OpenSubdiv/opensubdiv/osd/cudaKernel.cu
2014-08-02 12:40:08 -07:00

1256 lines
54 KiB
Plaintext

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <assert.h>
template<int N> struct DeviceVertex
{
float v[N];
__device__ void addWithWeight(const DeviceVertex<N> *src, float weight) {
#pragma unroll
for(int i = 0; i < N; ++i){
v[i] += src->v[i] * weight;
}
}
__device__ void clear() {
#pragma unroll
for(int i = 0; i < N; ++i){
v[i] = 0.0f;
}
}
};
// Specialize DeviceVarying for N=0 to avoid compile error:
// "flexible array member in otherwise empty struct"
template<> struct DeviceVertex<0>
{
__device__ void addWithWeight(const DeviceVertex<0> *src, float weight) {
}
__device__ void clear() {
}
};
struct DeviceTable
{
void **tables;
int *F0_IT;
int *F0_ITa;
int *E0_IT;
int *V0_IT;
int *V0_ITa;
float *E0_S;
float *V0_S;
};
__device__ void clear(float *dst, int count)
{
for(int i = 0; i < count; ++i) dst[i] = 0;
}
__device__ void addWithWeight(float *dst, float *src, float weight, int count)
{
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeFace(float *fVertex, float *fVaryings, int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
dstVarying.addWithWeight(&varyings[index], weight);
}
vertex[offset + i - tableOffset] = dst;
varyings[offset + i - tableOffset] = dstVarying;
}else{
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
}
vertex[offset + i - tableOffset] = dst;
}
}
}
__global__ void
computeFace(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset +threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x){
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
// XXX: can we use local stack like alloca?
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
addWithWeight(dstVertex, fVertex + index*vertexStride, weight, vertexLength);
addWithWeight(dstVarying, fVarying + index*varyingStride, weight, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeQuadFace(float *fVertex, float *fVaryings, int *F0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + threadIdx.x + blockIdx.x*blockDim.x;
i < end;
i += blockDim.x * gridDim.x) {
int fidx0 = F0_IT[tableOffset + 4 * i + 0];
int fidx1 = F0_IT[tableOffset + 4 * i + 1];
int fidx2 = F0_IT[tableOffset + 4 * i + 2];
int fidx3 = F0_IT[tableOffset + 4 * i + 3];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dst.addWithWeight(&vertex[fidx0], 0.25f);
dst.addWithWeight(&vertex[fidx1], 0.25f);
dst.addWithWeight(&vertex[fidx2], 0.25f);
dst.addWithWeight(&vertex[fidx3], 0.25f);
dstVarying.addWithWeight(&varyings[fidx0], 0.25f);
dstVarying.addWithWeight(&varyings[fidx1], 0.25f);
dstVarying.addWithWeight(&varyings[fidx2], 0.25f);
dstVarying.addWithWeight(&varyings[fidx3], 0.25f);
vertex[offset + i] = dst;
varyings[offset + i] = dstVarying;
}else{
dst.addWithWeight(&vertex[fidx0], 0.25f);
dst.addWithWeight(&vertex[fidx1], 0.25f);
dst.addWithWeight(&vertex[fidx2], 0.25f);
dst.addWithWeight(&vertex[fidx3], 0.25f);
vertex[offset + i] = dst;
}
}
}
__global__ void
computeQuadFace(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F0_IT, int offset, int tableOffset, int start, int end)
{
for (int i = start +threadIdx.x + blockIdx.x*blockDim.x;
i < end;
i += blockDim.x * gridDim.x){
int fidx0 = F0_IT[tableOffset + 4 * i + 0];
int fidx1 = F0_IT[tableOffset + 4 * i + 1];
int fidx2 = F0_IT[tableOffset + 4 * i + 2];
int fidx3 = F0_IT[tableOffset + 4 * i + 3];
// XXX: can we use local stack like alloca?
float *dstVertex = fVertex + (i+offset)*vertexStride;
clear(dstVertex, vertexLength);
float *dstVarying = fVarying + (i+offset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVertex, fVertex + fidx0*vertexStride, 0.25f, vertexLength);
addWithWeight(dstVertex, fVertex + fidx1*vertexStride, 0.25f, vertexLength);
addWithWeight(dstVertex, fVertex + fidx2*vertexStride, 0.25f, vertexLength);
addWithWeight(dstVertex, fVertex + fidx3*vertexStride, 0.25f, vertexLength);
addWithWeight(dstVarying, fVarying + fidx0*varyingStride, 0.25f, varyingLength);
addWithWeight(dstVarying, fVarying + fidx1*varyingStride, 0.25f, varyingLength);
addWithWeight(dstVarying, fVarying + fidx2*varyingStride, 0.25f, varyingLength);
addWithWeight(dstVarying, fVarying + fidx3*varyingStride, 0.25f, varyingLength);
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeTriQuadFace(float *fVertex, float *fVaryings, int *F0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + threadIdx.x + blockIdx.x*blockDim.x;
i < end;
i += blockDim.x * gridDim.x) {
int fidx0 = F0_IT[tableOffset + 4 * i + 0];
int fidx1 = F0_IT[tableOffset + 4 * i + 1];
int fidx2 = F0_IT[tableOffset + 4 * i + 2];
int fidx3 = F0_IT[tableOffset + 4 * i + 3];
bool triangle = (fidx2 == fidx3);
float weight = triangle ? 1.0f / 3.0f : 1.0f / 4.0f;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dst.addWithWeight(&vertex[fidx0], weight);
dst.addWithWeight(&vertex[fidx1], weight);
dst.addWithWeight(&vertex[fidx2], weight);
dstVarying.addWithWeight(&varyings[fidx0], weight);
dstVarying.addWithWeight(&varyings[fidx1], weight);
dstVarying.addWithWeight(&varyings[fidx2], weight);
if (!triangle) {
dst.addWithWeight(&vertex[fidx3], weight);
dstVarying.addWithWeight(&varyings[fidx3], 0.25f);
}
vertex[offset + i] = dst;
varyings[offset + i] = dstVarying;
}else{
dst.addWithWeight(&vertex[fidx0], weight);
dst.addWithWeight(&vertex[fidx1], weight);
dst.addWithWeight(&vertex[fidx2], weight);
if (!triangle)
dst.addWithWeight(&vertex[fidx3], weight);
vertex[offset + i] = dst;
}
}
}
__global__ void
computeTriQuadFace(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F0_IT, int offset, int tableOffset, int start, int end)
{
for (int i = start +threadIdx.x + blockIdx.x*blockDim.x;
i < end;
i += blockDim.x * gridDim.x){
int fidx0 = F0_IT[tableOffset + 4 * i + 0];
int fidx1 = F0_IT[tableOffset + 4 * i + 1];
int fidx2 = F0_IT[tableOffset + 4 * i + 2];
int fidx3 = F0_IT[tableOffset + 4 * i + 3];
bool triangle = (fidx2 == fidx3);
float weight = triangle ? 1.0f / 3.0f : 1.0f / 4.0f;
// XXX: can we use local stack like alloca?
float *dstVertex = fVertex + (i+offset)*vertexStride;
clear(dstVertex, vertexLength);
float *dstVarying = fVarying + (i+offset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVertex, fVertex + fidx0*vertexStride, weight, vertexLength);
addWithWeight(dstVertex, fVertex + fidx1*vertexStride, weight, vertexLength);
addWithWeight(dstVertex, fVertex + fidx2*vertexStride, weight, vertexLength);
addWithWeight(dstVarying, fVarying + fidx0*varyingStride, weight, varyingLength);
addWithWeight(dstVarying, fVarying + fidx1*varyingStride, weight, varyingLength);
addWithWeight(dstVarying, fVarying + fidx2*varyingStride, weight, varyingLength);
if (!triangle) {
addWithWeight(dstVertex, fVertex + fidx3*vertexStride, weight, vertexLength);
addWithWeight(dstVarying, fVarying + fidx3*varyingStride, weight, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeEdge(float *fVertex, float *fVaryings, int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], vertWeight);
dst.addWithWeight(&vertex[eidx1], vertWeight);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
dst.addWithWeight(&vertex[eidx2], faceWeight);
dst.addWithWeight(&vertex[eidx3], faceWeight);
}
vertex[offset+i-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i-tableOffset] = dstVarying;
}
}
}
__global__ void
computeEdge(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;i+= blockDim.x * gridDim.x) {
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, vertWeight, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, vertWeight, vertexLength);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
addWithWeight(dstVertex, fVertex + eidx2*vertexStride, faceWeight, vertexLength);
addWithWeight(dstVertex, fVertex + eidx3*vertexStride, faceWeight, vertexLength);
}
if (varyingLength > 0){
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + eidx0*varyingStride, 0.5f, varyingLength);
addWithWeight(dstVarying, fVarying + eidx1*varyingStride, 0.5f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeRestrictedEdge(float *fVertex, float *fVaryings, int *E0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], 0.25f);
dst.addWithWeight(&vertex[eidx1], 0.25f);
dst.addWithWeight(&vertex[eidx2], 0.25f);
dst.addWithWeight(&vertex[eidx3], 0.25f);
vertex[offset+i-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i-tableOffset] = dstVarying;
}
}
}
__global__ void
computeRestrictedEdge(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E0_IT, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;i+= blockDim.x * gridDim.x) {
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, 0.25f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, 0.25f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx2*vertexStride, 0.25f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx3*vertexStride, 0.25f, vertexLength);
if (varyingLength > 0){
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + eidx0*varyingStride, 0.5f, varyingLength);
addWithWeight(dstVarying, fVarying + eidx1*varyingStride, 0.5f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexA(float *fVertex, float *fVaryings, int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end+tableOffset;
i += blockDim.x * gridDim.x) {
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
if (not pass) {
dst.clear();
} else {
dst = vertex[i+offset-tableOffset];
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
dst.addWithWeight(&vertex[p], weight);
} else {
dst.addWithWeight(&vertex[p], weight * 0.75f);
dst.addWithWeight(&vertex[eidx0], weight * 0.125f);
dst.addWithWeight(&vertex[eidx1], weight * 0.125f);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
if(not pass){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
}
__global__ void
computeVertexA(float *fVertex, float *fVaryings,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x){
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
if (not pass) {
clear(dstVertex, vertexLength);
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
addWithWeight(dstVertex, fVertex + p*vertexStride, weight, vertexLength);
} else {
addWithWeight(dstVertex, fVertex + p*vertexStride, weight*0.75f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, weight*0.125f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, weight*0.125f, vertexLength);
}
if(varyingLength > 0){
if(not pass){
float *dstVarying = fVaryings + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVaryings + p*varyingStride, 1.0f, varyingLength);
}
}
}
}
//texture <int, 1> texV0_IT;
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexB(float *fVertex, float *fVaryings,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * wv);
for (int j = 0; j < n; ++j) {
dst.addWithWeight(&vertex[V0_IT[h+j*2]], weight * wp);
dst.addWithWeight(&vertex[V0_IT[h+j*2+1]], weight * wp);
// int idx0 = tex1Dfetch(texV0_IT, h+j*2);
// int idx1 = tex1Dfetch(texV0_IT, h+j*2+1);
// dst.addWithWeight(&vertex[idx0], weight * wp);
// dst.addWithWeight(&vertex[idx1], weight * wp);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeVertexB(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, weight*wv, vertexLength);
for (int j = 0; j < n; ++j) {
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2]*vertexStride, weight*wp, vertexLength);
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2+1]*vertexStride, weight*wp, vertexLength);
}
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeRestrictedVertexA(float *fVertex, float *fVaryings, int *V0_ITa, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end+tableOffset;
i += blockDim.x * gridDim.x) {
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], 0.75f);
dst.addWithWeight(&vertex[eidx0], 0.125f);
dst.addWithWeight(&vertex[eidx1], 0.125f);
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeRestrictedVertexA(float *fVertex, float *fVaryings,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V0_ITa, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x){
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, 0.75f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, 0.125f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, 0.125f, vertexLength);
if(varyingLength > 0){
float *dstVarying = fVaryings + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVaryings + p*varyingStride, 1.0f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeRestrictedVertexB1(float *fVertex, float *fVaryings,
const int *V0_ITa, const int *V0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int p = V0_ITa[5*i+2];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], 0.5f);
for (int j = 0; j < 8; ++j)
dst.addWithWeight(&vertex[V0_IT[h+j]], 0.0625f);
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeRestrictedVertexB1(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, const int *V0_IT, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int p = V0_ITa[5*i+2];
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, 0.5f, vertexLength);
for (int j = 0; j < 8; ++j)
addWithWeight(dstVertex, fVertex + V0_IT[h+j]*vertexStride, 0.0625f, vertexLength);
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeRestrictedVertexB2(float *fVertex, float *fVaryings,
const int *V0_ITa, const int *V0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], wv);
for (int j = 0; j < n; ++j) {
dst.addWithWeight(&vertex[V0_IT[h+j*2]], wp);
dst.addWithWeight(&vertex[V0_IT[h+j*2+1]], wp);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeRestrictedVertexB2(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, const int *V0_IT, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, wv, vertexLength);
for (int j = 0; j < n; ++j) {
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2]*vertexStride, wp, vertexLength);
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2+1]*vertexStride, wp, vertexLength);
}
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeLoopVertexB(float *fVertex, float *fVaryings, int *V0_ITa, int *V0_IT, float *V0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * (1.0f - (beta * n)));
for (int j = 0; j < n; ++j) {
dst.addWithWeight(&vertex[V0_IT[h+j]], weight * beta);
}
vertex[i+offset-tableOffset] = dst;
if (NUM_VARYING_ELEMENTS > 0) {
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeLoopVertexB(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, weight*(1.0f-(beta*n)), vertexLength);
for (int j = 0; j < n; ++j) {
addWithWeight(dstVertex, fVertex + V0_IT[h+j]*vertexStride, weight*beta, vertexLength);
}
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearEdge(float *fVertex, float *fVaryings, int *E0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i+= blockDim.x * gridDim.x) {
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], 0.5f);
dst.addWithWeight(&vertex[eidx1], 0.5f);
vertex[offset+i-tableOffset] = dst;
if (NUM_VARYING_ELEMENTS > 0) {
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i-tableOffset] = dstVarying;
}
}
}
__global__ void
computeBilinearEdge(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E0_IT, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i+= blockDim.x * gridDim.x) {
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + eidx0*vertexStride, 0.5f, vertexLength);
addWithWeight(dstVertex, fVertex + eidx1*vertexStride, 0.5f, vertexLength);
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + eidx0*varyingStride, 0.5f, varyingLength);
addWithWeight(dstVarying, fVarying + eidx1*varyingStride, 0.5f, varyingLength);
}
}
}
template <int NUM_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearVertex(float *fVertex, float *fVaryings, int *V0_ITa, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_VERTEX_ELEMENTS>*)fVertex;
DeviceVertex<NUM_VARYING_ELEMENTS> *varyings = (DeviceVertex<NUM_VARYING_ELEMENTS>*)fVaryings;
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int p = V0_ITa[i];
DeviceVertex<NUM_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], 1.0f);
vertex[i+offset-tableOffset] = dst;
if (NUM_VARYING_ELEMENTS > 0) {
DeviceVertex<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeBilinearVertex(float *fVertex, float *fVarying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
const int *V0_ITa, int offset, int tableOffset, int start, int end)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
int p = V0_ITa[i];
float *dstVertex = fVertex + (i+offset-tableOffset)*vertexStride;
clear(dstVertex, vertexLength);
addWithWeight(dstVertex, fVertex + p*vertexStride, 1.0f, vertexLength);
if (varyingLength > 0) {
float *dstVarying = fVarying + (i+offset-tableOffset)*varyingStride;
clear(dstVarying, varyingLength);
addWithWeight(dstVarying, fVarying + p*varyingStride, 1.0f, varyingLength);
}
}
}
// --------------------------------------------------------------------------------------------
__global__ void
editVertexAdd(float *fVertex, int vertexLength, int vertexStride,
int primVarOffset, int primVarWidth,
int vertexOffset, int tableOffset, int start, int end,
const int *editIndices, const float *editValues)
{
for (int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
float *dstVertex = fVertex + (editIndices[i] + vertexOffset) * vertexStride + primVarOffset;
for(int j = 0; j < primVarWidth; j++) {
*dstVertex++ += editValues[i*primVarWidth + j];
}
}
}
// --------------------------------------------------------------------------------------------
#include "../version.h"
// XXX: this macro usage is tentative. Since cuda kernel can't be dynamically configured,
// still trying to find better way to have optimized kernel..
#define OPT_KERNEL(NUM_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS, KERNEL, X, Y, ARG) \
if(vertexLength == NUM_VERTEX_ELEMENTS && \
varyingLength == NUM_VARYING_ELEMENTS && \
vertexStride == vertexLength && \
varyingStride == varyingLength) \
{ KERNEL<NUM_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS><<<X,Y>>>ARG; \
return; }
extern "C" {
void OsdCudaComputeFace(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F_IT, int *F_ITa, int offset, int tableOffset, int start, int end)
{
//computeFace<3, 0><<<512,32>>>(vertex, varying, F_IT, F_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
// fallback kernel (slow)
computeFace<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
F_IT, F_ITa, offset, tableOffset, start, end);
}
void OsdCudaComputeQuadFace(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F_IT, int offset, int tableOffset, int start, int end)
{
//computeQuadFace<3, 0><<<512,32>>>(vertex, varying, F_IT, offset, start, end);
OPT_KERNEL(0, 0, computeQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
// fallback kernel (slow)
computeQuadFace<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
F_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeTriQuadFace(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *F_IT, int offset, int tableOffset, int start, int end)
{
//computeTriQuadFace<3, 0><<<512,32>>>(vertex, varying, F_IT, offset, start, end);
OPT_KERNEL(0, 0, computeTriQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeTriQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeTriQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeTriQuadFace, 512, 32, (vertex, varying, F_IT, offset, tableOffset, start, end));
// fallback kernel (slow)
computeTriQuadFace<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
F_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeEdge(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E_IT, float *E_W, int offset, int tableOffset, int start, int end)
{
//computeEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, E_W, offset, start, end);
OPT_KERNEL(0, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
computeEdge<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
E_IT, E_W, offset, tableOffset, start, end);
}
void OsdCudaComputeRestrictedEdge(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E_IT, int offset, int tableOffset, int start, int end)
{
//computeRestrictedEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, offset, start, end);
OPT_KERNEL(0, 0, computeRestrictedEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeRestrictedEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeRestrictedEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeRestrictedEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
computeRestrictedEdge<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
E_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeVertexA(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, float *V_W, int offset, int tableOffset, int start, int end, int pass)
{
// computeVertexA<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_W, offset, start, end, pass);
OPT_KERNEL(0, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(0, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(3, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(3, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
computeVertexA<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_W, offset, tableOffset, start, end, pass);
}
void OsdCudaComputeVertexB(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
{
// computeVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
computeVertexB<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
}
void OsdCudaComputeRestrictedVertexA(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int offset, int tableOffset, int start, int end)
{
// computeRestrictedVertexA<0, 3><<<512,32>>>(vertex, varying, V_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeRestrictedVertexA, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeRestrictedVertexA, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeRestrictedVertexA, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeRestrictedVertexA, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
computeRestrictedVertexA<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, offset, tableOffset, start, end);
}
void OsdCudaComputeRestrictedVertexB1(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int *V_IT, int offset, int tableOffset, int start, int end)
{
// computeRestrictedVertexB1<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, offset, start, end);
OPT_KERNEL(0, 0, computeRestrictedVertexB1, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeRestrictedVertexB1, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeRestrictedVertexB1, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeRestrictedVertexB1, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
computeRestrictedVertexB1 <<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeRestrictedVertexB2(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int *V_IT, int offset, int tableOffset, int start, int end)
{
// computeRestrictedVertexB2<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, offset, start, end);
OPT_KERNEL(0, 0, computeRestrictedVertexB2, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeRestrictedVertexB2, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeRestrictedVertexB2, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeRestrictedVertexB2, 512, 32, (vertex, varying, V_ITa, V_IT, offset, tableOffset, start, end));
computeRestrictedVertexB2 <<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeLoopVertexB(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
{
// computeLoopVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
computeLoopVertexB<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
}
void OsdCudaComputeBilinearEdge(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *E_IT, int offset, int tableOffset, int start, int end)
{
//computeBilinearEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
computeBilinearEdge<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
E_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeBilinearVertex(float *vertex, float *varying,
int vertexLength, int vertexStride,
int varyingLength, int varyingStride,
int *V_ITa, int offset, int tableOffset, int start, int end)
{
// computeBilinearVertex<0, 3><<<512,32>>>(vertex, varying, V_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
computeBilinearVertex<<<512, 32>>>(vertex, varying,
vertexLength, vertexStride, varyingLength, varyingStride,
V_ITa, offset, tableOffset, start, end);
}
void OsdCudaEditVertexAdd(float *vertex, int vertexLength, int vertexStride,
int primVarOffset, int primVarWidth,
int vertexOffset, int tableOffset,
int start, int end, int *editIndices, float *editValues)
{
editVertexAdd<<<512, 32>>>(vertex, vertexLength, vertexStride, primVarOffset, primVarWidth,
vertexOffset, tableOffset, start, end,
editIndices, editValues);
}
} /* extern "C" */