OpenSubdiv/opensubdiv/osd/glslPatchBSpline.glsl
David G Yu 8716a8eebf Fixed example code use of single crease patches
Also made a couple minor changes to true up the GLSL patch shaders.
2015-05-15 11:52:41 -07:00

399 lines
11 KiB
GLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
//----------------------------------------------------------
// Patches.TessVertexBSpline
//----------------------------------------------------------
#ifdef OSD_PATCH_VERTEX_BSPLINE_SHADER
layout(location = 0) in vec4 position;
OSD_USER_VARYING_ATTRIBUTE_DECLARE
out block {
ControlVertex v;
OSD_USER_VARYING_DECLARE
} outpt;
void main()
{
outpt.v.position = OsdModelViewMatrix() * position;
OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(position);
OSD_USER_VARYING_PER_VERTEX();
}
#endif
//----------------------------------------------------------
// Patches.TessControlBSpline
//----------------------------------------------------------
#ifdef OSD_PATCH_TESS_CONTROL_BSPLINE_SHADER
// Regular
uniform mat4 Q = mat4(
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
0.f, 4.f/6.f, 2.f/6.f, 0.f,
0.f, 2.f/6.f, 4.f/6.f, 0.f,
0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f
);
// Infinite sharp
uniform mat4 Mi = mat4(
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
0.f, 4.f/6.f, 2.f/6.f, 0.f,
0.f, 2.f/6.f, 4.f/6.f, 0.f,
0.f, 0.f, 1.f, 0.f
);
layout(vertices = 16) out;
in block {
ControlVertex v;
OSD_USER_VARYING_DECLARE
} inpt[];
out block {
ControlVertex v;
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
vec4 P1;
vec4 P2;
float sharpness;
#endif
OSD_USER_VARYING_DECLARE
} outpt[];
patch out vec4 tessOuterLo, tessOuterHi;
#define ID gl_InvocationID
// compute single-crease patch matrix
mat4
ComputeMatrixSimplified(float sharpness)
{
float s = pow(2.0f, sharpness);
float s2 = s*s;
float s3 = s2*s;
mat4 m = mat4(
0, s + 1 + 3*s2 - s3, 7*s - 2 - 6*s2 + 2*s3, (1-s)*(s-1)*(s-1),
0, (1+s)*(1+s), 6*s - 2 - 2*s2, (s-1)*(s-1),
0, 1+s, 6*s - 2, 1-s,
0, 1, 6*s - 2, 1);
m /= (s*6.0);
m[0][0] = 1.0/6.0;
return m;
}
void main()
{
int i = ID%4;
int j = ID/4;
vec3 position[16];
for (int i=0; i<16; ++i) {
position[i] = inpt[i].v.position.xyz;
}
ivec3 patchParam = OsdGetPatchParam(OsdGetPatchIndex(gl_PrimitiveID));
OsdComputeBSplineBoundaryPoints(position, patchParam);
vec3 H[4];
for (int l=0; l<4; ++l) {
H[l] = vec3(0,0,0);
for (int k=0; k<4; ++k) {
H[l] += Q[i][k] * position[l*4 + k].xyz;
}
}
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
float sharpness = OsdGetPatchSharpness(patchParam);
if (sharpness > 0) {
float Sf = floor(sharpness);
float Sc = ceil(sharpness);
float Sr = fract(sharpness);
mat4 Mf = ComputeMatrixSimplified(Sf);
mat4 Mc = ComputeMatrixSimplified(Sc);
mat4 Mj = (1-Sr) * Mf + Sr * Mi;
mat4 Ms = (1-Sr) * Mf + Sr * Mc;
vec3 P = vec3(0);
vec3 P1 = vec3(0);
vec3 P2 = vec3(0);
for (int k=0; k<4; ++k) {
P += Mi[j][k]*H[k]; // 0 to 1-2^(-Sf)
P1 += Mj[j][k]*H[k]; // 1-2^(-Sf) to 1-2^(-Sc)
P2 += Ms[j][k]*H[k]; // 1-2^(-Sc) to 1
}
outpt[ID].v.position = vec4(P, 1.0);
outpt[ID].P1 = vec4(P1, 1.0);
outpt[ID].P2 = vec4(P2, 1.0);
outpt[ID].sharpness = sharpness;
} else {
vec3 pos = vec3(0,0,0);
for (int k=0; k<4; ++k) {
pos += Q[j][k]*H[k];
}
outpt[ID].v.position = vec4(pos, 1.0);
outpt[ID].P1 = vec4(0);
outpt[ID].P2 = vec4(0);
outpt[ID].sharpness = 0;
}
#else
{
vec3 pos = vec3(0,0,0);
for (int k=0; k<4; ++k) {
pos += Q[j][k]*H[k];
}
outpt[ID].v.position = vec4(pos, 1.0);
}
#endif
OSD_USER_VARYING_PER_CONTROL_POINT(ID, ID);
outpt[ID].v.patchCoord = OsdGetPatchCoord(patchParam);
#if defined OSD_ENABLE_SCREENSPACE_TESSELLATION
// Wait for all basis conversion to be finished
barrier();
#endif
if (ID == 0) {
OSD_PATCH_CULL(OSD_PATCH_INPUT_SIZE);
#if defined OSD_ENABLE_SCREENSPACE_TESSELLATION
// Gather bezier control points to compute limit surface tess levels
for (int i=0; i<16; ++i) {
position[i] = outpt[i].v.position.xyz;
}
#endif
vec4 tessLevelOuter = vec4(0);
vec2 tessLevelInner = vec2(0);
OsdGetTessLevels(position, patchParam,
tessLevelOuter, tessLevelInner,
tessOuterLo, tessOuterHi);
gl_TessLevelOuter[0] = tessLevelOuter[0];
gl_TessLevelOuter[1] = tessLevelOuter[1];
gl_TessLevelOuter[2] = tessLevelOuter[2];
gl_TessLevelOuter[3] = tessLevelOuter[3];
gl_TessLevelInner[0] = tessLevelInner[0];
gl_TessLevelInner[1] = tessLevelInner[1];
}
}
#endif
//----------------------------------------------------------
// Patches.TessEvalBSpline
//----------------------------------------------------------
#ifdef OSD_PATCH_TESS_EVAL_BSPLINE_SHADER
layout(quads) in;
#if defined OSD_FRACTIONAL_ODD_SPACING
layout(fractional_odd_spacing) in;
#elif defined OSD_FRACTIONAL_EVEN_SPACING
layout(fractional_even_spacing) in;
#endif
in block {
ControlVertex v;
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
vec4 P1;
vec4 P2;
float sharpness;
#endif
OSD_USER_VARYING_DECLARE
} inpt[];
out block {
OutputVertex v;
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
float sharpness;
#endif
OSD_USER_VARYING_DECLARE
} outpt;
patch in vec4 tessOuterLo, tessOuterHi;
void main()
{
vec2 UV = OsdGetTessParameterization(gl_TessCoord.xy,
tessOuterLo,
tessOuterHi);
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
float B[4], D[4], C[4];
vec3 BUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)),
DUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)),
CUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0));
Univar4x4(UV.x, B, D, C);
#else
float B[4], D[4];
vec3 BUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)),
DUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0));
Univar4x4(UV.x, B, D);
#endif
// ----------------------------------------------------------------
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
// sharpness
float sharpness = inpt[0].sharpness;
if (sharpness != 0) {
float s0 = 1.0 - pow(2.0f, -floor(sharpness));
float s1 = 1.0 - pow(2.0f, -ceil(sharpness));
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
int k = 4*i + j;
float s = UV.y;
vec3 A = (s < s0) ?
inpt[k].v.position.xyz :
((s < s1) ?
inpt[k].P1.xyz :
inpt[k].P2.xyz);
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
CUCP[i] += A * C[j];
#endif
}
}
outpt.sharpness = sharpness;
} else {
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
vec3 A = inpt[4*i + j].v.position.xyz;
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
CUCP[i] += A * C[j];
#endif
}
}
outpt.sharpness = 0;
}
#else
// ----------------------------------------------------------------
for (int i=0; i<4; ++i) {
for (int j=0; j<4; ++j) {
vec3 A = inpt[4*i + j].v.position.xyz;
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
CUCP[i] += A * C[j];
#endif
}
}
#endif
// ----------------------------------------------------------------
vec3 WorldPos = vec3(0);
vec3 Tangent = vec3(0);
vec3 BiTangent = vec3(0);
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
// used for weingarten term
Univar4x4(UV.y, B, D, C);
vec3 dUU = vec3(0);
vec3 dVV = vec3(0);
vec3 dUV = vec3(0);
for (int k=0; k<4; ++k) {
WorldPos += B[k] * BUCP[k];
Tangent += B[k] * DUCP[k];
BiTangent += D[k] * BUCP[k];
dUU += B[k] * CUCP[k];
dVV += C[k] * BUCP[k];
dUV += D[k] * DUCP[k];
}
int level = inpt[0].v.patchCoord.z;
Tangent *= 3 * level;
BiTangent *= 3 * level;
dUU *= 6 * level;
dVV *= 6 * level;
dUV *= 9 * level;
vec3 n = cross(Tangent, BiTangent);
vec3 normal = normalize(n);
float E = dot(Tangent, Tangent);
float F = dot(Tangent, BiTangent);
float G = dot(BiTangent, BiTangent);
float e = dot(normal, dUU);
float f = dot(normal, dUV);
float g = dot(normal, dVV);
vec3 Nu = (f*F-e*G)/(E*G-F*F) * Tangent + (e*F-f*E)/(E*G-F*F) * BiTangent;
vec3 Nv = (g*F-f*G)/(E*G-F*F) * Tangent + (f*F-g*E)/(E*G-F*F) * BiTangent;
Nu = Nu/length(n) - n * (dot(Nu,n)/pow(dot(n,n), 1.5));
Nv = Nv/length(n) - n * (dot(Nv,n)/pow(dot(n,n), 1.5));
outpt.v.tangent = Tangent;
outpt.v.bitangent = BiTangent;
outpt.v.Nu = Nu;
outpt.v.Nv = Nv;
#else
Univar4x4(UV.y, B, D);
for (int k=0; k<4; ++k) {
WorldPos += B[k] * BUCP[k];
Tangent += B[k] * DUCP[k];
BiTangent += D[k] * BUCP[k];
}
int level = inpt[0].v.patchCoord.z;
Tangent *= 3 * level;
BiTangent *= 3 * level;
vec3 normal = normalize(cross(Tangent, BiTangent));
outpt.v.tangent = Tangent;
outpt.v.bitangent = BiTangent;
#endif
outpt.v.position = vec4(WorldPos, 1.0f);
outpt.v.normal = normal;
OSD_USER_VARYING_PER_EVAL_POINT(UV, 5, 6, 9, 10);
outpt.v.tessCoord = UV;
outpt.v.patchCoord = OsdInterpolatePatchCoord(UV, inpt[0].v.patchCoord);
OSD_DISPLACEMENT_CALLBACK;
gl_Position = OsdProjectionMatrix() * outpt.v.position;
}
#endif