OpenSubdiv/examples/glViewer/glViewer.cpp
barry e3dd0f1798 Publicly exposed choice for smooth boundary patches at smooth corners:
- added Far::PatchTableFactory::Options::generateLegacySharpCornerPatches
    - legacy behavior of sharp patches at smooth corners preserved by default
    - added corresponding option bit to Osd::MeshBits
    - updated examples/glViewer with option
2017-01-27 16:22:04 -08:00

1771 lines
57 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../common/glUtils.h"
#include <GLFW/glfw3.h>
GLFWwindow* g_window=0;
GLFWmonitor* g_primary=0;
#include <far/error.h>
#include <osd/cpuEvaluator.h>
#include <osd/cpuGLVertexBuffer.h>
#ifdef OPENSUBDIV_HAS_OPENMP
#include <osd/ompEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_TBB
#include <osd/tbbEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
#include <osd/clGLVertexBuffer.h>
#include <osd/clEvaluator.h>
#include "../common/clDeviceContext.h"
CLDeviceContext g_clDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_CUDA
#include <osd/cudaGLVertexBuffer.h>
#include <osd/cudaEvaluator.h>
#include "../common/cudaDeviceContext.h"
CudaDeviceContext g_cudaDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
#include <osd/glXFBEvaluator.h>
#include <osd/glVertexBuffer.h>
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
#include <osd/glComputeEvaluator.h>
#include <osd/glVertexBuffer.h>
#endif
#include <osd/glMesh.h>
#include <osd/glLegacyGregoryPatchTable.h>
OpenSubdiv::Osd::GLMeshInterface *g_mesh = NULL;
OpenSubdiv::Osd::GLLegacyGregoryPatchTable *g_legacyGregoryPatchTable = NULL;
#include "../../regression/common/far_utils.h"
#include "../common/glHud.h"
#include "../common/glUtils.h"
#include "../common/glControlMeshDisplay.h"
#include "../common/glShaderCache.h"
#include "../common/objAnim.h"
#include "../common/simple_math.h"
#include "../common/stopwatch.h"
#include <osd/glslPatchShaderSource.h>
/* Function to get the correct shader file based on the opengl version.
The implementation varies depending if glew is available or not. In case it
is available the capabilities are queried during execution and the correct
source is returned. If glew is not available the version is determined at
compile time */
static const char *shaderSource(){
#if ! defined(OSD_USES_GLEW)
static const char *res =
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
#include "shader.gen.h"
#else
#include "shader_gl3.gen.h"
#endif
;
#else
static const char *res = NULL;
if (!res){
static const char *gen =
#include "shader.gen.h"
;
static const char *gen3 =
#include "shader_gl3.gen.h"
;
//Determine the shader file to use. Since some opengl implementations
//define that an extension is available but not an implementation
//for it you cannot trust in the glew header definitions to know that is
//available, but you need to query it during runtime.
if (GLUtils::SupportsAdaptiveTessellation())
res = gen;
else
res = gen3;
}
#endif
return res;
}
#include <cfloat>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
enum KernelType { kCPU = 0,
kOPENMP = 1,
kTBB = 2,
kCUDA = 3,
kCL = 4,
kGLSL = 5,
kGLSLCompute = 6 };
enum DisplayStyle { kDisplayStyleWire,
kDisplayStyleShaded,
kDisplayStyleWireOnShaded };
enum ShadingMode { kShadingMaterial,
kShadingVaryingColor,
kShadingInterleavedVaryingColor,
kShadingFaceVaryingColor,
kShadingPatchType,
kShadingPatchCoord,
kShadingNormal };
enum EndCap { kEndCapNone = 0,
kEndCapBSplineBasis,
kEndCapGregoryBasis,
kEndCapLegacyGregory };
enum HudCheckBox { kHUD_CB_DISPLAY_CONTROL_MESH_EDGES,
kHUD_CB_DISPLAY_CONTROL_MESH_VERTS,
kHUD_CB_ANIMATE_VERTICES,
kHUD_CB_DISPLAY_PATCH_COLOR,
kHUD_CB_VIEW_LOD,
kHUD_CB_FRACTIONAL_SPACING,
kHUD_CB_PATCH_CULL,
kHUD_CB_FREEZE,
kHUD_CB_DISPLAY_PATCH_COUNTS,
kHUD_CB_ADAPTIVE,
kHUD_CB_SMOOTH_CORNER_PATCH,
kHUD_CB_SINGLE_CREASE_PATCH,
kHUD_CB_INF_SHARP_PATCH };
int g_currentShape = 0;
ObjAnim const * g_objAnim = 0;
bool g_axis=true;
int g_frame = 0,
g_repeatCount = 0;
float g_animTime = 0;
// GUI variables
int g_fullscreen = 0,
g_freeze = 0,
g_shadingMode = kShadingPatchType,
g_displayStyle = kDisplayStyleWireOnShaded,
g_adaptive = 1,
g_endCap = kEndCapBSplineBasis,
g_smoothCornerPatch = 0,
g_singleCreasePatch = 1,
g_infSharpPatch = 0,
g_mbutton[3] = {0, 0, 0},
g_running = 1;
int g_screenSpaceTess = 1,
g_fractionalSpacing = 1,
g_patchCull = 0,
g_displayPatchCounts = 1;
float g_rotate[2] = {0, 0},
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0;
int g_prev_x = 0,
g_prev_y = 0;
int g_width = 1024,
g_height = 1024;
GLhud g_hud;
GLControlMeshDisplay g_controlMeshDisplay;
// performance
float g_cpuTime = 0;
float g_gpuTime = 0;
Stopwatch g_fpsTimer;
// geometry
std::vector<float> g_orgPositions;
int g_level = 2;
int g_tessLevel = 1;
int g_tessLevelMin = 1;
int g_kernel = kCPU;
float g_moveScale = 0.0f;
GLuint g_queries[2] = {0, 0};
GLuint g_transformUB = 0,
g_transformBinding = 0,
g_tessellationUB = 0,
g_tessellationBinding = 1,
g_lightingUB = 0,
g_lightingBinding = 2;
struct Transform {
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
float ModelViewInverseMatrix[16];
} g_transformData;
GLuint g_vao = 0;
// XXX:
// this struct meant to be used as a stopgap entity until we fully implement
// face-varying stuffs into patch table.
//
struct FVarData
{
FVarData() :
textureBuffer(0) {
}
~FVarData() {
Release();
}
void Release() {
if (textureBuffer)
glDeleteTextures(1, &textureBuffer);
textureBuffer = 0;
}
void Create(OpenSubdiv::Far::PatchTable const *patchTable,
int fvarWidth, std::vector<float> const & fvarSrcData) {
Release();
OpenSubdiv::Far::ConstIndexArray indices = patchTable->GetFVarValues();
// expand fvardata to per-patch array
std::vector<float> data;
data.reserve(indices.size() * fvarWidth);
for (int fvert = 0; fvert < (int)indices.size(); ++fvert) {
int index = indices[fvert] * fvarWidth;
for (int i = 0; i < fvarWidth; ++i) {
data.push_back(fvarSrcData[index++]);
}
}
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, data.size()*sizeof(float),
&data[0], GL_STATIC_DRAW);
glGenTextures(1, &textureBuffer);
glBindTexture(GL_TEXTURE_BUFFER, textureBuffer);
glTexBuffer(GL_TEXTURE_BUFFER, GL_R32F, buffer);
glBindTexture(GL_TEXTURE_BUFFER, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glDeleteBuffers(1, &buffer);
}
GLuint textureBuffer;
} g_fvarData;
//------------------------------------------------------------------------------
#include "init_shapes.h"
//------------------------------------------------------------------------------
static void
updateGeom() {
std::vector<float> vertex, varying;
int nverts = 0;
int stride = (g_shadingMode == kShadingInterleavedVaryingColor ? 7 : 3);
if (g_objAnim && g_currentShape==0) {
nverts = g_objAnim->GetShape()->GetNumVertices(),
vertex.resize(nverts*stride);
if (g_shadingMode == kShadingVaryingColor) {
varying.resize(nverts*4);
}
g_objAnim->InterpolatePositions(g_animTime, &vertex[0], stride);
if (g_shadingMode == kShadingVaryingColor ||
g_shadingMode == kShadingInterleavedVaryingColor) {
const float *p = &g_objAnim->GetShape()->verts[0];
for (int i = 0; i < nverts; ++i) {
if (g_shadingMode == kShadingInterleavedVaryingColor) {
int ofs = i * stride;
vertex[ofs + 0] = p[1];
vertex[ofs + 1] = p[2];
vertex[ofs + 2] = p[0];
vertex[ofs + 3] = 0.0f;
p += 3;
}
if (g_shadingMode == kShadingVaryingColor) {
varying.push_back(p[2]);
varying.push_back(p[1]);
varying.push_back(p[0]);
varying.push_back(1);
p += 3;
}
}
}
} else {
nverts = (int)g_orgPositions.size() / 3;
vertex.reserve(nverts*stride);
if (g_shadingMode == kShadingVaryingColor) {
varying.reserve(nverts*4);
}
const float *p = &g_orgPositions[0];
float r = sin(g_frame*0.001f) * g_moveScale;
for (int i = 0; i < nverts; ++i) {
float ct = cos(p[2] * r);
float st = sin(p[2] * r);
vertex.push_back( p[0]*ct + p[1]*st);
vertex.push_back(-p[0]*st + p[1]*ct);
vertex.push_back( p[2]);
if (g_shadingMode == kShadingInterleavedVaryingColor) {
vertex.push_back(p[1]);
vertex.push_back(p[2]);
vertex.push_back(p[0]);
vertex.push_back(1.0f);
} else if (g_shadingMode == kShadingVaryingColor) {
varying.push_back(p[2]);
varying.push_back(p[1]);
varying.push_back(p[0]);
varying.push_back(1);
}
p += 3;
}
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
if (g_shadingMode == kShadingVaryingColor)
g_mesh->UpdateVaryingBuffer(&varying[0], 0, nverts);
Stopwatch s;
s.Start();
g_mesh->Refine();
s.Stop();
g_cpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
g_mesh->Synchronize();
s.Stop();
g_gpuTime = float(s.GetElapsed() * 1000.0f);
}
//------------------------------------------------------------------------------
static const char *
getKernelName(int kernel) {
if (kernel == kCPU)
return "CPU";
else if (kernel == kOPENMP)
return "OpenMP";
else if (kernel == kTBB)
return "TBB";
else if (kernel == kCUDA)
return "Cuda";
else if (kernel == kGLSL)
return "GLSL TransformFeedback";
else if (kernel == kGLSLCompute)
return "GLSL Compute";
else if (kernel == kCL)
return "OpenCL";
return "Unknown";
}
//------------------------------------------------------------------------------
static void
rebuildMesh() {
using namespace OpenSubdiv;
ShapeDesc const &shapeDesc = g_defaultShapes[g_currentShape];
int level = g_level;
int kernel = g_kernel;
bool doAnim = g_objAnim && g_currentShape==0;
Scheme scheme = shapeDesc.scheme;
Shape const * shape = 0;
if (doAnim) {
shape = g_objAnim->GetShape();
} else {
shape = Shape::parseObj(shapeDesc.data.c_str(), shapeDesc.scheme,
shapeDesc.isLeftHanded);
}
// create Far mesh (topology)
Sdc::SchemeType sdctype = GetSdcType(*shape);
Sdc::Options sdcoptions = GetSdcOptions(*shape);
Far::TopologyRefiner * refiner =
Far::TopologyRefinerFactory<Shape>::Create(*shape,
Far::TopologyRefinerFactory<Shape>::Options(sdctype, sdcoptions));
// save coarse topology (used for coarse mesh drawing)
g_controlMeshDisplay.SetTopology(refiner->GetLevel(0));
g_orgPositions = shape->verts;
delete g_mesh;
g_mesh = NULL;
// Adaptive refinement currently supported only for catmull-clark scheme
bool doAdaptive = (g_adaptive!=0 && scheme==kCatmark);
bool interleaveVarying = g_shadingMode == kShadingInterleavedVaryingColor;
bool doSmoothCornerPatch = (g_smoothCornerPatch!=0 && scheme==kCatmark);
bool doSingleCreasePatch = (g_singleCreasePatch!=0 && scheme==kCatmark);
bool doInfSharpPatch = (g_infSharpPatch!=0 && scheme==kCatmark);
Osd::MeshBitset bits;
bits.set(Osd::MeshAdaptive, doAdaptive);
bits.set(Osd::MeshUseSmoothCornerPatch, doSmoothCornerPatch);
bits.set(Osd::MeshUseSingleCreasePatch, doSingleCreasePatch);
bits.set(Osd::MeshUseInfSharpPatch, doInfSharpPatch);
bits.set(Osd::MeshInterleaveVarying, interleaveVarying);
bits.set(Osd::MeshFVarData, g_shadingMode == kShadingFaceVaryingColor);
bits.set(Osd::MeshEndCapBSplineBasis, g_endCap == kEndCapBSplineBasis);
bits.set(Osd::MeshEndCapGregoryBasis, g_endCap == kEndCapGregoryBasis);
bits.set(Osd::MeshEndCapLegacyGregory, g_endCap == kEndCapLegacyGregory);
int numVertexElements = 3;
int numVaryingElements =
(g_shadingMode == kShadingVaryingColor || interleaveVarying) ? 4 : 0;
if (kernel == kCPU) {
g_mesh = new Osd::Mesh<Osd::CpuGLVertexBuffer,
Far::StencilTable,
Osd::CpuEvaluator,
Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#ifdef OPENSUBDIV_HAS_OPENMP
} else if (kernel == kOPENMP) {
g_mesh = new Osd::Mesh<Osd::CpuGLVertexBuffer,
Far::StencilTable,
Osd::OmpEvaluator,
Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_TBB
} else if (kernel == kTBB) {
g_mesh = new Osd::Mesh<Osd::CpuGLVertexBuffer,
Far::StencilTable,
Osd::TbbEvaluator,
Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
} else if(kernel == kCL) {
// CLKernel
static Osd::EvaluatorCacheT<Osd::CLEvaluator> clEvaluatorCache;
g_mesh = new Osd::Mesh<Osd::CLGLVertexBuffer,
Osd::CLStencilTable,
Osd::CLEvaluator,
Osd::GLPatchTable,
CLDeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&clEvaluatorCache,
&g_clDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
} else if(kernel == kCUDA) {
g_mesh = new Osd::Mesh<Osd::CudaGLVertexBuffer,
Osd::CudaStencilTable,
Osd::CudaEvaluator,
Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
} else if(kernel == kGLSL) {
static Osd::EvaluatorCacheT<Osd::GLXFBEvaluator> glXFBEvaluatorCache;
g_mesh = new Osd::Mesh<Osd::GLVertexBuffer,
Osd::GLStencilTableTBO,
Osd::GLXFBEvaluator,
Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&glXFBEvaluatorCache);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
} else if(kernel == kGLSLCompute) {
static Osd::EvaluatorCacheT<Osd::GLComputeEvaluator> glComputeEvaluatorCache;
g_mesh = new Osd::Mesh<Osd::GLVertexBuffer,
Osd::GLStencilTableSSBO,
Osd::GLComputeEvaluator,
Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&glComputeEvaluatorCache);
#endif
} else {
printf("Unsupported kernel %s\n", getKernelName(kernel));
}
if (g_shadingMode == kShadingFaceVaryingColor && shape->HasUV()) {
std::vector<float> fvarData;
InterpolateFVarData(*refiner, *shape, fvarData);
// set fvardata to texture buffer
g_fvarData.Create(g_mesh->GetFarPatchTable(),
shape->GetFVarWidth(), fvarData);
}
// legacy gregory
delete g_legacyGregoryPatchTable;
g_legacyGregoryPatchTable = NULL;
if (g_endCap == kEndCapLegacyGregory) {
g_legacyGregoryPatchTable =
Osd::GLLegacyGregoryPatchTable::Create(g_mesh->GetFarPatchTable());
}
if (! doAnim) {
delete shape;
}
// compute model bounding
float min[3] = { FLT_MAX, FLT_MAX, FLT_MAX};
float max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i=0; i <g_orgPositions.size()/3; ++i) {
for(int j=0; j<3; ++j) {
float v = g_orgPositions[i*3+j];
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
}
for (int j=0; j<3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
g_tessLevelMin = 1;
g_tessLevel = std::max(g_tessLevel,g_tessLevelMin);
updateGeom();
// -------- VAO
glBindVertexArray(g_vao);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_mesh->GetPatchTable()->GetPatchIndexBuffer());
glBindBuffer(GL_ARRAY_BUFFER, g_mesh->BindVertexBuffer());
glEnableVertexAttribArray(0);
if (g_shadingMode == kShadingVaryingColor) {
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 3, 0);
glBindBuffer(GL_ARRAY_BUFFER, g_mesh->BindVaryingBuffer());
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 4, 0);
} else if (g_shadingMode == kShadingInterleavedVaryingColor) {
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 7, 0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 7, (void*)(sizeof (GLfloat) * 3));
} else {
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 3, 0);
glDisableVertexAttribArray(1);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
//------------------------------------------------------------------------------
static void
fitFrame() {
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
}
//------------------------------------------------------------------------------
union Effect {
Effect(int displayStyle_, int shadingMode_, int screenSpaceTess_,
int fractionalSpacing_, int patchCull_, int singleCreasePatch_)
: value(0) {
displayStyle = displayStyle_;
shadingMode = shadingMode_;
screenSpaceTess = screenSpaceTess_;
fractionalSpacing = fractionalSpacing_;
patchCull = patchCull_;
singleCreasePatch = singleCreasePatch_;
}
struct {
unsigned int displayStyle:2;
unsigned int shadingMode:4;
unsigned int screenSpaceTess:1;
unsigned int fractionalSpacing:1;
unsigned int patchCull:1;
unsigned int singleCreasePatch:1;
};
int value;
bool operator < (const Effect &e) const {
return value < e.value;
}
};
static Effect
GetEffect()
{
return Effect(g_displayStyle,
g_shadingMode,
g_screenSpaceTess,
g_fractionalSpacing,
g_patchCull,
g_singleCreasePatch);
}
// ---------------------------------------------------------------------------
struct EffectDesc {
EffectDesc(OpenSubdiv::Far::PatchDescriptor desc,
Effect effect) : desc(desc), effect(effect),
maxValence(0), numElements(0) { }
OpenSubdiv::Far::PatchDescriptor desc;
Effect effect;
int maxValence;
int numElements;
bool operator < (const EffectDesc &e) const {
return
(desc < e.desc || ((desc == e.desc &&
(maxValence < e.maxValence || ((maxValence == e.maxValence) &&
(numElements < e.numElements || ((numElements == e.numElements) &&
(effect < e.effect))))))));
}
};
// ---------------------------------------------------------------------------
class ShaderCache : public GLShaderCache<EffectDesc> {
public:
virtual GLDrawConfig *CreateDrawConfig(EffectDesc const &effectDesc) {
using namespace OpenSubdiv;
// compile shader program
GLDrawConfig *config = new GLDrawConfig(GLUtils::GetShaderVersionInclude().c_str());
Far::PatchDescriptor::Type type = effectDesc.desc.GetType();
// common defines
std::stringstream ss;
if (type == Far::PatchDescriptor::QUADS) {
ss << "#define PRIM_QUAD\n";
} else {
ss << "#define PRIM_TRI\n";
}
// OSD tessellation controls
if (effectDesc.effect.screenSpaceTess) {
ss << "#define OSD_ENABLE_SCREENSPACE_TESSELLATION\n";
}
if (effectDesc.effect.fractionalSpacing) {
ss << "#define OSD_FRACTIONAL_ODD_SPACING\n";
}
if (effectDesc.effect.patchCull) {
ss << "#define OSD_ENABLE_PATCH_CULL\n";
}
if (effectDesc.effect.singleCreasePatch) {
ss << "#define OSD_PATCH_ENABLE_SINGLE_CREASE\n";
}
// for legacy gregory
ss << "#define OSD_MAX_VALENCE " << effectDesc.maxValence << "\n";
ss << "#define OSD_NUM_ELEMENTS " << effectDesc.numElements << "\n";
// display styles
switch (effectDesc.effect.displayStyle) {
case kDisplayStyleWire:
ss << "#define GEOMETRY_OUT_WIRE\n";
break;
case kDisplayStyleWireOnShaded:
ss << "#define GEOMETRY_OUT_LINE\n";
break;
case kDisplayStyleShaded:
ss << "#define GEOMETRY_OUT_FILL\n";
break;
}
// shading mode
switch(effectDesc.effect.shadingMode) {
case kShadingMaterial:
ss << "#define SHADING_MATERIAL\n";
break;
case kShadingVaryingColor:
ss << "#define SHADING_VARYING_COLOR\n";
break;
case kShadingInterleavedVaryingColor:
ss << "#define SHADING_VARYING_COLOR\n";
break;
case kShadingFaceVaryingColor:
ss << "#define OSD_FVAR_WIDTH 2\n";
ss << "#define SHADING_FACEVARYING_COLOR\n";
if (! effectDesc.desc.IsAdaptive()) {
ss << "#define SHADING_FACEVARYING_UNIFORM_SUBDIVISION\n";
}
break;
case kShadingPatchType:
ss << "#define SHADING_PATCH_TYPE\n";
break;
case kShadingPatchCoord:
ss << "#define SHADING_PATCH_COORD\n";
break;
case kShadingNormal:
ss << "#define SHADING_NORMAL\n";
break;
}
if (type == Far::PatchDescriptor::TRIANGLES) {
ss << "#define LOOP\n";
} else if (type == Far::PatchDescriptor::QUADS) {
} else {
ss << "#define SMOOTH_NORMALS\n";
}
// need for patch color-coding : we need these defines in the fragment shader
if (type == Far::PatchDescriptor::GREGORY) {
ss << "#define OSD_PATCH_GREGORY\n";
} else if (type == Far::PatchDescriptor::GREGORY_BOUNDARY) {
ss << "#define OSD_PATCH_GREGORY_BOUNDARY\n";
} else if (type == Far::PatchDescriptor::GREGORY_BASIS) {
ss << "#define OSD_PATCH_GREGORY_BASIS\n";
}
// include osd PatchCommon
ss << "#define OSD_PATCH_BASIS_GLSL\n";
ss << Osd::GLSLPatchShaderSource::GetPatchBasisShaderSource();
ss << Osd::GLSLPatchShaderSource::GetCommonShaderSource();
std::string common = ss.str();
ss.str("");
// vertex shader
ss << common
// enable local vertex shader
<< (effectDesc.desc.IsAdaptive() ? "" : "#define VERTEX_SHADER\n")
<< shaderSource()
<< Osd::GLSLPatchShaderSource::GetVertexShaderSource(type);
config->CompileAndAttachShader(GL_VERTEX_SHADER, ss.str());
ss.str("");
if (effectDesc.desc.IsAdaptive()) {
// tess control shader
ss << common
<< shaderSource()
<< Osd::GLSLPatchShaderSource::GetTessControlShaderSource(type);
config->CompileAndAttachShader(GL_TESS_CONTROL_SHADER, ss.str());
ss.str("");
// tess eval shader
ss << common
<< shaderSource()
<< Osd::GLSLPatchShaderSource::GetTessEvalShaderSource(type);
config->CompileAndAttachShader(GL_TESS_EVALUATION_SHADER, ss.str());
ss.str("");
}
// geometry shader
ss << common
<< "#define GEOMETRY_SHADER\n"
<< shaderSource();
config->CompileAndAttachShader(GL_GEOMETRY_SHADER, ss.str());
ss.str("");
// fragment shader
ss << common
<< "#define FRAGMENT_SHADER\n"
<< shaderSource();
config->CompileAndAttachShader(GL_FRAGMENT_SHADER, ss.str());
ss.str("");
if (!config->Link()) {
delete config;
return NULL;
}
// assign uniform locations
GLuint uboIndex;
GLuint program = config->GetProgram();
uboIndex = glGetUniformBlockIndex(program, "Transform");
if (uboIndex != GL_INVALID_INDEX)
glUniformBlockBinding(program, uboIndex, g_transformBinding);
uboIndex = glGetUniformBlockIndex(program, "Tessellation");
if (uboIndex != GL_INVALID_INDEX)
glUniformBlockBinding(program, uboIndex, g_tessellationBinding);
uboIndex = glGetUniformBlockIndex(program, "Lighting");
if (uboIndex != GL_INVALID_INDEX)
glUniformBlockBinding(program, uboIndex, g_lightingBinding);
// assign texture locations
GLint loc;
glUseProgram(program);
if ((loc = glGetUniformLocation(program, "OsdPatchParamBuffer")) != -1) {
glUniform1i(loc, 0); // GL_TEXTURE0
}
if ((loc = glGetUniformLocation(program, "OsdFVarDataBuffer")) != -1) {
glUniform1i(loc, 1); // GL_TEXTURE1
}
// for legacy gregory patches
if ((loc = glGetUniformLocation(program, "OsdVertexBuffer")) != -1) {
glUniform1i(loc, 2); // GL_TEXTURE2
}
if ((loc = glGetUniformLocation(program, "OsdValenceBuffer")) != -1) {
glUniform1i(loc, 3); // GL_TEXTURE3
}
if ((loc = glGetUniformLocation(program, "OsdQuadOffsetBuffer")) != -1) {
glUniform1i(loc, 4); // GL_TEXTURE4
}
glUseProgram(0);
return config;
}
};
ShaderCache g_shaderCache;
//------------------------------------------------------------------------------
static void
updateUniformBlocks() {
if (! g_transformUB) {
glGenBuffers(1, &g_transformUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(g_transformData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(g_transformData), &g_transformData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_transformBinding, g_transformUB);
// Update and bind tessellation state
struct Tessellation {
float TessLevel;
} tessellationData;
tessellationData.TessLevel = static_cast<float>(1 << g_tessLevel);
if (! g_tessellationUB) {
glGenBuffers(1, &g_tessellationUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(tessellationData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(tessellationData), &tessellationData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_tessellationBinding, g_tessellationUB);
// Update and bind lighting state
struct Lighting {
struct Light {
float position[4];
float ambient[4];
float diffuse[4];
float specular[4];
} lightSource[2];
} lightingData = {
{{ { 0.5, 0.2f, 1.0f, 0.0f },
{ 0.1f, 0.1f, 0.1f, 1.0f },
{ 0.7f, 0.7f, 0.7f, 1.0f },
{ 0.8f, 0.8f, 0.8f, 1.0f } },
{ { -0.8f, 0.4f, -1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f },
{ 0.5f, 0.5f, 0.5f, 1.0f },
{ 0.8f, 0.8f, 0.8f, 1.0f } }}
};
if (! g_lightingUB) {
glGenBuffers(1, &g_lightingUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_lightingUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(lightingData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_lightingUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(lightingData), &lightingData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_lightingBinding, g_lightingUB);
}
static void
bindTextures() {
// bind patch textures
if (g_mesh->GetPatchTable()->GetPatchParamTextureBuffer()) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_BUFFER,
g_mesh->GetPatchTable()->GetPatchParamTextureBuffer());
}
if (true) {
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_BUFFER,
g_fvarData.textureBuffer);
}
// legacy gregory
if (g_legacyGregoryPatchTable) {
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_BUFFER,
g_legacyGregoryPatchTable->GetVertexTextureBuffer());
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_BUFFER,
g_legacyGregoryPatchTable->GetVertexValenceTextureBuffer());
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_BUFFER,
g_legacyGregoryPatchTable->GetQuadOffsetsTextureBuffer());
}
glActiveTexture(GL_TEXTURE0);
}
static GLenum
bindProgram(Effect effect,
OpenSubdiv::Osd::PatchArray const & patch) {
EffectDesc effectDesc(patch.GetDescriptor(), effect);
// only legacy gregory needs maxValence and numElements
// neither legacy gregory nor gregory basis need single crease
typedef OpenSubdiv::Far::PatchDescriptor Descriptor;
if (patch.GetDescriptor().GetType() == Descriptor::GREGORY ||
patch.GetDescriptor().GetType() == Descriptor::GREGORY_BOUNDARY) {
int maxValence = g_mesh->GetMaxValence();
int numElements = (g_shadingMode == kShadingInterleavedVaryingColor ? 7 : 3);
effectDesc.maxValence = maxValence;
effectDesc.numElements = numElements;
effectDesc.effect.singleCreasePatch = 0;
}
if (patch.GetDescriptor().GetType() == Descriptor::GREGORY_BASIS) {
effectDesc.effect.singleCreasePatch = 0;
}
// lookup shader cache (compile the shader if needed)
GLDrawConfig *config = g_shaderCache.GetDrawConfig(effectDesc);
if (!config) return 0;
GLuint program = config->GetProgram();
glUseProgram(program);
// bind standalone uniforms
GLint uniformPrimitiveIdBase =
glGetUniformLocation(program, "PrimitiveIdBase");
if (uniformPrimitiveIdBase >=0)
glUniform1i(uniformPrimitiveIdBase, patch.GetPrimitiveIdBase());
// legacy gregory
if (g_endCap == kEndCapLegacyGregory) {
GLint uniformGregoryQuadOffsetBase =
glGetUniformLocation(program, "GregoryQuadOffsetBase");
int quadOffsetBase =
g_legacyGregoryPatchTable->GetQuadOffsetsBase(patch.GetDescriptor().GetType());
if (uniformGregoryQuadOffsetBase >= 0)
glUniform1i(uniformGregoryQuadOffsetBase, quadOffsetBase);
}
// update uniform
GLint uniformDiffuseColor =
glGetUniformLocation(program, "diffuseColor");
if (uniformDiffuseColor >= 0)
glUniform4f(uniformDiffuseColor, 0.4f, 0.4f, 0.8f, 1);
// return primtype
GLenum primType;
switch(effectDesc.desc.GetType()) {
case Descriptor::QUADS:
primType = GL_LINES_ADJACENCY;
break;
case Descriptor::TRIANGLES:
primType = GL_TRIANGLES;
break;
default:
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
primType = GL_PATCHES;
glPatchParameteri(GL_PATCH_VERTICES, effectDesc.desc.GetNumControlVertices());
#else
primType = GL_POINTS;
#endif
break;
}
return primType;
}
//------------------------------------------------------------------------------
static void
display() {
Stopwatch s;
s.Start();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(0, 0, g_width, g_height);
g_hud.FillBackground();
// prepare view matrix
double aspect = g_width/(double)g_height;
identity(g_transformData.ModelViewMatrix);
translate(g_transformData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(g_transformData.ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(g_transformData.ModelViewMatrix, g_rotate[0], 0, 1, 0);
rotate(g_transformData.ModelViewMatrix, -90, 1, 0, 0);
translate(g_transformData.ModelViewMatrix,
-g_center[0], -g_center[1], -g_center[2]);
perspective(g_transformData.ProjectionMatrix,
45.0f, (float)aspect, 0.1f, 500.0f);
multMatrix(g_transformData.ModelViewProjectionMatrix,
g_transformData.ModelViewMatrix,
g_transformData.ProjectionMatrix);
inverseMatrix(g_transformData.ModelViewInverseMatrix,
g_transformData.ModelViewMatrix);
// make sure that the vertex buffer is interoped back as a GL resource.
GLuint vbo = g_mesh->BindVertexBuffer();
// vertex texture update for legacy gregory drawing
if (g_legacyGregoryPatchTable) {
glActiveTexture(GL_TEXTURE1);
g_legacyGregoryPatchTable->UpdateVertexBuffer(vbo);
}
if (g_shadingMode == kShadingVaryingColor)
g_mesh->BindVaryingBuffer();
// update transform and lighting uniform blocks
updateUniformBlocks();
// also bind patch related textures
bindTextures();
if (g_displayStyle == kDisplayStyleWire)
glDisable(GL_CULL_FACE);
glEnable(GL_DEPTH_TEST);
glBindVertexArray(g_vao);
OpenSubdiv::Osd::PatchArrayVector const & patches =
g_mesh->GetPatchTable()->GetPatchArrays();
// patch drawing
int patchCount[13]; // [Type] (see far/patchTable.h)
int numTotalPatches = 0;
int numDrawCalls = 0;
memset(patchCount, 0, sizeof(patchCount));
// primitive counting
glBeginQuery(GL_PRIMITIVES_GENERATED, g_queries[0]);
#if defined(GL_VERSION_3_3)
glBeginQuery(GL_TIME_ELAPSED, g_queries[1]);
#endif
// core draw-calls
for (int i=0; i<(int)patches.size(); ++i) {
OpenSubdiv::Osd::PatchArray const & patch = patches[i];
OpenSubdiv::Far::PatchDescriptor desc = patch.GetDescriptor();
OpenSubdiv::Far::PatchDescriptor::Type patchType = desc.GetType();
patchCount[patchType] += patch.GetNumPatches();
numTotalPatches += patch.GetNumPatches();
GLenum primType = bindProgram(GetEffect(), patch);
glDrawElements(primType,
patch.GetNumPatches() * desc.GetNumControlVertices(),
GL_UNSIGNED_INT,
(void *)(patch.GetIndexBase() * sizeof(unsigned int)));
++numDrawCalls;
}
s.Stop();
float drawCpuTime = float(s.GetElapsed() * 1000.0f);
glEndQuery(GL_PRIMITIVES_GENERATED);
#if defined(GL_VERSION_3_3)
glEndQuery(GL_TIME_ELAPSED);
#endif
glBindVertexArray(0);
glUseProgram(0);
if (g_displayStyle == kDisplayStyleWire)
glEnable(GL_CULL_FACE);
// draw the control mesh
int stride = g_shadingMode == kShadingInterleavedVaryingColor ? 7 : 3;
g_controlMeshDisplay.Draw(vbo, stride*sizeof(float),
g_transformData.ModelViewProjectionMatrix);
glBindBuffer(GL_ARRAY_BUFFER, 0);
GLuint numPrimsGenerated = 0;
GLuint timeElapsed = 0;
glGetQueryObjectuiv(g_queries[0], GL_QUERY_RESULT, &numPrimsGenerated);
#if defined(GL_VERSION_3_3)
glGetQueryObjectuiv(g_queries[1], GL_QUERY_RESULT, &timeElapsed);
#endif
float drawGpuTime = timeElapsed / 1000.0f / 1000.0f;
g_fpsTimer.Stop();
float elapsed = (float)g_fpsTimer.GetElapsed();
if (! g_freeze) {
g_animTime += elapsed;
}
g_fpsTimer.Start();
if (g_hud.IsVisible()) {
typedef OpenSubdiv::Far::PatchDescriptor Descriptor;
double fps = 1.0/elapsed;
if (g_displayPatchCounts) {
int x = -280;
int y = -180;
g_hud.DrawString(x, y, "NonPatch : %d",
patchCount[Descriptor::QUADS]); y += 20;
g_hud.DrawString(x, y, "Regular : %d",
patchCount[Descriptor::REGULAR]); y+= 20;
g_hud.DrawString(x, y, "Gregory : %d",
patchCount[Descriptor::GREGORY]); y+= 20;
g_hud.DrawString(x, y, "Boundary Gregory : %d",
patchCount[Descriptor::GREGORY_BOUNDARY]); y+= 20;
g_hud.DrawString(x, y, "Gregory Basis : %d",
patchCount[Descriptor::GREGORY_BASIS]); y+= 20;
}
int y = -220;
g_hud.DrawString(10, y, "Tess level : %d", g_tessLevel); y+= 20;
g_hud.DrawString(10, y, "Patches : %d", numTotalPatches); y+= 20;
g_hud.DrawString(10, y, "Draw calls : %d", numDrawCalls); y+= 20;
g_hud.DrawString(10, y, "Primitives : %d", numPrimsGenerated); y+= 20;
g_hud.DrawString(10, y, "Vertices : %d", g_mesh->GetNumVertices()); y+= 20;
g_hud.DrawString(10, y, "GPU Kernel : %.3f ms", g_gpuTime); y+= 20;
g_hud.DrawString(10, y, "CPU Kernel : %.3f ms", g_cpuTime); y+= 20;
g_hud.DrawString(10, y, "GPU Draw : %.3f ms", drawGpuTime); y+= 20;
g_hud.DrawString(10, y, "CPU Draw : %.3f ms", drawCpuTime); y+= 20;
g_hud.DrawString(10, y, "FPS : %3.1f", fps); y+= 20;
g_hud.Flush();
}
glFinish();
GLUtils::CheckGLErrors("display leave\n");
}
//------------------------------------------------------------------------------
static void
motion(GLFWwindow *, double dx, double dy) {
int x=(int)dx, y=(int)dy;
if (g_hud.MouseCapture()) {
// check gui
g_hud.MouseMotion(x, y);
} else if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) ||
(!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if(g_dolly <= 0.01) g_dolly = 0.01f;
}
g_prev_x = x;
g_prev_y = y;
}
//------------------------------------------------------------------------------
static void
mouse(GLFWwindow *, int button, int state, int /* mods */) {
if (state == GLFW_RELEASE)
g_hud.MouseRelease();
if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y))
return;
if (button < 3) {
g_mbutton[button] = (state == GLFW_PRESS);
}
}
//------------------------------------------------------------------------------
static void
uninitGL() {
glDeleteQueries(2, g_queries);
glDeleteVertexArrays(1, &g_vao);
if (g_mesh)
delete g_mesh;
if (g_legacyGregoryPatchTable)
delete g_legacyGregoryPatchTable;
}
//------------------------------------------------------------------------------
static void
reshape(GLFWwindow *, int width, int height) {
g_width = width;
g_height = height;
int windowWidth = g_width, windowHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
g_hud.Rebuild(windowWidth, windowHeight, width, height);
}
//------------------------------------------------------------------------------
void windowClose(GLFWwindow*) {
g_running = false;
}
//------------------------------------------------------------------------------
static void
toggleFullScreen() {
// XXXX manuelk : to re-implement from glut
}
//------------------------------------------------------------------------------
static void
keyboard(GLFWwindow *, int key, int /* scancode */, int event, int /* mods */) {
if (event == GLFW_RELEASE) return;
if (g_hud.KeyDown(tolower(key))) return;
switch (key) {
case 'Q': g_running = 0; break;
case 'F': fitFrame(); break;
case GLFW_KEY_TAB: toggleFullScreen(); break;
case '+':
case '=': g_tessLevel++; break;
case '-': g_tessLevel = std::max(g_tessLevelMin, g_tessLevel-1); break;
case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break;
case 'X': GLUtils::WriteScreenshot(g_width, g_height); break;
}
}
//------------------------------------------------------------------------------
static void
callbackDisplayStyle(int b) {
g_displayStyle = b;
}
static void
callbackShadingMode(int b) {
if (g_shadingMode == kShadingVaryingColor || b == kShadingVaryingColor ||
g_shadingMode == kShadingInterleavedVaryingColor || b == kShadingInterleavedVaryingColor ||
g_shadingMode == kShadingFaceVaryingColor || b == kShadingFaceVaryingColor) {
// need to rebuild for varying reconstruct
g_shadingMode = b;
rebuildMesh();
return;
}
g_shadingMode = b;
}
static void
callbackEndCap(int endCap) {
g_endCap = endCap;
rebuildMesh();
}
static void
callbackKernel(int k) {
g_kernel = k;
#ifdef OPENSUBDIV_HAS_OPENCL
if (g_kernel == kCL && (!g_clDeviceContext.IsInitialized())) {
if (g_clDeviceContext.Initialize() == false) {
printf("Error in initializing OpenCL\n");
exit(1);
}
}
#endif
#ifdef OPENSUBDIV_HAS_CUDA
if (g_kernel == kCUDA && (!g_cudaDeviceContext.IsInitialized())) {
if (g_cudaDeviceContext.Initialize() == false) {
printf("Error in initializing Cuda\n");
exit(1);
}
}
#endif
rebuildMesh();
}
static void
callbackLevel(int l) {
g_level = l;
rebuildMesh();
}
static void
callbackModel(int m) {
if (m < 0)
m = 0;
if (m >= (int)g_defaultShapes.size())
m = (int)g_defaultShapes.size() - 1;
g_currentShape = m;
rebuildMesh();
}
static void
callbackCheckBox(bool checked, int button) {
if (GLUtils::SupportsAdaptiveTessellation()) {
switch(button) {
case kHUD_CB_ADAPTIVE:
g_adaptive = checked;
rebuildMesh();
return;
case kHUD_CB_SMOOTH_CORNER_PATCH:
g_smoothCornerPatch = checked;
rebuildMesh();
return;
case kHUD_CB_SINGLE_CREASE_PATCH:
g_singleCreasePatch = checked;
rebuildMesh();
return;
case kHUD_CB_INF_SHARP_PATCH:
g_infSharpPatch = checked;
rebuildMesh();
return;
default:
break;
}
}
switch (button) {
case kHUD_CB_DISPLAY_CONTROL_MESH_EDGES:
g_controlMeshDisplay.SetEdgesDisplay(checked);
break;
case kHUD_CB_DISPLAY_CONTROL_MESH_VERTS:
g_controlMeshDisplay.SetVerticesDisplay(checked);
break;
case kHUD_CB_ANIMATE_VERTICES:
g_moveScale = checked;
break;
case kHUD_CB_VIEW_LOD:
g_screenSpaceTess = checked;
break;
case kHUD_CB_FRACTIONAL_SPACING:
g_fractionalSpacing = checked;
break;
case kHUD_CB_PATCH_CULL:
g_patchCull = checked;
break;
case kHUD_CB_FREEZE:
g_freeze = checked;
break;
case kHUD_CB_DISPLAY_PATCH_COUNTS:
g_displayPatchCounts = checked;
break;
}
}
static void
initHUD() {
int windowWidth = g_width, windowHeight = g_height;
int frameBufferWidth = g_width, frameBufferHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
glfwGetFramebufferSize(g_window, &frameBufferWidth, &frameBufferHeight);
g_hud.Init(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight);
int y = 10;
g_hud.AddCheckBox("Control edges (H)",
g_controlMeshDisplay.GetEdgesDisplay(),
10, y, callbackCheckBox,
kHUD_CB_DISPLAY_CONTROL_MESH_EDGES, 'h');
y += 20;
g_hud.AddCheckBox("Control vertices (J)",
g_controlMeshDisplay.GetVerticesDisplay(),
10, y, callbackCheckBox,
kHUD_CB_DISPLAY_CONTROL_MESH_VERTS, 'j');
y += 20;
g_hud.AddCheckBox("Animate vertices (M)", g_moveScale != 0,
10, y, callbackCheckBox, kHUD_CB_ANIMATE_VERTICES, 'm');
y += 20;
g_hud.AddCheckBox("Screen space LOD (V)", g_screenSpaceTess != 0,
10, y, callbackCheckBox, kHUD_CB_VIEW_LOD, 'v');
y += 20;
g_hud.AddCheckBox("Fractional spacing (T)", g_fractionalSpacing != 0,
10, y, callbackCheckBox, kHUD_CB_FRACTIONAL_SPACING, 't');
y += 20;
g_hud.AddCheckBox("Frustum Patch Culling (B)", g_patchCull != 0,
10, y, callbackCheckBox, kHUD_CB_PATCH_CULL, 'b');
y += 20;
g_hud.AddCheckBox("Freeze (spc)", g_freeze != 0,
10, y, callbackCheckBox, kHUD_CB_FREEZE, ' ');
y += 20;
int displaystyle_pulldown = g_hud.AddPullDown("DisplayStyle (W)", 200, 10, 250,
callbackDisplayStyle, 'w');
g_hud.AddPullDownButton(displaystyle_pulldown, "Wire", kDisplayStyleWire,
g_displayStyle == kDisplayStyleWire);
g_hud.AddPullDownButton(displaystyle_pulldown, "Shaded", kDisplayStyleShaded,
g_displayStyle == kDisplayStyleShaded);
g_hud.AddPullDownButton(displaystyle_pulldown, "Wire+Shaded", kDisplayStyleWireOnShaded,
g_displayStyle == kDisplayStyleWireOnShaded);
int shading_pulldown = g_hud.AddPullDown("Shading (C)", 200, 70, 250,
callbackShadingMode, 'c');
g_hud.AddPullDownButton(shading_pulldown, "Material",
kShadingMaterial,
g_shadingMode == kShadingMaterial);
g_hud.AddPullDownButton(shading_pulldown, "Varying Color",
kShadingVaryingColor,
g_shadingMode == kShadingVaryingColor);
g_hud.AddPullDownButton(shading_pulldown, "Varying Color (Interleaved)",
kShadingInterleavedVaryingColor,
g_shadingMode == kShadingInterleavedVaryingColor);
g_hud.AddPullDownButton(shading_pulldown, "FaceVarying Color",
kShadingFaceVaryingColor,
g_shadingMode == kShadingFaceVaryingColor);
g_hud.AddPullDownButton(shading_pulldown, "Patch Type",
kShadingPatchType,
g_shadingMode == kShadingPatchType);
g_hud.AddPullDownButton(shading_pulldown, "Patch Coord",
kShadingPatchCoord,
g_shadingMode == kShadingPatchCoord);
g_hud.AddPullDownButton(shading_pulldown, "Normal",
kShadingNormal,
g_shadingMode == kShadingNormal);
int compute_pulldown = g_hud.AddPullDown("Compute (K)", 475, 10, 300, callbackKernel, 'k');
g_hud.AddPullDownButton(compute_pulldown, "CPU", kCPU);
#ifdef OPENSUBDIV_HAS_OPENMP
g_hud.AddPullDownButton(compute_pulldown, "OpenMP", kOPENMP);
#endif
#ifdef OPENSUBDIV_HAS_TBB
g_hud.AddPullDownButton(compute_pulldown, "TBB", kTBB);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
g_hud.AddPullDownButton(compute_pulldown, "CUDA", kCUDA);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
if (CLDeviceContext::HAS_CL_VERSION_1_1()) {
g_hud.AddPullDownButton(compute_pulldown, "OpenCL", kCL);
}
#endif
#ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK
g_hud.AddPullDownButton(compute_pulldown, "GLSL TransformFeedback", kGLSL);
#endif
#ifdef OPENSUBDIV_HAS_GLSL_COMPUTE
if (GLUtils::GL_ARBComputeShaderOrGL_VERSION_4_3()) {
g_hud.AddPullDownButton(compute_pulldown, "GLSL Compute", kGLSLCompute);
}
#endif
if (GLUtils::SupportsAdaptiveTessellation()) {
g_hud.AddCheckBox("Adaptive (`)", g_adaptive!=0,
10, 190, callbackCheckBox, kHUD_CB_ADAPTIVE, '`');
g_hud.AddCheckBox("Smooth Corner Patch (O)", g_smoothCornerPatch!=0,
10, 210, callbackCheckBox, kHUD_CB_SMOOTH_CORNER_PATCH, 'o');
g_hud.AddCheckBox("Single Crease Patch (S)", g_singleCreasePatch!=0,
10, 230, callbackCheckBox, kHUD_CB_SINGLE_CREASE_PATCH, 's');
g_hud.AddCheckBox("Inf Sharp Patch (I)", g_infSharpPatch!=0,
10, 250, callbackCheckBox, kHUD_CB_INF_SHARP_PATCH, 'i');
int endcap_pulldown = g_hud.AddPullDown(
"End cap (E)", 10, 270, 200, callbackEndCap, 'e');
g_hud.AddPullDownButton(endcap_pulldown,"None",
kEndCapNone,
g_endCap == kEndCapNone);
g_hud.AddPullDownButton(endcap_pulldown, "BSpline",
kEndCapBSplineBasis,
g_endCap == kEndCapBSplineBasis);
g_hud.AddPullDownButton(endcap_pulldown, "GregoryBasis",
kEndCapGregoryBasis,
g_endCap == kEndCapGregoryBasis);
g_hud.AddPullDownButton(endcap_pulldown, "LegacyGregory",
kEndCapLegacyGregory,
g_endCap == kEndCapLegacyGregory);
}
for (int i = 1; i < 11; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud.AddRadioButton(3, level, i==2, 10, 310+i*20, callbackLevel, i, '0'+(i%10));
}
int shapes_pulldown = g_hud.AddPullDown("Shape (N)", -300, 10, 300, callbackModel, 'n');
for (int i = 0; i < (int)g_defaultShapes.size(); ++i) {
g_hud.AddPullDownButton(shapes_pulldown, g_defaultShapes[i].name.c_str(),i);
}
g_hud.AddCheckBox("Show patch counts", g_displayPatchCounts!=0, -280, -20, callbackCheckBox, kHUD_CB_DISPLAY_PATCH_COUNTS);
g_hud.Rebuild(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight);
}
//------------------------------------------------------------------------------
static void
initGL() {
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
glGenQueries(2, g_queries);
glGenVertexArrays(1, &g_vao);
}
//------------------------------------------------------------------------------
static void
idle() {
if (! g_freeze) {
g_frame++;
updateGeom();
}
if (g_repeatCount != 0 && g_frame >= g_repeatCount)
g_running = 0;
}
//------------------------------------------------------------------------------
static void
callbackErrorOsd(OpenSubdiv::Far::ErrorType err, const char *message) {
printf("Error: %d\n", err);
printf("%s", message);
}
//------------------------------------------------------------------------------
static void
callbackErrorGLFW(int error, const char* description) {
fprintf(stderr, "GLFW Error (%d) : %s\n", error, description);
}
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
int main(int argc, char ** argv) {
bool fullscreen = false;
std::string str;
std::vector<char const *> animobjs;
for (int i = 1; i < argc; ++i) {
if (strstr(argv[i], ".obj")) {
animobjs.push_back(argv[i]);
}
else if (!strcmp(argv[i], "-axis")) {
g_axis = false;
}
else if (!strcmp(argv[i], "-d")) {
g_level = atoi(argv[++i]);
}
else if (!strcmp(argv[i], "-c")) {
g_repeatCount = atoi(argv[++i]);
}
else if (!strcmp(argv[i], "-f")) {
fullscreen = true;
}
else {
std::ifstream ifs(argv[1]);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
str = ss.str();
g_defaultShapes.push_back(ShapeDesc(argv[1], str.c_str(), kCatmark));
}
}
}
if (! animobjs.empty()) {
g_defaultShapes.push_back(ShapeDesc(animobjs[0], "", kCatmark));
g_objAnim = ObjAnim::Create(animobjs, g_axis);
}
initShapes();
g_fpsTimer.Start();
OpenSubdiv::Far::SetErrorCallback(callbackErrorOsd);
glfwSetErrorCallback(callbackErrorGLFW);
if (! glfwInit()) {
printf("Failed to initialize GLFW\n");
return 1;
}
static const char windowTitle[] = "OpenSubdiv glViewer " OPENSUBDIV_VERSION_STRING;
GLUtils::SetMinimumGLVersion(argc, argv);
if (fullscreen) {
g_primary = glfwGetPrimaryMonitor();
// apparently glfwGetPrimaryMonitor fails under linux : if no primary,
// settle for the first one in the list
if (! g_primary) {
int count = 0;
GLFWmonitor ** monitors = glfwGetMonitors(&count);
if (count)
g_primary = monitors[0];
}
if (g_primary) {
GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary);
g_width = vidmode->width;
g_height = vidmode->height;
}
}
g_window = glfwCreateWindow(g_width, g_height, windowTitle,
fullscreen && g_primary ? g_primary : NULL, NULL);
if (! g_window) {
std::cerr << "Failed to create OpenGL context.\n";
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(g_window);
GLUtils::PrintGLVersion();
// accommodate high DPI displays (e.g. mac retina displays)
glfwGetFramebufferSize(g_window, &g_width, &g_height);
glfwSetFramebufferSizeCallback(g_window, reshape);
glfwSetKeyCallback(g_window, keyboard);
glfwSetCursorPosCallback(g_window, motion);
glfwSetMouseButtonCallback(g_window, mouse);
glfwSetWindowCloseCallback(g_window, windowClose);
#if defined(OSD_USES_GLEW)
#ifdef CORE_PROFILE
// this is the only way to initialize glew correctly under core profile context.
glewExperimental = true;
#endif
if (GLenum r = glewInit() != GLEW_OK) {
printf("Failed to initialize glew. Error = %s\n", glewGetErrorString(r));
exit(1);
}
#ifdef CORE_PROFILE
// clear GL errors which were generated during glewInit()
glGetError();
#endif
#endif
// activate feature adaptive tessellation if OSD supports it
g_adaptive = GLUtils::SupportsAdaptiveTessellation();
initGL();
glfwSwapInterval(0);
initHUD();
rebuildMesh();
while (g_running) {
idle();
display();
glfwPollEvents();
glfwSwapBuffers(g_window);
glFinish();
}
uninitGL();
glfwTerminate();
}
//------------------------------------------------------------------------------