; j<4; ++j) {
result->_transition[i]._B_IT[j].SetMarker(level, tptrs[i].B_P[j]);
result->_transition[i]._C_IT[j].SetMarker(level, tptrs[i].C_P[j]);
}
}
}
template <class T> FarPatchTables *
FarPatchTablesFactory<T>::Create( int maxlevel, int maxvalence, bool requirePtexCoordinate,
bool requireFVarData ) {
assert(getMesh() and getNumFaces()>0);
FarPatchTables * result = new FarPatchTables(maxlevel, maxvalence);
static const unsigned int remapRegular [16] = {5,6,10,9,4,0,1,2,3,7,11,15,14,13,12,8};
static const unsigned int remapRegularBoundary[12] = {1,2,6,5,0,3,7,11,10,9,8,4};
static const unsigned int remapRegularCorner [ 9] = {1,2,5,4,0,8,7,6,3};
IndexPointers fptrs, tptrs[5];
PtexPointers fptrsPtx, tptrsPtx[5];
FVarPointers fptrsFvd, tptrsFvd[5];
// Allocate all index tables
// Full Patches
result->_full._R_IT.Resize(_fullCtr.R_C*16);
fptrs.R_P = result->_full._R_IT[0];
// Full Boundary Patches
result->_full._B_IT.Resize(_fullCtr.B_C[0]*12);
fptrs.B_P[0] = result->_full._B_IT[0];
// Full Corner Patches
result->_full._C_IT.Resize(_fullCtr.C_C[0]*9);
fptrs.C_P[0] = result->_full._C_IT[0];
// Full Gregory patches
result->_full._G_IT.Resize(_fullCtr.G_C[0]*4);
fptrs.G_P[0] = result->_full._G_IT[0];
// Full Gregory Boundary patches
result->_full._G_B_IT.Resize(_fullCtr.G_C[1]*4);
fptrs.G_P[1] = result->_full._G_B_IT[0];
// Quad-offsets tables (for Gregory patches)
FarPatchTables::QuadOffsetTable quad_G_C0;
quad_G_C0.resize(_fullCtr.G_C[0]*4);
FarPatchTables::QuadOffsetTable quad_G_C1;
quad_G_C1.resize(_fullCtr.G_C[1]*4);
FarPatchTables::QuadOffsetTable::value_type *quad_G_C0_P = &quad_G_C0[0];
FarPatchTables::QuadOffsetTable::value_type *quad_G_C1_P = &quad_G_C1[0];
// Transition Patches
for (int i=0; i<5; ++i) {
result->_transition[i]._R_IT.Resize(_transitionCtr[i].R_C*16);
tptrs[i].R_P = result->_transition[i]._R_IT[0];
for (int j=0; j<4; ++j) {
result->_transition[i]._B_IT[j].Resize(_transitionCtr[i].B_C[j]*12);
tptrs[i].B_P[j] = result->_transition[i]._B_IT[j][0];
result->_transition[i]._C_IT[j].Resize(_transitionCtr[i].C_C[j]*9);
tptrs[i].C_P[j] = result->_transition[i]._C_IT[j][0];
}
}
// Allocate ptex coordinate table if necessary
if (requirePtexCoordinate) {
result->_full._R_PTX.resize(_fullCtr.R_C*2);
fptrsPtx.R_P = &result->_full._R_PTX[0];
result->_full._B_PTX.resize(_fullCtr.B_C[0]*2);
fptrsPtx.B_P[0] = &result->_full._B_PTX[0];
result->_full._C_PTX.resize(_fullCtr.C_C[0]*2);
fptrsPtx.C_P[0] = &result->_full._C_PTX[0];
result->_full._G_PTX.resize(_fullCtr.G_C[0]*2);
fptrsPtx.G_P[0] = &result->_full._G_PTX[0];
result->_full._G_B_PTX.resize(_fullCtr.G_C[1]*2);
fptrsPtx.G_P[1] = &result->_full._G_B_PTX[0];
for (int i=0; i < 5; ++i) {
result->_transition[i]._R_PTX.resize(_transitionCtr[i].R_C*2);
tptrsPtx[i].R_P = &result->_transition[i]._R_PTX[0];
for (int j=0; j < 4; ++j) {
result->_transition[i]._B_PTX[j].resize(_transitionCtr[i].B_C[j]*2);
tptrsPtx[i].B_P[j] = &result->_transition[i]._B_PTX[j][0];
result->_transition[i]._C_PTX[j].resize(_transitionCtr[i].C_C[j]*2);
tptrsPtx[i].C_P[j] = &result->_transition[i]._C_PTX[j][0];
}
}
}
// Allocate face-varying data table if necessary
if (requireFVarData) {
int width = 4*getMesh()->GetTotalFVarWidth();
result->_full._R_FVD.resize(_fullCtr.R_C*width);
fptrsFvd.R_P = &result->_full._R_FVD[0];
result->_full._B_FVD.resize(_fullCtr.B_C[0]*width);
fptrsFvd.B_P[0] = &result->_full._B_FVD[0];
result->_full._C_FVD.resize(_fullCtr.C_C[0]*width);
fptrsFvd.C_P[0] = &result->_full._C_FVD[0];
result->_full._G_FVD.resize(_fullCtr.G_C[0]*width);
fptrsFvd.G_P[0] = &result->_full._G_FVD[0];
result->_full._G_B_FVD.resize(_fullCtr.G_C[1]*width);
fptrsFvd.G_P[1] = &result->_full._G_B_FVD[0];
for (int i=0; i < 5; ++i) {
result->_transition[i]._R_FVD.resize(_transitionCtr[i].R_C*width);
tptrsFvd[i].R_P = &result->_transition[i]._R_FVD[0];
for (int j=0; j < 4; ++j) {
result->_transition[i]._B_FVD[j].resize(_transitionCtr[i].B_C[j]*width);
tptrsFvd[i].B_P[j] = &result->_transition[i]._B_FVD[j][0];
result->_transition[i]._C_FVD[j].resize(_transitionCtr[i].C_C[j]*width);
tptrsFvd[i].C_P[j] = &result->_transition[i]._C_FVD[j][0];
}
}
}
int currentDepth = 0;
int fvarWidth = getMesh()->GetTotalFVarWidth();
// Populate patch index tables with vertex indices
for (int i=0; i<getNumFaces(); ++i) {
HbrFace<T> * f = getMesh()->GetFace(i);
int depth = f->GetDepth();
if (depth!=currentDepth) {
assert(depth==currentDepth+1);
setMarkers(depth, result, fptrs, tptrs);
currentDepth = depth;
}
if (not f->isTransitionPatch() ) {
// Full / End patches
if (f->_adaptiveFlags.patchType==HbrFace<T>::kFull) {
if (not f->_adaptiveFlags.isExtraordinary and f->_adaptiveFlags.bverts!=1) {
switch (f->_adaptiveFlags.bverts) {
case 0 : { // Regular Patch (16 CVs)
getOneRing(f, 16, remapRegular, fptrs.R_P);
fptrs.R_P+=16;
fptrsPtx.R_P = computePtexCoordinate(f, fptrsPtx.R_P, /*isAdaptive=*/true);
fptrsFvd.R_P = computeFVarData(f, fvarWidth, fptrsFvd.R_P, /*isAdaptive=*/true);
} break;
case 2 : { // Boundary Patch (12 CVs)
f->_adaptiveFlags.brots = (f->_adaptiveFlags.rots+1)%4;
getOneRing(f, 12, remapRegularBoundary, fptrs.B_P[0]);
fptrs.B_P[0]+=12;
fptrsPtx.B_P[0] = computePtexCoordinate(f, fptrsPtx.B_P[0], /*isAdaptive=*/true);
fptrsFvd.B_P[0] = computeFVarData(f, fvarWidth, fptrsFvd.B_P[0], /*isAdaptive=*/true);
} break;
case 3 : { // Corner Patch (9 CVs)
f->_adaptiveFlags.brots = (f->_adaptiveFlags.rots+1)%4;
getOneRing(f, 9, remapRegularCorner, fptrs.C_P[0]);
fptrs.C_P[0]+=9;
fptrsPtx.C_P[0] = computePtexCoordinate(f, fptrsPtx.C_P[0], /*isAdaptive=*/true);
fptrsFvd.C_P[0] = computeFVarData(f, fvarWidth, fptrsFvd.C_P[0], /*isAdaptive=*/true);
} break;
default : assert(0);
}
}
} else if (f->_adaptiveFlags.patchType==HbrFace<T>::kGregory) {
if (f->_adaptiveFlags.bverts==0) {
// Gregory Regular Patch (4 CVs + quad-offsets / valence tables)
for (int j=0; j<4; ++j)
fptrs.G_P[0][j] = _remapTable[f->GetVertex(j)->GetID()];
fptrs.G_P[0]+=4;
getQuadOffsets(f, quad_G_C0_P);
quad_G_C0_P += 4;
fptrsPtx.G_P[0] = computePtexCoordinate(f, fptrsPtx.G_P[0], /*isAdaptive=*/true);
fptrsFvd.G_P[0] = computeFVarData(f, fvarWidth, fptrsFvd.G_P[0], /*isAdaptive=*/true);
} else {
// Gregory Boundary Patch (4 CVs + quad-offsets / valence tables)
for (int j=0; j<4; ++j)
fptrs.G_P[1][j] = _remapTable[f->GetVertex(j)->GetID()];
fptrs.G_P[1]+=4;
getQuadOffsets(f, quad_G_C1_P);
quad_G_C1_P += 4;
fptrsPtx.G_P[1] = computePtexCoordinate(f, fptrsPtx.G_P[1], /*isAdaptive=*/true);
fptrsFvd.G_P[1] = computeFVarData(f, fvarWidth, fptrsFvd.G_P[1], /*isAdaptive=*/true);
}
} else {
// XXXX manuelk - end patches here
}
} else {
// Transition patches
int tcase = f->_adaptiveFlags.transitionType;
assert( tcase>=HbrFace<T>::kTransition0 and tcase<=HbrFace<T>::kTransition4 );
if (not f->_adaptiveFlags.isExtraordinary and f->_adaptiveFlags.bverts!=1) {
switch (f->_adaptiveFlags.bverts) {
case 0 : { // Regular Transition Patch (16 CVs)
getOneRing(f, 16, remapRegular, tptrs[tcase].R_P);
tptrs[tcase].R_P+=16;
tptrsPtx[tcase].R_P = computePtexCoordinate(f, tptrsPtx[tcase].R_P, /*isAdaptive=*/true);
tptrsFvd[tcase].R_P = computeFVarData(f, fvarWidth, tptrsFvd[tcase].R_P, /*isAdaptive=*/true);
} break;
case 2 : { // Boundary Transition Patch (12 CVs)
unsigned rot = f->_adaptiveFlags.brots;
getOneRing(f, 12, remapRegularBoundary, tptrs[tcase].B_P[rot]);
tptrs[tcase].B_P[rot]+=12;
tptrsPtx[tcase].B_P[rot] = computePtexCoordinate(f, tptrsPtx[tcase].B_P[rot], /*isAdaptive=*/true);
tptrsFvd[tcase].B_P[rot] = computeFVarData(f, fvarWidth, tptrsFvd[tcase].B_P[rot], /*isAdaptive=*/true);
} break;
case 3 : { // Corner Transition Patch (9 CVs)
unsigned rot = f->_adaptiveFlags.brots;
getOneRing(f, 9, remapRegularCorner, tptrs[tcase].C_P[rot]);
tptrs[tcase].C_P[rot]+=9;
tptrsPtx[tcase].C_P[rot] = computePtexCoordinate(f, tptrsPtx[tcase].C_P[rot], /*isAdaptive=*/true);
tptrsFvd[tcase].C_P[rot] = computeFVarData(f, fvarWidth, tptrsFvd[tcase].C_P[rot], /*isAdaptive=*/true);
} break;
}
} else
// No transition Gregory patches
assert(false);
}
}
setMarkers(currentDepth+1, result, fptrs, tptrs);
// Build Gregory patches vertex valence indices table
if ((_fullCtr.G_C[0] > 0) or (_fullCtr.G_C[1] > 0)) {
// MAX_VALENCE is a property of hardware shaders and needs to be matched in OSD
const int perVertexValenceSize = 2*maxvalence + 1;
const int nverts = getMesh()->GetNumVertices();
FarPatchTables::VertexValenceTable & table = result->_vertexValenceTable;
table.resize(nverts * perVertexValenceSize);
class GatherNeighborsOperator : public HbrVertexOperator<T> {
public:
HbrVertex<T> * center;
FarPatchTables::VertexValenceTable & table;
int offset, valence;
std::vector<int> const & remap;
GatherNeighborsOperator(FarPatchTables::VertexValenceTable & itable, int ioffset, HbrVertex<T> * v, std::vector<int> const & iremap) :
center(v), table(itable), offset(ioffset), valence(0), remap(iremap) { }
// Operator iterates over neighbor vertices of v and accumulates
// pairs of indices the neighbor and diagonal vertices
//
// Regular case
// Boundary case
// o ------- o D3 o
// D0 N0 | |
// | | o ------- o D2 o
// | | D0 N0 | |
// | | | |
// o ------- o ------- o | |
// N1 | V | N3 | |
// | | o ------- o ------- o
// | | N1 V N2
// | |
// o o ------- o
// D1 N2 D2
//
virtual void operator() (HbrVertex<T> &v) {
table[offset++] = remap[v.GetID()];
HbrVertex<T> * diagonal=&v;
HbrHalfedge<T> * e = center->GetEdge(&v);
if ( e ) {
// If v is on a boundary, there may not be a diagonal vertex
diagonal = e->GetNext()->GetDestVertex();
}
//else {
// diagonal = v.GetQEONext( center );
//}
table[offset++] = remap[diagonal->GetID()];
++valence;
}
};
for (int i=0; i<nverts; ++i) {
HbrVertex<T> * v = getMesh()->GetVertex(i);
int outputVertexID = _remapTable[v->GetID()];
int offset = outputVertexID * perVertexValenceSize;
// "offset+1" : the first table entry is the vertex valence, which
// is gathered by the operator (see note below)
GatherNeighborsOperator op( table, offset+1, v, _remapTable );
v->ApplyOperatorSurroundingVertices( op );
// Valence sign bit used to mark boundary vertices
table[offset] = v->OnBoundary() ? -op.valence : op.valence;
// Note : some topologies can cause v to be singular at certain
// levels of adaptive refinement, which prevents us from using
// the GetValence() function. Fortunately, the GatherNeighbors
// operator above just performed a similar traversal, so it is
// very convenient to use it to accumulate the actionable valence.
}
} else {
result->_vertexValenceTable.clear();
}
// Combine quad offset buffers
result->_quadOffsetTable.resize((_fullCtr.G_C[0]+_fullCtr.G_C[1])*4);
std::copy(quad_G_C0.begin(), quad_G_C0.end(), result->_quadOffsetTable.begin());
std::copy(quad_G_C1.begin(), quad_G_C1.end(), result->_quadOffsetTable.begin()+_fullCtr.G_C[0]*4);
return result;
}
// The One Ring vertices to rule them all !
template <class T> void
FarPatchTablesFactory<T>::getOneRing( HbrFace<T> * f, int ringsize, unsigned int const * remap, unsigned int * result) {
assert( f and f->GetNumVertices()==4 and ringsize >=4 );
int idx=0;
for (unsigned char i=0; i<4; ++i)
result[remap[idx++ % ringsize]] = _remapTable[f->GetVertex( (i+f->_adaptiveFlags.rots)%4 )->GetID()];
if (ringsize==16) {
// Regular case
//
// | | | |
// | 4 | 15 | 14 | 13
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 5 | 0 | 3 | 12
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 6 | 1 | 2 | 11
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 7 | 8 | 9 | 10
// ---- o ---- o ---- o ---- o ----
// | | | |
// | | | |
for (int i=0; i<4; ++i) {
int rot = i+f->_adaptiveFlags.rots;
HbrVertex<T> * v0 = f->GetVertex( rot % 4 ),
* v1 = f->GetVertex( (rot+1) % 4 );
HbrHalfedge<T> * e = v0->GetNextEdge( v0->GetNextEdge( v0->GetEdge(v1) ) );
for (int j=0; j<3; ++j) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = _remapTable[e->GetOrgVertex()->GetID()];
}
}
} else if (ringsize==12) {
// Boundary case
//
// 4 0 3 5
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 11 | 1 | 2 | 6
// ---- o ---- o ---- o ---- o ----
// | | | |
// | 10 | 9 | 8 | 7
// ---- o ---- o ---- o ---- o ----
// | | | |
// | | | |
HbrVertex<T> * v[4];
for (int i=0; i<4; ++i)
v[i] = f->GetVertex( (i+f->_adaptiveFlags.rots)%4 );
HbrHalfedge<T> * e;
e = v[0]->GetIncidentEdge()->GetPrev()->GetOpposite()->GetPrev();
result[remap[idx++ % ringsize]] = _remapTable[e->GetOrgVertex()->GetID()];
e = v[1]->GetIncidentEdge();
result[remap[idx++ % ringsize]] = _remapTable[e->GetDestVertex()->GetID()];
e = v[2]->GetNextEdge( v[2]->GetEdge(v[1]) );
for (int i=0; i<3; ++i) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = _remapTable[e->GetOrgVertex()->GetID()];
}
e = v[3]->GetNextEdge( v[3]->GetEdge(v[2]) );
for (int i=0; i<3; ++i) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = _remapTable[e->GetOrgVertex()->GetID()];
}
} else if (ringsize==9) {
// Corner case
//
// 0 1 4
// o ---- o ---- o ----
// | | |
// | 3 | 2 | 5
// o ---- o ---- o ----
// | | |
// | 8 | 7 | 6
// o ---- o ---- o ----
// | | |
// | | |
HbrVertex<T> * v0 = f->GetVertex( (0+f->_adaptiveFlags.rots)%4 ),
* v2 = f->GetVertex( (2+f->_adaptiveFlags.rots)%4 ),
* v3 = f->GetVertex( (3+f->_adaptiveFlags.rots)%4 );
HbrHalfedge<T> * e;
e = v0->GetIncidentEdge()->GetPrev()->GetOpposite()->GetPrev();
result[remap[idx++ % ringsize]] = _remapTable[e->GetOrgVertex()->GetID()];
e = v2->GetIncidentEdge();
result[remap[idx++ % ringsize]] = _remapTable[e->GetDestVertex()->GetID()];
e = v3->GetNextEdge( v3->GetEdge(v2) );
for (int i=0; i<3; ++i) {
e = e->GetNext();
result[remap[idx++ % ringsize]] = _remapTable[e->GetOrgVertex()->GetID()];
}
}
assert(idx==ringsize);
}
// Populate the quad-offsets table used by Gregory patches
template <class T> void
FarPatchTablesFactory<T>::getQuadOffsets( HbrFace<T> * f, unsigned int * result ) {
assert( f and f->GetNumVertices()==4 );
// Builds a table of value pairs for each vertex of the patch.
//
// o
// N0 |
// |
// |
// o ------ o ------ o
// N1 V | .... M3
// | .......
// | .......
// o .......
// N2
//
// [...] [N2 - N3] [...]
//
// Each value pair is composed of 2 index values in range [0-4[ pointing
// to the 2 neighbor vertices to the vertex that belong to the Gregory patch.
// Neighbor ordering is valence counter-clockwise and must match the winding
// used to build the vertexValenceTable.
//
class GatherOffsetsOperator : public HbrVertexOperator<T> {
public:
HbrVertex<T> ** verts; int offsets[2]; int index; int count;
GatherOffsetsOperator(HbrVertex<T> ** iverts) : verts(iverts) { }
void reset() {
index=count=offsets[0]=offsets[1]=0;
}
virtual void operator() (HbrVertex<T> &v) {
// Resolve which 2 neighbor vertices of v belong to the Gregory patch
for (unsigned char i=0; i<4; ++i)
if (&v==verts[i]) {
assert(count<3);
offsets[count++]=index;
break;
}
++index;
}
};
// 4 central CVs of the Gregory patch
HbrVertex<T> * fvs[4] = { f->GetVertex(0),
f->GetVertex(1),
f->GetVertex(2),
f->GetVertex(3) };
// Hbr vertex operator that iterates over neighbor vertices
GatherOffsetsOperator op( fvs );
for (unsigned char i=0; i<4; ++i) {
op.reset();
fvs[i]->ApplyOperatorSurroundingVertices( op );
if (op.offsets[1] - op.offsets[0] != 1)
std::swap(op.offsets[0], op.offsets[1]);
// Pack the 2 indices in 16 bits
result[i] = (op.offsets[0] | (op.offsets[1] << 8));
}
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_VERTEX_EDIT_TABLES_H */