OpenSubdiv/opensubdiv/osd/cudaKernel.cu
Takahito Tejima ee061291b7 Interleaved buffer support in OsdCompute. Removed OsdVertexDescriptor and replaced with OsdVertexBufferDescriptor.
All kernels take offset/length/stride to apply subdivision partially in each vertex elements.

Also the offset can be used for client-based VBO aggregation, without modifying index buffers.
This is useful for topology sharing, in conjunction with glDrawElementsBaseVertex etc.
However, gregory patch shader fetches vertex buffer via texture buffer, which index should also
be offsetted too. Although gl_BaseVertexARB extension should be able to do that job, it's a
relatively new extension. So we use OsdBaseVertex() call to mitigate the compatibility
issue as clients can provide it in their way at least for the time being.
2014-05-09 15:44:52 -07:00

750 lines
30 KiB
Plaintext

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <assert.h>
template<int N> struct DeviceVertex
{
float v[N];
__device__ void addWithWeight(const DeviceVertex<N> *src, float weight) {
#pragma unroll
for(int i = 0; i < N; ++i){
v[i] += src->v[i] * weight;
}
}
__device__ void clear() {
#pragma unroll
for(int i = 0; i < N; ++i){
v[i] = 0.0f;
}
}
};
// Specialize DeviceVarying for N=0 to avoid compile error:
// "flexible array member in otherwise empty struct"
template<> struct DeviceVertex<0>
{
__device__ void addWithWeight(const DeviceVertex<0> *src, float weight) {
}
__device__ void clear() {
}
};
struct DeviceTable
{
void **tables;
int *F0_IT;
int *F0_ITa;
int *E0_IT;
int *V0_IT;
int *V0_ITa;
float *E0_S;
float *V0_S;
};
__device__ void clear(float *dst, int count)
{
for(int i = 0; i < count; ++i) dst[i] = 0;
}
__device__ void addWithWeight(float *dst, float *src, float weight, int count)
{
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeFace(float *fVertex, float *fVaryings, int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
dstVarying.addWithWeight(&varyings[index], weight);
}
vertex[offset + i - tableOffset] = dst;
varyings[offset + i - tableOffset] = dstVarying;
}else{
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
}
vertex[offset + i - tableOffset] = dst;
}
}
}
__global__ void
computeFace(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset +threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x){
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
// XXX: can we use local stack like alloca?
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
addWithWeight(dstVertex, fVertex + index*vertexStride, weight, vertexLength);
addWithWeight(dstVarying, fVarying + index*varyingStride, weight, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeEdge(float *fVertex, float *fVaryings, int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], vertWeight);
dst.addWithWeight(&vertex[eidx1], vertWeight);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
dst.addWithWeight(&vertex[eidx2], faceWeight);
dst.addWithWeight(&vertex[eidx3], faceWeight);
}
vertex[offset+i-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i-tableOffset] = dstVarying;
}
}
}
__global__ void
computeEdge(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;i+= blockDim.x * gridDim.x) {
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, vertWeight, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, vertWeight, vertexLength);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
addWithWeight(dstVertex, fVertex + eidx2*vertexStride, faceWeight, vertexLength);
addWithWeight(dstVertex, fVertex + eidx3*vertexStride, faceWeight, vertexLength);
}
if (varyingLength > 0){
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + eidx0*varyingStride, 0.5f, varyingLength);
addWithWeight(dstVarying, fVarying + eidx1*varyingStride, 0.5f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexA(float *fVertex, float *fVaryings, int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end+tableOffset;
i += blockDim.x * gridDim.x) {
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
if (not pass) {
dst.clear();
} else {
dst = vertex[i+offset-tableOffset];
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
dst.addWithWeight(&vertex[p], weight);
} else {
dst.addWithWeight(&vertex[p], weight * 0.75f);
dst.addWithWeight(&vertex[eidx0], weight * 0.125f);
dst.addWithWeight(&vertex[eidx1], weight * 0.125f);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
if(not pass){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
}
__global__ void
computeVertexA(float *fVertex, float *fVaryings,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x){
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
if (not pass) {
clear(dstVertex, vertexLength);
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
addWithWeight(dstVertex, fVertex + p*vertexStride, weight, vertexLength);
} else {
addWithWeight(dstVertex, fVertex + p*vertexStride, weight*0.75f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, weight*0.125f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, weight*0.125f, vertexLength);
}
if(varyingLength > 0){
if(not pass){
float *dstVarying = fVaryings + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVaryings + p*varyingStride, 1.0f, varyingLength);
}
}
}
}
//texture <int, 1> texV0_IT;
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexB(float *fVertex, float *fVaryings,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * wv);
for (int j = 0; j < n; ++j) {
dst.addWithWeight(&vertex[V0_IT[h+j*2]], weight * wp);
dst.addWithWeight(&vertex[V0_IT[h+j*2+1]], weight * wp);
// int idx0 = tex1Dfetch(texV0_IT, h+j*2);
// int idx1 = tex1Dfetch(texV0_IT, h+j*2+1);
// dst.addWithWeight(&vertex[idx0], weight * wp);
// dst.addWithWeight(&vertex[idx1], weight * wp);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeVertexB(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, weight*wv, vertexLength);
for (int j = 0; j < n; ++j) {
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2]*vertexStride, weight*wp, vertexLength);
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2+1]*vertexStride, weight*wp, vertexLength);
}
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeLoopVertexB(float *fVertex, float *fVaryings, int *V0_ITa, int *V0_IT, float *V0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * (1.0f - (beta * n)));
for (int j = 0; j < n; ++j) {
dst.addWithWeight(&vertex[V0_IT[h+j]], weight * beta);
}
vertex[i+offset-tableOffset] = dst;
if (NUM_VARYING_ELEMENTS > 0) {
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeLoopVertexB(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, weight*(1.0f-(beta*n)), vertexLength);
for (int j = 0; j < n; ++j) {
addWithWeight(dstVertex, fVertex + V0_IT[h+j]*vertexStride, weight*beta, vertexLength);
}
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearEdge(float *fVertex, float *fVaryings, int *E0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i+= blockDim.x * gridDim.x) {
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], 0.5f);
dst.addWithWeight(&vertex[eidx1], 0.5f);
vertex[offset+i-tableOffset] = dst;
if (NUM_VARYING_ELEMENTS > 0) {
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i-tableOffset] = dstVarying;
}
}
}
__global__ void
computeBilinearEdge(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E0_IT, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i+= blockDim.x * gridDim.x) {
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, 0.5f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, 0.5f, vertexLength);
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + eidx0*varyingStride, 0.5f, varyingLength);
addWithWeight(dstVarying, fVarying + eidx1*varyingStride, 0.5f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearVertex(float *fVertex, float *fVaryings, int *V0_ITa, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int p = V0_ITa[i];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], 1.0f);
vertex[i+offset-tableOffset] = dst;
if (NUM_VARYING_ELEMENTS > 0) {
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeBilinearVertex(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int p = V0_ITa[i];
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, 1.0f, vertexLength);
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
// --------------------------------------------------------------------------------------------
__global__ void
editVertexAdd(float *fVertex, int vertexLength, int vertexStride,
int primVarOffset, int primVarWidth,
int vertexOffset, int tableOffset, int start, int end,
const int *editIndices, const float *editValues)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
float *dstVertex = fVertex + (editIndices[i] + vertexOffset) * vertexStride + primVarOffset;
for(int j = 0; j < primVarWidth; j++) {
*dstVertex++ += editValues[i*primVarWidth + j];
}
}
}
// --------------------------------------------------------------------------------------------
#include "../version.h"
// XXX: this macro usage is tentative. Since cuda kernel can't be dynamically configured,
// still trying to find better way to have optimized kernel..
#define OPT_KERNEL(NUM_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS, KERNEL, X, Y, ARG) \
if(vertexLength == NUM_VERTEX_ELEMENTS && \
varyingLength == NUM_VARYING_ELEMENTS && \
vertexStride == vertexLength && \
varyingStride == varyingLength) \
{ KERNEL<NUM_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS><<<X,Y>>>ARG; \
return; }
extern "C" {
void OsdCudaComputeFace(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F_IT, int *F_ITa, int offset, int tableOffset, int start, int end)
{
//computeFace<3, 0><<<512,32>>>(vertex, varying, F_IT, F_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
// fallback kernel (slow)
computeFace<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
F_IT, F_ITa, offset, tableOffset, start, end);
}
void OsdCudaComputeEdge(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E_IT, float *E_W, int offset, int tableOffset, int start, int end)
{
//computeEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, E_W, offset, start, end);
OPT_KERNEL(0, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
computeEdge<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
E_IT, E_W, offset, tableOffset, start, end);
}
void OsdCudaComputeVertexA(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, float *V_W, int offset, int tableOffset, int start, int end, int pass)
{
// computeVertexA<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_W, offset, start, end, pass);
OPT_KERNEL(0, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(0, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(3, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(3, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
computeVertexA<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_W, offset, tableOffset, start, end, pass);
}
void OsdCudaComputeVertexB(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
{
// computeVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
computeVertexB<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
}
void OsdCudaComputeLoopVertexB(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
{
// computeLoopVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
computeLoopVertexB<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
}
void OsdCudaComputeBilinearEdge(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E_IT, int offset, int tableOffset, int start, int end)
{
//computeBilinearEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
computeBilinearEdge<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
E_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeBilinearVertex(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int offset, int tableOffset, int start, int end)
{
// computeBilinearVertex<0, 3><<<512,32>>>(vertex, varying, V_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
computeBilinearVertex<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, offset, tableOffset, start, end);
}
void OsdCudaEditVertexAdd(float *vertex, int vertexLength, int vertexStride,
int primVarOffset, int primVarWidth,
int vertexOffset, int tableOffset,
int start, int end, int *editIndices, float *editValues)
{
editVertexAdd<<<512, 32>>>(vertex, vertexLength, vertexStride, primVarOffset, primVarWidth,
vertexOffset, tableOffset, start, end,
editIndices, editValues);
}
} /* extern "C" */