OpenSubdiv/opensubdiv/sdc/catmarkScheme.h
barfowl e3db2c94a6 Minor performance improvements to Sdc limit masks for the regular case:
- simple loop unrolling and branch reduction in Loop and Catmark limits
2015-05-19 15:49:19 -07:00

536 lines
17 KiB
C++

//
// Copyright 2014 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#pragma once
#ifndef OPENSUBDIV3_SDC_CATMARK_SCHEME_H
#define OPENSUBDIV3_SDC_CATMARK_SCHEME_H
#include "../version.h"
#include "../sdc/scheme.h"
#include <cassert>
#include <cmath>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Sdc {
//
// Specializations for Scheme<SCHEME_CATMARK>:
//
//
// Catmark traits:
//
template <>
inline Split Scheme<SCHEME_CATMARK>::GetTopologicalSplitType() { return SPLIT_TO_QUADS; }
template <>
inline int Scheme<SCHEME_CATMARK>::GetRegularFaceSize() { return 4; }
template <>
inline int Scheme<SCHEME_CATMARK>::GetRegularVertexValence() { return 4; }
template <>
inline int Scheme<SCHEME_CATMARK>::GetLocalNeighborhoodSize() { return 1; }
//
// Masks for edge-vertices: the hard Crease mask does not need to be specialized
// (simply the midpoint), so all that is left is the Smooth case:
//
// The Smooth mask is complicated by the need to support the "triangle subdivision"
// option, which applies different weighting in the presence of triangles. It is
// up for debate as to whether this is useful or not -- we may be able to deprecate
// this option.
//
template <>
template <typename EDGE, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignSmoothMaskForEdge(EDGE const& edge, MASK& mask) const {
typedef typename MASK::Weight Weight;
int faceCount = edge.GetNumFaces();
mask.SetNumVertexWeights(2);
mask.SetNumEdgeWeights(0);
mask.SetNumFaceWeights(faceCount);
mask.SetFaceWeightsForFaceCenters(true);
//
// Determine if we need to inspect incident faces and apply alternate weighting for
// triangles -- and if so, determine which of the two are triangles.
//
bool face0IsTri = false;
bool face1IsTri = false;
bool useTriangleOption = (_options.GetTriangleSubdivision() == Options::TRI_SUB_SMOOTH);
if (useTriangleOption) {
if (faceCount == 2) {
//
// Ideally we want to avoid this inspection when we have already subdivided at
// least once -- need something in the Edge interface to help avoid this, e.g.
// an IsRegular() query, the subdivision level...
//
int vertsPerFace[2];
edge.GetNumVerticesPerFace(vertsPerFace);
face0IsTri = (vertsPerFace[0] == 3);
face1IsTri = (vertsPerFace[1] == 3);
useTriangleOption = face0IsTri || face1IsTri;
} else {
useTriangleOption = false;
}
}
if (not useTriangleOption) {
mask.VertexWeight(0) = 0.25f;
mask.VertexWeight(1) = 0.25f;
if (faceCount == 2) {
mask.FaceWeight(0) = 0.25f;
mask.FaceWeight(1) = 0.25f;
} else {
Weight fWeight = 0.5f / (Weight)faceCount;
for (int i = 0; i < faceCount; ++i) {
mask.FaceWeight(i) = fWeight;
}
}
} else {
//
// This mimics the implementation in Hbr in terms of order of operations.
//
const Weight CATMARK_SMOOTH_TRI_EDGE_WEIGHT = 0.470f;
Weight f0Weight = face0IsTri ? CATMARK_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
Weight f1Weight = face1IsTri ? CATMARK_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
Weight fWeight = 0.5f * (f0Weight + f1Weight);
Weight vWeight = 0.5f * (1.0f - 2.0f * fWeight);
mask.VertexWeight(0) = vWeight;
mask.VertexWeight(1) = vWeight;
mask.FaceWeight(0) = fWeight;
mask.FaceWeight(1) = fWeight;
}
}
//
// Masks for vertex-vertices: the hard Corner mask does not need to be specialized
// (simply the vertex itself), leaving the Crease and Smooth cases (Dart is smooth):
//
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignCreaseMaskForVertex(VERTEX const& vertex, MASK& mask,
int const creaseEnds[2]) const {
typedef typename MASK::Weight Weight;
int valence = vertex.GetNumEdges();
mask.SetNumVertexWeights(1);
mask.SetNumEdgeWeights(valence);
mask.SetNumFaceWeights(0);
mask.SetFaceWeightsForFaceCenters(false);
Weight vWeight = 0.75f;
Weight eWeight = 0.125f;
mask.VertexWeight(0) = vWeight;
for (int i = 0; i < valence; ++i) {
mask.EdgeWeight(i) = 0.0f;
}
mask.EdgeWeight(creaseEnds[0]) = eWeight;
mask.EdgeWeight(creaseEnds[1]) = eWeight;
}
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignSmoothMaskForVertex(VERTEX const& vertex, MASK& mask) const {
typedef typename MASK::Weight Weight;
//
// A Smooth vertex must be manifold and interior -- manifold boundary vertices will be
// Creases and non-manifold vertices of any kind will be Corners or Creases. If smooth
// rules for non-manifold vertices are ever defined, this will need adjusting:
//
assert(vertex.GetNumFaces() == vertex.GetNumEdges());
int valence = vertex.GetNumFaces();
mask.SetNumVertexWeights(1);
mask.SetNumEdgeWeights(valence);
mask.SetNumFaceWeights(valence);
mask.SetFaceWeightsForFaceCenters(true);
Weight vWeight = (Weight)(valence - 2) / (Weight)valence;
Weight fWeight = 1.0f / (Weight)(valence * valence);
Weight eWeight = fWeight;
mask.VertexWeight(0) = vWeight;
for (int i = 0; i < valence; ++i) {
mask.EdgeWeight(i) = eWeight;
mask.FaceWeight(i) = fWeight;
}
}
//
// Limit masks for position:
//
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignCornerLimitMask(VERTEX const& /* vertex */, MASK& posMask) const {
posMask.SetNumVertexWeights(1);
posMask.SetNumEdgeWeights(0);
posMask.SetNumFaceWeights(0);
posMask.SetFaceWeightsForFaceCenters(false);
posMask.VertexWeight(0) = 1.0f;
}
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignCreaseLimitMask(VERTEX const& vertex, MASK& posMask,
int const creaseEnds[2]) const {
typedef typename MASK::Weight Weight;
int valence = vertex.GetNumEdges();
posMask.SetNumVertexWeights(1);
posMask.SetNumEdgeWeights(valence);
posMask.SetNumFaceWeights(0);
posMask.SetFaceWeightsForFaceCenters(false);
Weight vWeight = 2.0f / 3.0f;
Weight eWeight = 1.0f / 6.0f;
posMask.VertexWeight(0) = vWeight;
for (int i = 0; i < valence; ++i) {
posMask.EdgeWeight(i) = 0.0f;
}
posMask.EdgeWeight(creaseEnds[0]) = eWeight;
posMask.EdgeWeight(creaseEnds[1]) = eWeight;
}
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignSmoothLimitMask(VERTEX const& vertex, MASK& posMask) const {
typedef typename MASK::Weight Weight;
int valence = vertex.GetNumFaces();
if (valence == 2) {
assignCornerLimitMask(vertex, posMask);
return;
}
posMask.SetNumVertexWeights(1);
posMask.SetNumEdgeWeights(valence);
posMask.SetNumFaceWeights(valence);
posMask.SetFaceWeightsForFaceCenters(false);
// Specialize for the regular case:
if (valence == 4) {
Weight fWeight = 1.0f / 36.0f;
Weight eWeight = 1.0f / 9.0f;
Weight vWeight = 4.0f / 9.0f;
posMask.VertexWeight(0) = vWeight;
posMask.EdgeWeight(0) = eWeight;
posMask.EdgeWeight(1) = eWeight;
posMask.EdgeWeight(2) = eWeight;
posMask.EdgeWeight(3) = eWeight;
posMask.FaceWeight(0) = fWeight;
posMask.FaceWeight(1) = fWeight;
posMask.FaceWeight(2) = fWeight;
posMask.FaceWeight(3) = fWeight;
} else {
Weight fWeight = 1.0f / (Weight)(valence * (valence + 5.0f));
Weight eWeight = 4.0f * fWeight;
Weight vWeight = (Weight)(1.0f - valence * (eWeight + fWeight));
posMask.VertexWeight(0) = vWeight;
for (int i = 0; i < valence; ++i) {
posMask.EdgeWeight(i) = eWeight;
posMask.FaceWeight(i) = fWeight;
}
}
}
//
// Limit masks for tangents -- these are stubs for now, or have a temporary
// implementation
//
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignCornerLimitTangentMasks(VERTEX const& vertex,
MASK& tan1Mask, MASK& tan2Mask) const {
int valence = vertex.GetNumEdges();
tan1Mask.SetNumVertexWeights(1);
tan1Mask.SetNumEdgeWeights(valence);
tan1Mask.SetNumFaceWeights(0);
tan1Mask.SetFaceWeightsForFaceCenters(false);
tan2Mask.SetNumVertexWeights(1);
tan2Mask.SetNumEdgeWeights(valence);
tan2Mask.SetNumFaceWeights(0);
tan2Mask.SetFaceWeightsForFaceCenters(false);
// Should be at least 2 edges -- be sure to clear weights for any more:
tan1Mask.VertexWeight(0) = -1.0f;
tan1Mask.EdgeWeight(0) = 1.0f;
tan1Mask.EdgeWeight(1) = 0.0f;
tan2Mask.VertexWeight(0) = -1.0f;
tan2Mask.EdgeWeight(0) = 0.0f;
tan2Mask.EdgeWeight(1) = 1.0f;
for (int i = 2; i < valence; ++i) {
tan1Mask.EdgeWeight(i) = 0.0f;
tan2Mask.EdgeWeight(i) = 0.0f;
}
}
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignCreaseLimitTangentMasks(VERTEX const& vertex,
MASK& tan1Mask, MASK& tan2Mask, int const creaseEnds[2]) const {
typedef typename MASK::Weight Weight;
//
// First, the tangent along the crease:
// The first crease edge is considered the "leading" edge of the span
// of surface for which we are evaluating tangents and the second edge the
// "trailing edge". By convention, the tangent along the crease is oriented
// in the direction of the leading edge.
//
int numEdges = vertex.GetNumEdges();
int numFaces = vertex.GetNumFaces();
tan1Mask.SetNumVertexWeights(1);
tan1Mask.SetNumEdgeWeights(numEdges);
tan1Mask.SetNumFaceWeights(numFaces);
tan1Mask.SetFaceWeightsForFaceCenters(false);
tan1Mask.VertexWeight(0) = 0.0f;
for (int i = 0; i < numEdges; ++i) {
tan1Mask.EdgeWeight(i) = 0.0f;
}
for (int i = 0; i < numFaces; ++i) {
tan1Mask.FaceWeight(i) = 0.0f;
}
tan1Mask.EdgeWeight(creaseEnds[0]) = 0.5f;
tan1Mask.EdgeWeight(creaseEnds[1]) = -0.5f;
//
// Second, the tangent across the interior faces:
// Note this is ambigous for an interior vertex. We currently return
// the tangent for the surface in the counter-clockwise span between the
// leading and trailing edges that form the crease. Given the expected
// computation of a surface normal as Tan1 X Tan2, this tangent should be
// oriented "inward" from the crease/boundary -- across the surface rather
// than outward and away from it.
//
tan2Mask.SetNumVertexWeights(1);
tan2Mask.SetNumEdgeWeights(numEdges);
tan2Mask.SetNumFaceWeights(numFaces);
tan2Mask.SetFaceWeightsForFaceCenters(false);
// Prepend weights of 0 preceding the crease:
for (int i = 0; i < creaseEnds[0]; ++i) {
tan2Mask.EdgeWeight(i) = 0.0f;
tan2Mask.FaceWeight(i) = 0.0f;
}
// Assign weights to crease edge and interior points:
int interiorEdgeCount = creaseEnds[1] - creaseEnds[0] - 1;
if (interiorEdgeCount == 1) {
// The regular case -- uniform B-spline cross-tangent:
tan2Mask.VertexWeight(0) = -4.0f / 6.0f;
tan2Mask.EdgeWeight(creaseEnds[0]) = -1.0f / 6.0f;
tan2Mask.EdgeWeight(creaseEnds[0] + 1) = 4.0f / 6.0f;
tan2Mask.EdgeWeight(creaseEnds[1]) = -1.0f / 6.0f;
tan2Mask.FaceWeight(creaseEnds[0]) = 1.0f / 6.0f;
tan2Mask.FaceWeight(creaseEnds[0] + 1) = 1.0f / 6.0f;
} else if (interiorEdgeCount > 1) {
// The irregular case -- formulae from Biermann et al:
double k = (double) (interiorEdgeCount + 1);
double theta = M_PI / k;
double cosTheta = std::cos(theta);
double sinTheta = std::sin(theta);
// Loop/Schaefer use a different divisor here (3*k + cos(theta)):
double commonDenom = 1.0f / (k * (3.0f + cosTheta));
double R = (cosTheta + 1.0f) / sinTheta;
double vertexWeight = 4.0f * R * (cosTheta - 1.0f);
double creaseWeight = -R * (1.0f + 2.0f * cosTheta);
tan2Mask.VertexWeight(0) = (Weight) (vertexWeight * commonDenom);
tan2Mask.EdgeWeight(creaseEnds[0]) = (Weight) (creaseWeight * commonDenom);
tan2Mask.EdgeWeight(creaseEnds[1]) = (Weight) (creaseWeight * commonDenom);
tan2Mask.FaceWeight(creaseEnds[0]) = (Weight) (sinTheta * commonDenom);
double sinThetaI = 0.0f;
double sinThetaIplus1 = sinTheta;
for (int i = 1; i < k; ++i) {
sinThetaI = sinThetaIplus1;
sinThetaIplus1 = std::sin((i+1)*theta);
tan2Mask.EdgeWeight(creaseEnds[0] + i) = (Weight) ((4.0f * sinThetaI) * commonDenom);
tan2Mask.FaceWeight(creaseEnds[0] + i) = (Weight) ((sinThetaI + sinThetaIplus1) * commonDenom);
}
} else {
// Special case for a single face -- simple average of boundary edges:
tan2Mask.VertexWeight(0) = -6.0f;
tan2Mask.EdgeWeight(creaseEnds[0]) = 3.0f;
tan2Mask.EdgeWeight(creaseEnds[1]) = 3.0f;
tan2Mask.FaceWeight(creaseEnds[0]) = 0.0f;
}
// Append weights of 0 following the crease:
for (int i = creaseEnds[1]; i < numFaces; ++i) {
tan2Mask.FaceWeight(i) = 0.0f;
}
for (int i = creaseEnds[1] + 1; i < numEdges; ++i) {
tan2Mask.EdgeWeight(i) = 0.0f;
}
}
template <>
template <typename VERTEX, typename MASK>
inline void
Scheme<SCHEME_CATMARK>::assignSmoothLimitTangentMasks(VERTEX const& vertex,
MASK& tan1Mask, MASK& tan2Mask) const {
typedef typename MASK::Weight Weight;
int valence = vertex.GetNumFaces();
if (valence == 2) {
assignCornerLimitTangentMasks(vertex, tan1Mask, tan2Mask);
return;
}
// Compute tan1 initially -- tan2 is simply a rotation:
tan1Mask.SetNumVertexWeights(1);
tan1Mask.SetNumEdgeWeights(valence);
tan1Mask.SetNumFaceWeights(valence);
tan1Mask.SetFaceWeightsForFaceCenters(false);
tan1Mask.VertexWeight(0) = 0.0f;
if (valence == 4) {
tan1Mask.EdgeWeight(0) = 4.0f;
tan1Mask.EdgeWeight(1) = 0.0f;
tan1Mask.EdgeWeight(2) = -4.0f;
tan1Mask.EdgeWeight(3) = 0.0f;
tan1Mask.FaceWeight(0) = 1.0f;
tan1Mask.FaceWeight(1) = -1.0f;
tan1Mask.FaceWeight(2) = -1.0f;
tan1Mask.FaceWeight(3) = 1.0f;
} else {
double theta = 2.0f * M_PI / (double)valence;
double cosTheta = std::cos(theta);
double cosHalfTheta = std::cos(theta * 0.5f);
double lambda = (5.0f / 16.0f) + (1.0f / 16.0f) *
(cosTheta + cosHalfTheta * std::sqrt(2.0f * (9.0f + cosTheta)));
double edgeWeightScale = 4.0f;
double faceWeightScale = 1.0f / (4.0f * lambda - 1.0f);
for (int i = 0; i < valence; ++i) {
double cosThetaI = std::cos( i * theta);
double cosThetaIplus1 = std::cos((i+1)* theta);
tan1Mask.EdgeWeight(i) = (Weight) (edgeWeightScale * cosThetaI);
tan1Mask.FaceWeight(i) = (Weight) (faceWeightScale * (cosThetaI + cosThetaIplus1));
}
}
// Now rotate/copy tan1 weights to tan2:
tan2Mask.SetNumVertexWeights(1);
tan2Mask.SetNumEdgeWeights(valence);
tan2Mask.SetNumFaceWeights(valence);
tan2Mask.SetFaceWeightsForFaceCenters(false);
tan2Mask.VertexWeight(0) = 0.0f;
if (valence == 4) {
tan2Mask.EdgeWeight(0) = 0.0f;
tan2Mask.EdgeWeight(1) = 4.0f;
tan2Mask.EdgeWeight(2) = 0.0f;
tan2Mask.EdgeWeight(3) = -4.0f;
tan2Mask.FaceWeight(0) = 1.0f;
tan2Mask.FaceWeight(1) = 1.0f;
tan2Mask.FaceWeight(2) = -1.0f;
tan2Mask.FaceWeight(3) = -1.0f;
} else {
tan2Mask.EdgeWeight(0) = tan1Mask.EdgeWeight(valence-1);
tan2Mask.FaceWeight(0) = tan1Mask.FaceWeight(valence-1);
for (int i = 1; i < valence; ++i) {
tan2Mask.EdgeWeight(i) = tan1Mask.EdgeWeight(i-1);
tan2Mask.FaceWeight(i) = tan1Mask.FaceWeight(i-1);
}
}
}
} // end namespace sdc
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* OPENSUBDIV3_SDC_CATMARK_SCHEME_H */