mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2024-11-27 05:50:05 +00:00
8efecb0fca
2 client APIs are changed. - VertexBuffer::UpdateData() takes start vertex offset - ComputeController::Refine() takes FarKernelBatchVector Also, ComputeContext no longer holds farmesh. Client can free farmesh after OsdComputeContext is created. (but still need FarKernelBatchVector to apply subdivision kernels)
733 lines
32 KiB
Plaintext
733 lines
32 KiB
Plaintext
//
|
|
// Copyright (C) Pixar. All rights reserved.
|
|
//
|
|
// This license governs use of the accompanying software. If you
|
|
// use the software, you accept this license. If you do not accept
|
|
// the license, do not use the software.
|
|
//
|
|
// 1. Definitions
|
|
// The terms "reproduce," "reproduction," "derivative works," and
|
|
// "distribution" have the same meaning here as under U.S.
|
|
// copyright law. A "contribution" is the original software, or
|
|
// any additions or changes to the software.
|
|
// A "contributor" is any person or entity that distributes its
|
|
// contribution under this license.
|
|
// "Licensed patents" are a contributor's patent claims that read
|
|
// directly on its contribution.
|
|
//
|
|
// 2. Grant of Rights
|
|
// (A) Copyright Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free copyright license to reproduce its contribution,
|
|
// prepare derivative works of its contribution, and distribute
|
|
// its contribution or any derivative works that you create.
|
|
// (B) Patent Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free license under its licensed patents to make, have
|
|
// made, use, sell, offer for sale, import, and/or otherwise
|
|
// dispose of its contribution in the software or derivative works
|
|
// of the contribution in the software.
|
|
//
|
|
// 3. Conditions and Limitations
|
|
// (A) No Trademark License- This license does not grant you
|
|
// rights to use any contributor's name, logo, or trademarks.
|
|
// (B) If you bring a patent claim against any contributor over
|
|
// patents that you claim are infringed by the software, your
|
|
// patent license from such contributor to the software ends
|
|
// automatically.
|
|
// (C) If you distribute any portion of the software, you must
|
|
// retain all copyright, patent, trademark, and attribution
|
|
// notices that are present in the software.
|
|
// (D) If you distribute any portion of the software in source
|
|
// code form, you may do so only under this license by including a
|
|
// complete copy of this license with your distribution. If you
|
|
// distribute any portion of the software in compiled or object
|
|
// code form, you may only do so under a license that complies
|
|
// with this license.
|
|
// (E) The software is licensed "as-is." You bear the risk of
|
|
// using it. The contributors give no express warranties,
|
|
// guarantees or conditions. You may have additional consumer
|
|
// rights under your local laws which this license cannot change.
|
|
// To the extent permitted under your local laws, the contributors
|
|
// exclude the implied warranties of merchantability, fitness for
|
|
// a particular purpose and non-infringement.
|
|
//
|
|
#include <assert.h>
|
|
|
|
template<int N> struct DeviceVertex
|
|
{
|
|
float pos[3];
|
|
float userVertexData[N];
|
|
|
|
__device__ void addWithWeight(const DeviceVertex<N> *src, float weight) {
|
|
pos[0] += src->pos[0] * weight;
|
|
pos[1] += src->pos[1] * weight;
|
|
pos[2] += src->pos[2] * weight;
|
|
|
|
for(int i = 0; i < N; ++i){
|
|
userVertexData[i] += src->userVertexData[i] * weight;
|
|
}
|
|
}
|
|
__device__ void clear() {
|
|
pos[0] = pos[1] = pos[2] = 0.0f;
|
|
for(int i = 0; i < N; ++i){
|
|
userVertexData[i] = 0.0f;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<int N> struct DeviceVarying
|
|
{
|
|
float v[N];
|
|
|
|
__device__ void addVaryingWithWeight(const DeviceVarying<N> *src, float weight) {
|
|
for(int i = 0; i < N; ++i){
|
|
v[i] += src->v[i] * weight;
|
|
}
|
|
}
|
|
__device__ void clear() {
|
|
for(int i = 0; i < N; ++i){
|
|
v[i] = 0.0f;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Specialize DeviceVarying for N=0 to avoid compile error:
|
|
// "flexible array member in otherwise empty struct"
|
|
template<> struct DeviceVarying<0>
|
|
{
|
|
__device__ void addVaryingWithWeight(const DeviceVarying<0> *src, float weight) {
|
|
}
|
|
__device__ void clear() {
|
|
}
|
|
};
|
|
|
|
struct DeviceTable
|
|
{
|
|
void **tables;
|
|
int *F0_IT;
|
|
int *F0_ITa;
|
|
int *E0_IT;
|
|
int *V0_IT;
|
|
int *V0_ITa;
|
|
float *E0_S;
|
|
float *V0_S;
|
|
};
|
|
|
|
__device__ void clear(float *dst, int count)
|
|
{
|
|
for(int i = 0; i < count; ++i) dst[i] = 0;
|
|
}
|
|
|
|
__device__ void addWithWeight(float *dst, float *src, float weight, int count)
|
|
{
|
|
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
|
|
}
|
|
|
|
__device__ void addVaryingWithWeight(float *dst, float *src, float weight, int count)
|
|
{
|
|
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
|
|
}
|
|
|
|
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
|
|
computeFace(float *fVertex, float *fVaryings, int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
|
|
{
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int h = F0_ITa[2*i];
|
|
int n = F0_ITa[2*i+1];
|
|
float weight = 1.0f/n;
|
|
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
|
|
dst.clear();
|
|
|
|
if(NUM_VARYING_ELEMENTS > 0){
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
|
|
dstVarying.clear();
|
|
|
|
for(int j=0; j<n; ++j){
|
|
int index = F0_IT[h+j];
|
|
dst.addWithWeight(&vertex[index], weight);
|
|
dstVarying.addVaryingWithWeight(&varyings[index], weight);
|
|
}
|
|
vertex[offset + i - tableOffset] = dst;
|
|
varyings[offset + i - tableOffset] = dstVarying;
|
|
}else{
|
|
for(int j=0; j<n; ++j){
|
|
int index = F0_IT[h+j];
|
|
dst.addWithWeight(&vertex[index], weight);
|
|
}
|
|
vertex[offset + i - tableOffset] = dst;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeFace(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
|
|
int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
|
|
{
|
|
for(int i = start + tableOffset +threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int h = F0_ITa[2*i];
|
|
int n = F0_ITa[2*i+1];
|
|
float weight = 1.0f/n;
|
|
|
|
// XXX: can we use local stack like alloca?
|
|
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
|
|
clear(dstVertex, numVertexElements);
|
|
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
|
|
clear(dstVarying, numVaryingElements);
|
|
|
|
for(int j=0; j<n; ++j){
|
|
int index = F0_IT[h+j];
|
|
addWithWeight(dstVertex, fVertex + index*numVertexElements, weight, numVertexElements);
|
|
addVaryingWithWeight(dstVarying, fVaryings + index*numVaryingElements, weight, numVaryingElements);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
|
|
computeEdge(float *fVertex, float *fVaryings, int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
|
|
{
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
|
|
int eidx0 = E0_IT[4*i+0];
|
|
int eidx1 = E0_IT[4*i+1];
|
|
int eidx2 = E0_IT[4*i+2];
|
|
int eidx3 = E0_IT[4*i+3];
|
|
|
|
float vertWeight = E0_S[i*2+0];
|
|
|
|
// Fully sharp edge : vertWeight = 0.5f;
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
|
|
dst.clear();
|
|
|
|
dst.addWithWeight(&vertex[eidx0], vertWeight);
|
|
dst.addWithWeight(&vertex[eidx1], vertWeight);
|
|
|
|
if(eidx2 > -1){
|
|
float faceWeight = E0_S[i*2+1];
|
|
|
|
dst.addWithWeight(&vertex[eidx2], faceWeight);
|
|
dst.addWithWeight(&vertex[eidx3], faceWeight);
|
|
}
|
|
vertex[offset+i-tableOffset] = dst;
|
|
|
|
if(NUM_VARYING_ELEMENTS > 0){
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
|
|
dstVarying.clear();
|
|
dstVarying.addVaryingWithWeight(&varyings[eidx0], 0.5f);
|
|
dstVarying.addVaryingWithWeight(&varyings[eidx1], 0.5f);
|
|
varyings[offset+i-tableOffset] = dstVarying;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeEdge(float *fVertex, int numVertexElements, float *fVarying, int numVaryingElements,
|
|
int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
|
|
{
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
|
|
int eidx0 = E0_IT[4*i+0];
|
|
int eidx1 = E0_IT[4*i+1];
|
|
int eidx2 = E0_IT[4*i+2];
|
|
int eidx3 = E0_IT[4*i+3];
|
|
|
|
float vertWeight = E0_S[i*2+0];
|
|
|
|
// Fully sharp edge : vertWeight = 0.5f;
|
|
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
|
|
clear(dstVertex, numVertexElements);
|
|
|
|
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, vertWeight, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, vertWeight, numVertexElements);
|
|
|
|
if(eidx2 > -1){
|
|
float faceWeight = E0_S[i*2+1];
|
|
|
|
addWithWeight(dstVertex, fVertex + eidx2*numVertexElements, faceWeight, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + eidx3*numVertexElements, faceWeight, numVertexElements);
|
|
}
|
|
|
|
if(numVaryingElements > 0){
|
|
float *dstVarying = fVarying + (i+offset-tableOffset)*numVaryingElements;
|
|
clear(dstVarying, numVaryingElements);
|
|
|
|
addVaryingWithWeight(dstVarying, fVarying + eidx0*numVaryingElements, 0.5f, numVaryingElements);
|
|
addVaryingWithWeight(dstVarying, fVarying + eidx1*numVaryingElements, 0.5f, numVaryingElements);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
|
|
computeVertexA(float *fVertex, float *fVaryings, int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
|
|
{
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end+tableOffset; i += blockDim.x * gridDim.x){
|
|
int n = V0_ITa[5*i+1];
|
|
int p = V0_ITa[5*i+2];
|
|
int eidx0 = V0_ITa[5*i+3];
|
|
int eidx1 = V0_ITa[5*i+4];
|
|
|
|
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
|
|
|
|
// In the case of fractional weight, the weight must be inverted since
|
|
// the value is shared with the k_Smooth kernel (statistically the
|
|
// k_Smooth kernel runs much more often than this one)
|
|
if (weight>0.0f && weight<1.0f && n > 0)
|
|
weight=1.0f-weight;
|
|
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
|
|
if (not pass) {
|
|
dst.clear();
|
|
} else {
|
|
dst = vertex[i+offset-tableOffset];
|
|
}
|
|
|
|
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
|
|
dst.addWithWeight(&vertex[p], weight);
|
|
} else {
|
|
dst.addWithWeight(&vertex[p], weight * 0.75f);
|
|
dst.addWithWeight(&vertex[eidx0], weight * 0.125f);
|
|
dst.addWithWeight(&vertex[eidx1], weight * 0.125f);
|
|
}
|
|
vertex[i+offset-tableOffset] = dst;
|
|
|
|
if(NUM_VARYING_ELEMENTS > 0){
|
|
if(not pass){
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
|
|
dstVarying.clear();
|
|
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
|
|
varyings[i+offset-tableOffset] = dstVarying;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeVertexA(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
|
|
int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
|
|
{
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int n = V0_ITa[5*i+1];
|
|
int p = V0_ITa[5*i+2];
|
|
int eidx0 = V0_ITa[5*i+3];
|
|
int eidx1 = V0_ITa[5*i+4];
|
|
|
|
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
|
|
|
|
// In the case of fractional weight, the weight must be inverted since
|
|
// the value is shared with the k_Smooth kernel (statistically the
|
|
// k_Smooth kernel runs much more often than this one)
|
|
if (weight>0.0f && weight<1.0f && n > 0)
|
|
weight=1.0f-weight;
|
|
|
|
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
|
|
if (not pass) {
|
|
clear(dstVertex, numVertexElements);
|
|
}
|
|
|
|
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
|
|
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight, numVertexElements);
|
|
} else {
|
|
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*0.75f, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, weight*0.125f, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, weight*0.125f, numVertexElements);
|
|
}
|
|
|
|
if(numVaryingElements > 0){
|
|
if(not pass){
|
|
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
|
|
clear(dstVarying, numVaryingElements);
|
|
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//texture <int, 1> texV0_IT;
|
|
|
|
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
|
|
computeVertexB(float *fVertex, float *fVaryings,
|
|
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
|
|
{
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int h = V0_ITa[5*i];
|
|
int n = V0_ITa[5*i+1];
|
|
int p = V0_ITa[5*i+2];
|
|
|
|
float weight = V0_S[i];
|
|
float wp = 1.0f/float(n*n);
|
|
float wv = (n-2.0f) * n * wp;
|
|
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
|
|
dst.clear();
|
|
dst.addWithWeight(&vertex[p], weight * wv);
|
|
|
|
for(int j = 0; j < n; ++j){
|
|
dst.addWithWeight(&vertex[V0_IT[h+j*2]], weight * wp);
|
|
dst.addWithWeight(&vertex[V0_IT[h+j*2+1]], weight * wp);
|
|
// int idx0 = tex1Dfetch(texV0_IT, h+j*2);
|
|
// int idx1 = tex1Dfetch(texV0_IT, h+j*2+1);
|
|
// dst.addWithWeight(&vertex[idx0], weight * wp);
|
|
// dst.addWithWeight(&vertex[idx1], weight * wp);
|
|
}
|
|
vertex[i+offset-tableOffset] = dst;
|
|
|
|
if(NUM_VARYING_ELEMENTS > 0){
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
|
|
dstVarying.clear();
|
|
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
|
|
varyings[i+offset-tableOffset] = dstVarying;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeVertexB(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
|
|
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
|
|
{
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int h = V0_ITa[5*i];
|
|
int n = V0_ITa[5*i+1];
|
|
int p = V0_ITa[5*i+2];
|
|
|
|
float weight = V0_S[i];
|
|
float wp = 1.0f/float(n*n);
|
|
float wv = (n-2.0f) * n * wp;
|
|
|
|
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
|
|
clear(dstVertex, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*wv, numVertexElements);
|
|
|
|
for(int j = 0; j < n; ++j){
|
|
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2]*numVertexElements, weight*wp, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2+1]*numVertexElements, weight*wp, numVertexElements);
|
|
}
|
|
|
|
if(numVaryingElements > 0){
|
|
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
|
|
clear(dstVarying, numVaryingElements);
|
|
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
|
|
computeLoopVertexB(float *fVertex, float *fVaryings, int *V0_ITa, int *V0_IT, float *V0_S, int offset, int tableOffset, int start, int end)
|
|
{
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int h = V0_ITa[5*i];
|
|
int n = V0_ITa[5*i+1];
|
|
int p = V0_ITa[5*i+2];
|
|
|
|
float weight = V0_S[i];
|
|
float wp = 1.0f/float(n);
|
|
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
|
|
beta = beta * beta;
|
|
beta = (0.625f - beta) * wp;
|
|
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
|
|
dst.clear();
|
|
|
|
dst.addWithWeight(&vertex[p], weight * (1.0f - (beta * n)));
|
|
|
|
for(int j = 0; j < n; ++j){
|
|
dst.addWithWeight(&vertex[V0_IT[h+j]], weight * beta);
|
|
}
|
|
vertex[i+offset-tableOffset] = dst;
|
|
|
|
if(NUM_VARYING_ELEMENTS > 0){
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
|
|
dstVarying.clear();
|
|
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
|
|
varyings[i+offset-tableOffset] = dstVarying;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeLoopVertexB(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
|
|
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
|
|
{
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int h = V0_ITa[5*i];
|
|
int n = V0_ITa[5*i+1];
|
|
int p = V0_ITa[5*i+2];
|
|
|
|
float weight = V0_S[i];
|
|
float wp = 1.0f/float(n);
|
|
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
|
|
beta = beta * beta;
|
|
beta = (0.625f - beta) * wp;
|
|
|
|
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
|
|
clear(dstVertex, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*(1.0f-(beta*n)), numVertexElements);
|
|
|
|
for(int j = 0; j < n; ++j){
|
|
addWithWeight(dstVertex, fVertex + V0_IT[h+j]*numVertexElements, weight*beta, numVertexElements);
|
|
}
|
|
|
|
if(numVaryingElements > 0){
|
|
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
|
|
clear(dstVarying, numVaryingElements);
|
|
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
|
|
}
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
|
|
computeBilinearEdge(float *fVertex, float *fVaryings, int *E0_IT, int offset, int tableOffset, int start, int end)
|
|
{
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
|
|
int eidx0 = E0_IT[2*i+0];
|
|
int eidx1 = E0_IT[2*i+1];
|
|
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
|
|
dst.clear();
|
|
|
|
dst.addWithWeight(&vertex[eidx0], 0.5f);
|
|
dst.addWithWeight(&vertex[eidx1], 0.5f);
|
|
|
|
vertex[offset+i-tableOffset] = dst;
|
|
|
|
if(NUM_VARYING_ELEMENTS > 0){
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
|
|
dstVarying.clear();
|
|
dstVarying.addVaryingWithWeight(&varyings[eidx0], 0.5f);
|
|
dstVarying.addVaryingWithWeight(&varyings[eidx1], 0.5f);
|
|
varyings[offset+i-tableOffset] = dstVarying;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeBilinearEdge(float *fVertex, int numVertexElements, float *fVarying, int numVaryingElements,
|
|
int *E0_IT, int offset, int tableOffset, int start, int end)
|
|
{
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
|
|
int eidx0 = E0_IT[2*i+0];
|
|
int eidx1 = E0_IT[2*i+1];
|
|
|
|
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
|
|
clear(dstVertex, numVertexElements);
|
|
|
|
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, 0.5f, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, 0.5f, numVertexElements);
|
|
|
|
if(numVaryingElements > 0){
|
|
float *dstVarying = fVarying + (i+offset-tableOffset)*numVaryingElements;
|
|
clear(dstVarying, numVaryingElements);
|
|
|
|
addVaryingWithWeight(dstVarying, fVarying + eidx0*numVaryingElements, 0.5f, numVaryingElements);
|
|
addVaryingWithWeight(dstVarying, fVarying + eidx1*numVaryingElements, 0.5f, numVaryingElements);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
|
|
computeBilinearVertex(float *fVertex, float *fVaryings, int *V0_ITa, int offset, int tableOffset, int start, int end)
|
|
{
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int p = V0_ITa[i];
|
|
|
|
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
|
|
dst.clear();
|
|
|
|
dst.addWithWeight(&vertex[p], 1.0f);
|
|
vertex[i+offset-tableOffset] = dst;
|
|
|
|
if(NUM_VARYING_ELEMENTS > 0){
|
|
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
|
|
dstVarying.clear();
|
|
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
|
|
varyings[i+offset-tableOffset] = dstVarying;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeBilinearVertex(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
|
|
const int *V0_ITa, int offset, int tableOffset, int start, int end)
|
|
{
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
|
|
int p = V0_ITa[i];
|
|
|
|
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
|
|
clear(dstVertex, numVertexElements);
|
|
addWithWeight(dstVertex, fVertex + p*numVertexElements, 1.0f, numVertexElements);
|
|
|
|
if(numVaryingElements > 0){
|
|
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
|
|
clear(dstVarying, numVaryingElements);
|
|
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
|
|
}
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
__global__ void
|
|
editVertexAdd(float *fVertex, int numVertexElements, int primVarOffset, int primVarWidth,
|
|
int vertexOffset, int tableOffset, int start, int end,
|
|
const int *editIndices, const float *editValues)
|
|
{
|
|
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
|
|
i < end + tableOffset;
|
|
i += blockDim.x * gridDim.x) {
|
|
|
|
float *dstVertex = fVertex + (editIndices[i] + vertexOffset) * numVertexElements + primVarOffset;
|
|
|
|
for(int j = 0; j < primVarWidth; j++) {
|
|
// XXX: wrong? maybe editValues[i*primVarWidth + j]...
|
|
*dstVertex++ += editValues[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
#include "../version.h"
|
|
|
|
// XXX: this macro usage is tentative. Since cuda kernel can't be dynamically configured,
|
|
// still trying to find better way to have optimized kernel..
|
|
|
|
#define OPT_KERNEL(NUM_USER_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS, KERNEL, X, Y, ARG) \
|
|
if(numUserVertexElements == NUM_USER_VERTEX_ELEMENTS && \
|
|
numVaryingElements == NUM_VARYING_ELEMENTS) \
|
|
{ KERNEL<NUM_USER_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS><<<X,Y>>>ARG; \
|
|
return; }
|
|
|
|
extern "C" {
|
|
|
|
void OsdCudaComputeFace(float *vertex, float *varying,
|
|
int numUserVertexElements, int numVaryingElements,
|
|
int *F_IT, int *F_ITa, int offset, int tableOffset, int start, int end)
|
|
{
|
|
//computeFace<3, 0><<<512,32>>>(vertex, varying, F_IT, F_ITa, offset, start, end);
|
|
OPT_KERNEL(0, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
|
|
OPT_KERNEL(0, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
|
|
|
|
// fallback kernel (slow)
|
|
computeFace<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
|
|
F_IT, F_ITa, offset, tableOffset, start, end);
|
|
}
|
|
|
|
void OsdCudaComputeEdge(float *vertex, float *varying,
|
|
int numUserVertexElements, int numVaryingElements,
|
|
int *E_IT, float *E_W, int offset, int tableOffset, int start, int end)
|
|
{
|
|
//computeEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, E_W, offset, start, end);
|
|
OPT_KERNEL(0, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(0, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
|
|
|
|
computeEdge<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
|
|
E_IT, E_W, offset, tableOffset, start, end);
|
|
}
|
|
|
|
void OsdCudaComputeVertexA(float *vertex, float *varying,
|
|
int numUserVertexElements, int numVaryingElements,
|
|
int *V_ITa, float *V_W, int offset, int tableOffset, int start, int end, int pass)
|
|
{
|
|
// computeVertexA<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_W, offset, start, end, pass);
|
|
OPT_KERNEL(0, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
|
|
OPT_KERNEL(0, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
|
|
OPT_KERNEL(3, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
|
|
OPT_KERNEL(3, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
|
|
|
|
computeVertexA<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
|
|
V_ITa, V_W, offset, tableOffset, start, end, pass);
|
|
}
|
|
|
|
void OsdCudaComputeVertexB(float *vertex, float *varying,
|
|
int numUserVertexElements, int numVaryingElements,
|
|
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
|
|
{
|
|
// computeVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
|
|
OPT_KERNEL(0, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(0, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
|
|
computeVertexB<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
|
|
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
|
|
}
|
|
|
|
void OsdCudaComputeLoopVertexB(float *vertex, float *varying,
|
|
int numUserVertexElements, int numVaryingElements,
|
|
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
|
|
{
|
|
// computeLoopVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
|
|
OPT_KERNEL(0, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(0, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
|
|
|
|
computeLoopVertexB<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
|
|
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
|
|
}
|
|
|
|
void OsdCudaComputeBilinearEdge(float *vertex, float *varying,
|
|
int numUserVertexElements, int numVaryingElements,
|
|
int *E_IT, int offset, int tableOffset, int start, int end)
|
|
{
|
|
//computeBilinearEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, offset, start, end);
|
|
OPT_KERNEL(0, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
|
|
OPT_KERNEL(0, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
|
|
|
|
computeBilinearEdge<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
|
|
E_IT, offset, tableOffset, start, end);
|
|
}
|
|
|
|
void OsdCudaComputeBilinearVertex(float *vertex, float *varying,
|
|
int numUserVertexElements, int numVaryingElements,
|
|
int *V_ITa, int offset, int tableOffset, int start, int end)
|
|
{
|
|
// computeBilinearVertex<0, 3><<<512,32>>>(vertex, varying, V_ITa, offset, start, end);
|
|
OPT_KERNEL(0, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
|
|
OPT_KERNEL(0, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
|
|
OPT_KERNEL(3, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
|
|
|
|
computeBilinearVertex<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
|
|
V_ITa, offset, tableOffset, start, end);
|
|
}
|
|
|
|
void OsdCudaEditVertexAdd(float *vertex, int numUserVertexElements,
|
|
int primVarOffset, int primVarWidth,
|
|
int vertexOffset, int tableOffset,
|
|
int start, int end, int *editIndices, float *editValues)
|
|
{
|
|
editVertexAdd<<<512, 32>>>(vertex, 3+numUserVertexElements, primVarOffset, primVarWidth,
|
|
vertexOffset, tableOffset, start, end,
|
|
editIndices, editValues);
|
|
}
|
|
|
|
} /* extern "C" */
|