OpenSubdiv/opensubdiv/far/catmarkSubdivisionTables.h
2012-06-08 11:18:20 -07:00

570 lines
21 KiB
C++

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#ifndef FAR_CATMARK_SUBDIVISION_TABLES_H
#define FAR_CATMARK_SUBDIVISION_TABLES_H
#include <assert.h>
#include <vector>
#include <utility>
#include "../hbr/mesh.h"
#include "../hbr/catmark.h"
#include "../version.h"
#include "../far/subdivisionTables.h"
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
// Catmull-Clark tables store the indexing tables required in order to compute
// the refined positions of a mesh without the help of a hierarchical data
// structure. The advantage of this representation is its ability to be executed
// in a massively parallel environment without data dependencies.
//
template <class T, class U=T> class FarCatmarkSubdivisionTables : public FarSubdivisionTables<T,U> {
public:
// Memory required to store the indexing tables
virtual size_t GetMemoryUsed() const;
// Compute the positions of refined vertices using the specified kernels
virtual void Refine( int level, void * data=0 ) const;
// Table accessors
typename FarSubdivisionTables<T,U>::template Table<unsigned int> const & Get_F_IT( ) const { return _F_IT; }
typename FarSubdivisionTables<T,U>::template Table<int> const & Get_F_ITa( ) const { return _F_ITa; }
private:
friend class FarMeshFactory<T,U>;
friend class FarDispatcher<T,U>;
// Constructor : build level table at depth 'level'
FarCatmarkSubdivisionTables( FarMeshFactory<T,U> const & factory, FarMesh<T,U> * mesh, int level );
// Compute-kernel applied to vertices resulting from the refinement of a face.
void computeFacePoints(int offset, int level, int start, int end, void * clientdata) const;
// Compute-kernel applied to vertices resulting from the refinement of an edge.
void computeEdgePoints(int offset, int level, int start, int end, void * clientdata) const;
// Compute-kernel applied to vertices resulting from the refinement of a vertex
// Kernel "A" Handles the k_Smooth and k_Dart rules
void computeVertexPointsA(int offset, bool pass, int level, int start, int end, void * clientdata) const;
// Compute-kernel applied to vertices resulting from the refinement of a vertex
// Kernel "B" Handles the k_Crease and k_Corner rules
void computeVertexPointsB(int offset, int level, int start, int end, void * clientdata) const;
private:
typename FarSubdivisionTables<T,U>::template Table<int> _F_ITa;
typename FarSubdivisionTables<T,U>::template Table<unsigned int> _F_IT;
};
template <class T, class U> size_t
FarCatmarkSubdivisionTables<T,U>::GetMemoryUsed() const {
return FarSubdivisionTables<T,U>::GetMemoryUsed()+
_F_ITa.GetMemoryUsed()+
_F_IT.GetMemoryUsed();
}
// Constructor - generates indexing tables matching the Catmull-Clark subdivision scheme.
//
// tables codices detail :
//
// _F_ITa[0] : offset into _F_IT array of vertices making up the face
// _F_ITa[1] : valence of the face
//
// _E_ITa[0] : index of the org / dest vertices of the parent edge
// _E_ITa[1] :
// _E_ITa[2] : index of vertices refined from the faces left / right
// _E_ITa[3] : of the parent edge
//
// _V_ITa[0] : offset to the corresponding adjacent vertices into _V0_IT
// _V_ITa[1] : number of adjacent indices
// _V_ITa[2] : index of the parent vertex
// _V_ITa[3] : index of adjacent edge 0 (k_Crease rule)
// _V_ITa[4] : index of adjacent edge 1 (k_Crease rule)
//
template <class T, class U>
FarCatmarkSubdivisionTables<T,U>::FarCatmarkSubdivisionTables( FarMeshFactory<T,U> const & factory, FarMesh<T,U> * mesh, int maxlevel ) :
FarSubdivisionTables<T,U>(mesh, maxlevel),
_F_ITa(maxlevel+1),
_F_IT(maxlevel+1)
{
std::vector<int> const & remap = factory._remapTable;
// Allocate memory for the indexing tables
_F_ITa.Resize(factory.GetNumFaceVerticesTotal(maxlevel)*2);
_F_IT.Resize(factory.GetNumFacesTotal(maxlevel) - factory.GetNumFacesTotal(0));
this->_E_IT.Resize(factory.GetNumEdgeVerticesTotal(maxlevel)*4);
this->_E_W.Resize(factory.GetNumEdgeVerticesTotal(maxlevel)*2);
this->_V_ITa.Resize(factory.GetNumVertexVerticesTotal(maxlevel)*5);
this->_V_IT.Resize(factory.GetNumAdjacentVertVerticesTotal(maxlevel)*2);
this->_V_W.Resize(factory.GetNumVertexVerticesTotal(maxlevel));
for (int level=1; level<=maxlevel; ++level) {
// pointer to the first vertex corresponding to this level
this->_vertsOffsets[level] = factory._vertVertIdx[level-1] +
factory._vertVertsList[level-1].size();
typename FarSubdivisionTables<T,U>::VertexKernelBatch * batch = & (this->_batches[level-1]);
// Face vertices
// "For each vertex, gather all the vertices from the parent face."
int offset = 0;
int * F_ITa = this->_F_ITa[level-1];
unsigned int * F_IT = this->_F_IT[level-1];
batch->kernelF = (int)factory._faceVertsList[level].size();
for (int i=0; i < batch->kernelF; ++i) {
HbrVertex<T> * v = factory._faceVertsList[level][i];
assert(v);
HbrFace<T> * f=v->GetParentFace();
assert(f);
int valence = f->GetNumVertices();
F_ITa[2*i+0] = offset;
F_ITa[2*i+1] = valence;
for (int j=0; j<valence; ++j)
F_IT[offset++] = remap[f->GetVertex(j)->GetID()];
}
_F_ITa.SetMarker(level, &F_ITa[2*batch->kernelF]);
_F_IT.SetMarker(level, &F_IT[offset]);
// Edge vertices
// Triangular interpolation mode :
// see "smoothtriangle" tag introduced in prman 3.9 and HbrCatmarkSubdivision<T>
typename HbrCatmarkSubdivision<T>::TriangleSubdivision triangleMethod =
dynamic_cast<HbrCatmarkSubdivision<T> *>(factory._hbrMesh->GetSubdivision())->GetTriangleSubdivisionMethod();
// "For each vertex, gather the 2 vertices from the parent edege and the
// 2 child vertices from the faces to the left and right of that edge.
// Adjust if edge has a crease or is on a boundary."
unsigned int * E_IT = this->_E_IT[level-1];
float * E_W = this->_E_W[level-1];
batch->kernelE = (int)factory._edgeVertsList[level].size();
for (int i=0; i < batch->kernelE; ++i) {
HbrVertex<T> * v = factory._edgeVertsList[level][i];
assert(v);
HbrHalfedge<T> * e = v->GetParentEdge();
assert(e);
float esharp = e->GetSharpness();
// get the indices 2 vertices from the parent edge
E_IT[4*i+0] = remap[e->GetOrgVertex()->GetID()];
E_IT[4*i+1] = remap[e->GetDestVertex()->GetID()];
float faceWeight=0.5f, vertWeight=0.5f;
// in the case of a fractional sharpness, set the adjacent faces vertices
if (!e->IsBoundary() && esharp <= 1.0f) {
float leftWeight, rightWeight;
HbrFace<T>* rf = e->GetRightFace();
HbrFace<T>* lf = e->GetLeftFace();
leftWeight = ( triangleMethod == HbrCatmarkSubdivision<T>::k_New && lf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
rightWeight = ( triangleMethod == HbrCatmarkSubdivision<T>::k_New && rf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
faceWeight = 0.5f * (leftWeight + rightWeight);
vertWeight = 0.5f * (1.0f - 2.0f * faceWeight);
faceWeight *= (1.0f - esharp);
vertWeight = 0.5f * esharp + (1.0f - esharp) * vertWeight;
E_IT[4*i+2] = remap[lf->Subdivide()->GetID()];
E_IT[4*i+3] = remap[rf->Subdivide()->GetID()];
} else {
E_IT[4*i+2] = -1;
E_IT[4*i+3] = -1;
}
E_W[2*i+0] = vertWeight;
E_W[2*i+1] = faceWeight;
}
this->_E_IT.SetMarker(level, &E_IT[4*batch->kernelE]);
this->_E_W.SetMarker(level, &E_W[2*batch->kernelE]);
// Vertex vertices
batch->InitVertexKernels( factory._vertVertsList[level].size(), 0 );
offset = 0;
int * V_ITa = this->_V_ITa[level-1];
unsigned int * V_IT = this->_V_IT[level-1];
float * V_W = this->_V_W[level-1];
int nverts = (int)factory._vertVertsList[level].size();
for (int i=0; i < nverts; ++i) {
HbrVertex<T> * v = factory._vertVertsList[level][i],
* pv = v->GetParentVertex();
assert(v and pv);
// Look at HbrCatmarkSubdivision<T>::Subdivide for more details about
// the multi-pass interpolation
int masks[2], npasses;
float weights[2];
masks[0] = pv->GetMask(false);
masks[1] = pv->GetMask(true);
// If the masks are identical, only a single pass is necessary. If the
// vertex is transitionning to another rule, two passes are necessary,
// except when transitionning from k_Dart to k_Smooth : the same
// compute kernel is applied twice. Combining this special case allows
// to batch the compute kernels into fewer calls.
if (masks[0] != masks[1] and (
not (masks[0]==HbrVertex<T>::k_Smooth and
masks[1]==HbrVertex<T>::k_Dart))) {
weights[1] = pv->GetFractionalMask();
weights[0] = 1.0f - weights[1];
npasses = 2;
} else {
weights[0] = 1.0f;
weights[1] = 0.0f;
npasses = 1;
}
int rank = this->getMaskRanking(masks[0], masks[1]);
V_ITa[5*i+0] = offset;
V_ITa[5*i+1] = 0;
V_ITa[5*i+2] = remap[ pv->GetID() ];
V_ITa[5*i+3] = -1;
V_ITa[5*i+4] = -1;
for (int p=0; p<npasses; ++p)
switch (masks[p]) {
case HbrVertex<T>::k_Smooth :
case HbrVertex<T>::k_Dart : {
HbrHalfedge<T> *e = pv->GetIncidentEdge(),
*start = e;
// XXXX bug : pv may not return an incident edge -
// this loop may crash on some topologies
do {
V_ITa[5*i+1]++;
V_IT[offset++] = remap[ e->GetDestVertex()->GetID() ];
V_IT[offset++] = remap[ e->GetLeftFace()->Subdivide()->GetID() ];
e = e->GetPrev()->GetOpposite();
} while (e != start);
break;
}
case HbrVertex<T>::k_Crease : {
class GatherCreaseEdgesOperator : public HbrHalfedgeOperator<T> {
public:
HbrVertex<T> * vertex; int eidx[2]; int count; bool next;
GatherCreaseEdgesOperator(HbrVertex<T> * v, bool n) : vertex(v), count(0), next(n) { eidx[0]=-1; eidx[1]=-1; }
virtual void operator() (HbrHalfedge<T> &e) {
if (e.IsSharp(next) and count < 2) {
HbrVertex<T> * a = e.GetDestVertex();
if (a==vertex)
a = e.GetOrgVertex();
eidx[count++]=a->GetID();
}
}
};
GatherCreaseEdgesOperator op( pv, p==1 );
pv->ApplyOperatorSurroundingEdges( op );
assert(V_ITa[5*i+3]==-1 and V_ITa[5*i+4]==-1);
assert(op.eidx[0]!=-1 and op.eidx[1]!=-1);
V_ITa[5*i+3] = remap[op.eidx[0]];
V_ITa[5*i+4] = remap[op.eidx[1]];
break;
}
case HbrVertex<T>::k_Corner :
// in the case of a k_Crease / k_Corner pass combination, we
// need to set the valence to -1 to tell the "B" Kernel to
// switch to k_Corner rule (as edge indices won't be -1)
if (V_ITa[5*i+1]==0)
V_ITa[5*i+1] = -1;
default : break;
}
if (rank>7)
// the k_Corner and k_Crease single-pass cases apply a weight of 1.0
// but this value is inverted in the kernel
V_W[i] = 0.0;
else
V_W[i] = weights[0];
batch->AddVertex( i, rank );
}
this->_V_ITa.SetMarker(level, &V_ITa[5*nverts]);
this->_V_IT.SetMarker(level, &V_IT[offset]);
this->_V_W.SetMarker(level, &V_W[nverts]);
batch->kernelB.second++;
batch->kernelA1.second++;
batch->kernelA2.second++;
}
}
template <class T, class U> void
FarCatmarkSubdivisionTables<T,U>::Refine( int level, void * clientdata ) const {
assert(this->_mesh and level>0);
typename FarSubdivisionTables<T,U>::VertexKernelBatch const * batch = & (this->_batches[level-1]);
FarDispatcher<T,U> const * dispatch = this->_mesh->GetDispatcher();
assert(dispatch);
int offset = this->GetFirstVertexOffset(level);
if (batch->kernelF>0)
dispatch->ApplyCatmarkFaceVerticesKernel(this->_mesh, offset, level, 0, batch->kernelF, clientdata);
offset += this->GetNumFaceVertices(level);
if (batch->kernelE>0)
dispatch->ApplyCatmarkEdgeVerticesKernel(this->_mesh, offset, level, 0, batch->kernelE, clientdata);
offset += this->GetNumEdgeVertices(level);
if (batch->kernelB.first < batch->kernelB.second)
dispatch->ApplyCatmarkVertexVerticesKernelB(this->_mesh, offset, level, batch->kernelB.first, batch->kernelB.second, clientdata);
if (batch->kernelA1.first < batch->kernelA1.second)
dispatch->ApplyCatmarkVertexVerticesKernelA(this->_mesh, offset, false, level, batch->kernelA1.first, batch->kernelA1.second, clientdata);
if (batch->kernelA2.first < batch->kernelA2.second)
dispatch->ApplyCatmarkVertexVerticesKernelA(this->_mesh, offset, true, level, batch->kernelA2.first, batch->kernelA2.second, clientdata);
}
//
// Face-vertices compute Kernel - completely re-entrant
//
template <class T, class U> void
FarCatmarkSubdivisionTables<T,U>::computeFacePoints( int offset, int level, int start, int end, void * clientdata ) const {
assert(this->_mesh);
U * vsrc = &this->_mesh->GetVertices().at(0),
* vdst = vsrc + offset + start;
const int * F_ITa = _F_ITa[level-1];
const unsigned int * F_IT = _F_IT[level-1];
for (int i=start; i<end; ++i, ++vdst ) {
vdst->Clear(clientdata);
int h = F_ITa[2*i ],
n = F_ITa[2*i+1];
float weight = 1.0f/n;
for (int j=0; j<n; ++j) {
vdst->AddWithWeight( vsrc[ F_IT[h+j] ], weight, clientdata );
vdst->AddVaryingWithWeight( vsrc[ F_IT[h+j] ], weight, clientdata );
}
}
}
//
// Edge-vertices compute Kernel - completely re-entrant
//
template <class T, class U> void
FarCatmarkSubdivisionTables<T,U>::computeEdgePoints( int offset, int level, int start, int end, void * clientdata ) const {
assert(this->_mesh);
U * vsrc = &this->_mesh->GetVertices().at(0),
* vdst = vsrc + offset + start;
const unsigned int * E_IT = this->_E_IT[level-1];
const float * E_W = this->_E_W[level-1];
for (int i=start; i<end; ++i, ++vdst ) {
vdst->Clear(clientdata);
int eidx0 = E_IT[4*i+0],
eidx1 = E_IT[4*i+1],
eidx2 = E_IT[4*i+2],
eidx3 = E_IT[4*i+3];
float vertWeight = E_W[i*2+0];
// Fully sharp edge : vertWeight = 0.5f
vdst->AddWithWeight( vsrc[eidx0], vertWeight, clientdata );
vdst->AddWithWeight( vsrc[eidx1], vertWeight, clientdata );
if (eidx2!=-1) {
// Apply fractional sharpness
float faceWeight = E_W[i*2+1];
vdst->AddWithWeight( vsrc[eidx2], faceWeight, clientdata );
vdst->AddWithWeight( vsrc[eidx3], faceWeight, clientdata );
}
vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f, clientdata );
vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f, clientdata );
}
}
//
// Vertex-vertices compute Kernels "A" and "B" - completely re-entrant
//
// multi-pass kernel handling k_Crease and k_Corner rules
template <class T, class U> void
FarCatmarkSubdivisionTables<T,U>::computeVertexPointsA( int offset, bool pass, int level, int start, int end, void * clientdata ) const {
assert(this->_mesh);
U * vsrc = &this->_mesh->GetVertices().at(0),
* vdst = vsrc + offset + start;
const int * V_ITa = this->_V_ITa[level-1];
const float * V_W = this->_V_W[level-1];
for (int i=start; i<end; ++i, ++vdst ) {
if (not pass)
vdst->Clear(clientdata);
int n=V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence)
p=V_ITa[5*i+2], // index of the parent vertex
eidx0=V_ITa[5*i+3], // index of the first crease rule edge
eidx1=V_ITa[5*i+4]; // index of the second crease rule edge
float weight = pass ? V_W[i] : 1.0f - V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f and weight<1.0f and n>0)
weight=1.0f-weight;
// In the case of a k_Corner / k_Crease combination, the edge indices
// won't be null, so we use a -1 valence to detect that particular case
if (eidx0==-1 or (pass==false and (n==-1)) ) {
// k_Corner case
vdst->AddWithWeight( vsrc[p], weight, clientdata );
} else {
// k_Crease case
vdst->AddWithWeight( vsrc[p], weight * 0.75f, clientdata );
vdst->AddWithWeight( vsrc[eidx0], weight * 0.125f, clientdata );
vdst->AddWithWeight( vsrc[eidx1], weight * 0.125f, clientdata );
}
vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata );
}
}
// multi-pass kernel handling k_Dart and k_Smooth rules
template <class T, class U> void
FarCatmarkSubdivisionTables<T,U>::computeVertexPointsB( int offset, int level, int start, int end, void * clientdata ) const {
assert(this->_mesh);
U * vsrc = &this->_mesh->GetVertices().at(0),
* vdst = vsrc + offset + start;
const int * V_ITa = this->_V_ITa[level-1];
const unsigned int * V_IT = this->_V_IT[level-1];
const float * V_W = this->_V_W[level-1];
for (int i=start; i<end; ++i, ++vdst ) {
vdst->Clear(clientdata);
int h = V_ITa[5*i ], // offset of the vertices in the _V0_IT array
n = V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence)
p = V_ITa[5*i+2]; // index of the parent vertex
float weight = V_W[i],
wp = 1.0f/(n*n),
wv = (n-2.0f)*n*wp;
vdst->AddWithWeight( vsrc[p], weight * wv, clientdata );
for (int j=0; j<n; ++j) {
vdst->AddWithWeight( vsrc[V_IT[h+j*2 ]], weight * wp, clientdata );
vdst->AddWithWeight( vsrc[V_IT[h+j*2+1]], weight * wp, clientdata );
}
vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata );
}
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_CATMARK_SUBDIVISION_TABLES_H */