OpenSubdiv/opensubdiv/osd/cpuEvalLimitController.cpp
Manuel Kraemer 827efd14e3 Reorganize EvalLimitContext and EvalLimitController
Moved transient states (current vertex buffer etc) to controller.
ComputeContext becomes constant so that it's well suited for coarse-grain
parallelism on cpu.

Client-facing API has changed slightly - limitEval example has been adjusted
2014-05-10 17:55:50 -07:00

278 lines
12 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../osd/cpuEvalLimitController.h"
#include "../osd/cpuEvalLimitKernel.h"
#include "../far/patchTables.h"
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
OsdCpuEvalLimitController::OsdCpuEvalLimitController() {
}
OsdCpuEvalLimitController::~OsdCpuEvalLimitController() {
}
// normalize & rotate (u,v) to the sub-patch
inline void
computeSubPatchCoords( OsdCpuEvalLimitContext * context, unsigned int patchIdx, float & u, float & v ) {
FarPatchParam::BitField bits = context->GetPatchBitFields()[ patchIdx ];
bits.Normalize( u, v );
bits.Rotate( u, v );
}
// Vertex interpolation of a sample at the limit
int
OsdCpuEvalLimitController::EvalLimitSample( OpenSubdiv::OsdEvalCoords const & coord,
OsdCpuEvalLimitContext * context,
OsdVertexBufferDescriptor const & outDesc,
float * outQ,
float * outDQU,
float * outDQV ) const {
float u=coord.u,
v=coord.v;
FarPatchMap::Handle const * handle = context->GetPatchMap().FindPatch( coord.face, u, v );
// the map may not be able to return a handle if there is a hole or the face
// index is incorrect
if (not handle)
return 0;
computeSubPatchCoords(context, handle->patchIdx, u, v);
FarPatchTables::PatchArray const & parray = context->GetPatchArrayVector()[ handle->patchArrayIdx ];
unsigned int const * cvs = &context->GetControlVertices()[ parray.GetVertIndex() + handle->vertexOffset ];
VertexData const & vertexData = _currentBindState.vertexData;
if (vertexData.in) {
float * out = outQ ? outQ + outDesc.offset : 0,
* outDu = outDQU ? outDQU + outDesc.offset : 0,
* outDv = outDQV ? outDQV + outDesc.offset : 0;
switch( parray.GetDescriptor().GetType() ) {
case FarPatchTables::REGULAR : evalBSpline( v, u, cvs,
vertexData.inDesc,
vertexData.in,
outDesc,
out, outDu, outDv );
break;
case FarPatchTables::BOUNDARY : evalBoundary( v, u, cvs,
vertexData.inDesc,
vertexData.in,
outDesc,
out, outDu, outDv );
break;
case FarPatchTables::CORNER : evalCorner( v, u, cvs,
vertexData.inDesc,
vertexData.in,
outDesc,
out, outDu, outDv );
break;
case FarPatchTables::GREGORY : evalGregory( v, u, cvs,
&context->GetVertexValenceTable()[0],
&context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ],
context->GetMaxValence(),
vertexData.inDesc,
vertexData.in,
outDesc,
out, outDu, outDv );
break;
case FarPatchTables::GREGORY_BOUNDARY :
evalGregoryBoundary( v, u, cvs,
&context->GetVertexValenceTable()[0],
&context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ],
context->GetMaxValence(),
vertexData.inDesc,
vertexData.in,
outDesc,
out, outDu, outDv );
break;
default:
assert(0);
}
}
return 1;
}
// Vertex interpolation of samples at the limit
int
OsdCpuEvalLimitController::_EvalLimitSample( OpenSubdiv::OsdEvalCoords const & coords,
OsdCpuEvalLimitContext * context,
unsigned int index ) const {
float u=coords.u,
v=coords.v;
FarPatchMap::Handle const * handle = context->GetPatchMap().FindPatch( coords.face, u, v );
// the map may not be able to return a handle if there is a hole or the face
// index is incorrect
if (not handle)
return 0;
computeSubPatchCoords(context, handle->patchIdx, u, v);
FarPatchTables::PatchArray const & parray = context->GetPatchArrayVector()[ handle->patchArrayIdx ];
unsigned int const * cvs = &context->GetControlVertices()[ parray.GetVertIndex() + handle->vertexOffset ];
VertexData const & vertexData = _currentBindState.vertexData;
if (vertexData.in) {
int offset = vertexData.outDesc.stride * index;
if (vertexData.out) {
float * out = vertexData.out+offset,
* outDu = vertexData.outDu ? vertexData.outDu+offset : 0,
* outDv = vertexData.outDv ? vertexData.outDv+offset : 0;
// Based on patch type - go execute interpolation
switch( parray.GetDescriptor().GetType() ) {
case FarPatchTables::REGULAR : evalBSpline( v, u, cvs,
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case FarPatchTables::BOUNDARY : evalBoundary( v, u, cvs,
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case FarPatchTables::CORNER : evalCorner( v, u, cvs,
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case FarPatchTables::GREGORY : evalGregory( v, u, cvs,
&context->GetVertexValenceTable()[0],
&context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ],
context->GetMaxValence(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
case FarPatchTables::GREGORY_BOUNDARY :
evalGregoryBoundary( v, u, cvs,
&context->GetVertexValenceTable()[0],
&context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ],
context->GetMaxValence(),
vertexData.inDesc,
vertexData.in,
vertexData.outDesc,
out, outDu, outDv );
break;
default:
assert(0);
}
}
}
VaryingData const & varyingData = _currentBindState.varyingData;
if (varyingData.in and varyingData.out) {
static int indices[5][4] = { {5, 6,10, 9}, // regular
{1, 2, 6, 5}, // boundary
{1, 2, 5, 4}, // corner
{0, 1, 2, 3}, // gregory
{0, 1, 2, 3} };// gregory boundary
int type = (int)(parray.GetDescriptor().GetType() - FarPatchTables::REGULAR);
int offset = varyingData.outDesc.stride * index;
unsigned int zeroRing[4] = { cvs[indices[type][0]],
cvs[indices[type][1]],
cvs[indices[type][2]],
cvs[indices[type][3]] };
evalBilinear( v, u, zeroRing,
varyingData.inDesc,
varyingData.in,
varyingData.outDesc,
varyingData.out+offset);
}
// Note : currently we only support bilinear boundary interpolation rules
// for face-varying data. Although Hbr supports 3 additional smooth rule
// sets, the feature-adaptive patch interpolation code currently does not
// support them, and neither does this EvalContext.
FacevaryingData const & facevaryingData = _currentBindState.facevaryingData;
if (facevaryingData.out) {
std::vector<float> const & fvarData = context->GetFVarData();
if (not fvarData.empty()) {
int offset = facevaryingData.outDesc.stride * index;
static unsigned int zeroRing[4] = {0,1,2,3};
evalBilinear( v, u, zeroRing,
facevaryingData.inDesc,
&fvarData[ handle->patchIdx * 4 * context->GetFVarWidth() ],
facevaryingData.outDesc,
facevaryingData.out+offset);
}
}
return 1;
}
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv