OpenSubdiv/opensubdiv/far/patchTables.h

1018 lines
35 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_PATCH_TABLES_H
#define FAR_PATCH_TABLES_H
#include "../version.h"
#include "../far/patchParam.h"
#include "../far/stencilTables.h"
#include "../far/types.h"
#include "../sdc/type.h"
#include <cstdlib>
#include <cassert>
#include <algorithm>
#include <vector>
#include <map>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
/// \brief Container for patch vertex indices tables
///
/// PatchTables contain the lists of vertices for each patch of an adaptive
/// mesh representation.
///
class PatchTables {
public:
typedef std::vector<Index> PTable;
typedef std::vector<Index> VertexValenceTable;
typedef std::vector<Index> QuadOffsetTable;
typedef std::vector<PatchParam> PatchParamTable;
enum Type {
NON_PATCH = 0, ///< undefined
POINTS, ///< points (useful for cage drawing)
LINES, ///< lines (useful for cage drawing)
QUADS, ///< bilinear quads-only patches
TRIANGLES, ///< bilinear triangles-only mesh
LOOP, ///< Loop patch (currently unsupported)
REGULAR, ///< feature-adaptive bicubic patches
SINGLE_CREASE,
BOUNDARY,
CORNER,
GREGORY,
GREGORY_BOUNDARY,
GREGORY_BASIS
};
enum TransitionPattern {
NON_TRANSITION = 0,
PATTERN0,
PATTERN1,
PATTERN2,
PATTERN3,
PATTERN4
};
public:
/// \brief Describes the type of a patch
///
/// Uniquely identifies all the types of patches in a mesh :
///
/// * Raw polygon meshes are identified as POLYGONS and can contain faces
/// with arbitrary number of vertices
///
/// * Uniformly subdivided meshes contain bilinear patches of either QUADS
/// or TRIANGLES
///
/// * Adaptively subdivided meshes contain bicubic patches of types REGULAR,
/// BOUNDARY, CORNER, GREGORY, GREGORY_BOUNDARY. These bicubic patches are
/// also further distinguished by a transition pattern as well as a rotational
/// orientation.
///
class Descriptor {
public:
/// \brief Default constructor.
Descriptor() :
_type(NON_PATCH), _pattern(NON_TRANSITION), _rotation(0) {}
/// \brief Constructor
Descriptor(int type, int pattern, unsigned char rotation) :
_type(type), _pattern(pattern), _rotation(rotation) { }
/// \brief Copy Constructor
Descriptor( Descriptor const & d ) :
_type(d.GetType()), _pattern(d.GetPattern()), _rotation(d.GetRotation()) { }
/// \brief Returns the type of the patch
Type GetType() const {
return (Type)_type;
}
/// \brief Returns the transition pattern of the patch if any (5 types)
TransitionPattern GetPattern() const {
return (TransitionPattern)_pattern;
}
/// \brief Returns the rotation of the patch (4 rotations)
unsigned char GetRotation() const {
return (unsigned char)_rotation;
}
/// \brief Returns the number of control vertices expected for a patch of the
/// type described
static inline short GetNumControlVertices( Type t );
static inline short GetNumFVarControlVertices( Type t );
/// \brief Returns the number of control vertices expected for a patch of the
/// type described
short GetNumControlVertices() const {
return GetNumControlVertices( this->GetType() );
}
/// \brief Returns the number of control vertices expected for a patch of the
/// type described
short GetNumFVarControlVertices() const {
return GetNumFVarControlVertices( this->GetType() );
}
/// \brief Allows ordering of patches by type
inline bool operator < ( Descriptor const other ) const;
/// \brief True if the descriptors are identical
inline bool operator == ( Descriptor const other ) const;
private:
friend class PatchTablesFactory;
unsigned int _type:4;
unsigned int _pattern:3;
unsigned int _rotation:2;
};
typedef std::vector<Descriptor> DescriptorVector;
/// \brief Returns a vector of all the legal patch descriptors for the
/// given adaptive subdivision scheme
static DescriptorVector const & GetAdaptiveDescriptors(Sdc::Type type);
public:
/// \brief Array of patches of the same type
class PatchArray {
public:
/// \brief Constructor.
///
/// @param desc descriptor information for the patches in
/// the array
///
/// @param vertIndex absolute index to the first control vertex
/// of the first patch in the PTable
///
/// @param patchIndex absolute index of the first patch in the
/// array
///
/// @param npatches number of patches in the array
///
/// @param quadOffsetIndex absolute index of the first quad offset
/// entry
///
PatchArray( Descriptor desc, Index vertIndex, Index patchIndex,
Index npatches, Index quadOffsetIndex ) :
_desc(desc), _range(vertIndex, patchIndex, npatches, quadOffsetIndex) { }
/// Returns a patch descriptor defining the type of patches in the array
Descriptor GetDescriptor() const {
return _desc;
}
/// \brief Describes the range of patches in a PatchArray
struct ArrayRange {
/// \brief Constructor
///
/// @param vIndex absolute index to the first control vertex
/// of the first patch in the PTable
///
/// @param pIndex absolute index of the first patch in the
/// array
///
/// @param npatches number of patches in the array
///
/// @param qoIndex absolute index of the first quad offset
/// entry
///
ArrayRange( Index vIndex, Index pIndex, int npatches, Index qoIndex ) :
npatches(npatches), vertIndex(vIndex), patchIndex(pIndex),
quadOffsetIndex(qoIndex) { }
int npatches; ///< number of patches in the array
Index vertIndex, ///< absolute index to the first control vertex of the first patch in the PTable
patchIndex, ///< absolute index of the first patch in the array
quadOffsetIndex; ///< absolute index of the first quad offset entry
};
/// \brief Returns a array range struct
ArrayRange const & GetArrayRange() const {
return _range;
}
/// \brief Returns the index of the first control vertex of the first patch
/// of this array in the global PTable
Index GetVertIndex() const {
return _range.vertIndex;
}
/// \brief Returns the global index of the first patch in this array (Used to
/// access param / fvar table data)
Index GetPatchIndex() const {
return _range.patchIndex;
}
/// \brief Returns the number of patches in the array
int GetNumPatches() const {
return _range.npatches;
}
/// \brief Returns the index to the first entry in the QuadOffsetTable
Index GetQuadOffsetIndex() const {
return _range.quadOffsetIndex;
}
private:
friend class PatchTablesFactory;
Descriptor _desc; // type of patches in the array
ArrayRange _range; // index locators in the array
};
typedef std::vector<PatchArray> PatchArrayVector;
/// \brief Handle that can be used as unique patch identifier within PatchTables
struct PatchHandle {
Index patchArrayIdx, ///< OsdPatchArray containing the patch
patchIdx, ///< Index of the patch in the OsdPatchArray
vertexOffset; ///< Relative offset to the first CV of the patch in the patch array
};
/// \brief Get the table of patch control vertices
PTable const & GetPatchTable() const { return _patches; }
/// \brief Returns a pointer to the array of patches matching the descriptor
PatchArray const * GetPatchArray( Descriptor desc ) const {
return const_cast<PatchTables *>(this)->findPatchArray( desc );
}
/// \brief Returns all arrays of patches
PatchArrayVector const & GetPatchArrayVector() const {
return _patchArrays;
}
/// brief Returns a pointer to the PatchArry of uniformly subdivided faces at 'level'
///
/// @param level the level of subdivision of the faces (returns the highest
/// level by default)
///
/// @return a pointer to the PatchArray or NULL if the mesh is not uniformly
/// subdivided or the level cannot be found.
///
PatchArray const * GetUniformPatchArray(int level=0) const;
/// \brief Returns a pointer to the vertex indices of uniformly subdivided faces
///
/// In uniform mode the PatchTablesFactory can be set to generate either a
/// patch array containing the faces at the highest level of subdivision, or
/// a range of arrays, corresponding to multiple successive levels of subdivision.
///
/// Note : level '0' is not the coarse mesh. Currently there is no path in the
/// factories to convert the coarse mesh to PatchTables.
///
/// @param level the level of subdivision of the faces (returns the highest
/// level by default)
///
/// @return a pointer to the first vertex index or NULL if the mesh
/// is not uniformly subdivided or the level cannot be found.
///
Index const * GetUniformFaceVertices(int level=0) const;
/// \brief Returns the number of faces in a uniformly subdivided mesh at a given level
///
/// In uniform mode the PatchTablesFactory can be set to generate either a
/// patch array containing the faces at the highest level of subdivision, or
/// a range of arrays, corresponding to multiple successive levels of subdivision.
///
/// Note : level '0' is not the coarse mesh. Currently there is no path in the
/// factories to convert the coarse mesh to PatchTables.
///
/// @param level the level of subdivision of the faces (returns the highest
/// level by default)
///
/// @return the number of faces in the mesh given the subdivision level
/// or -1 if the mesh is not uniform or the level is incorrect.
///
int GetNumUniformFaces(int level=0) const;
/// \brief Returns a vertex valence table used by Gregory patches
VertexValenceTable const & GetVertexValenceTable() const { return _vertexValenceTable; }
/// \brief Returns a quad offsets table used by Gregory patches
QuadOffsetTable const & GetQuadOffsetTable() const { return _quadOffsetTable; }
/// \brief Returns a stencil table for the control vertices of end-cap patches
StencilTables const * GetEndCapStencilTables() const { return _endcapStencilTables; }
/// \brief Returns a PatchParamTable for each type of patch
PatchParamTable const & GetPatchParamTable() const { return _paramTable; }
/// \brief Returns a sharpness index table for each type of patch (if exists)
std::vector<int> const &GetSharpnessIndexTable() const { return _sharpnessIndexTable; }
/// \brief Returns sharpness values (if exists)
std::vector<float> const &GetSharpnessValues() const { return _sharpnessValues; }
/// \brief Number of control vertices of Regular Patches in table.
static short GetRegularPatchSize() { return 16; }
/// \brief Number of control vertices of Boundary Patches in table.
static short GetBoundaryPatchSize() { return 12; }
/// \brief Number of control vertices of Boundary Patches in table.
static short GetCornerPatchSize() { return 9; }
/// \brief Number of control vertices of Gregory (and Gregory Boundary) Patches in table.
static short GetGregoryPatchSize() { return 4; }
/// \brief Number of control vertices of Gregory patch basis (20)
static short GetGregoryBasisSize() { return 20; }
/// \brief Returns the total number of patches stored in the tables
int GetNumPatchesTotal() const;
/// \brief Returns the total number of control vertex indices in the tables
int GetNumControlVerticesTotal() const {
return (int)_patches.size();
}
/// \brief Returns max vertex valence
int GetMaxValence() const { return _maxValence; }
/// \brief True if the patches are of feature adaptive types
bool IsFeatureAdaptive() const;
/// \brief Returns the total number of vertices in the mesh across across all depths
int GetNumPtexFaces() const { return _numPtexFaces; }
/// \brief Face-varying patch vertex indices tables
///
/// FVarPatchTables contain the topology for face-varying primvar data
/// channels. The patch ordering matches that of PatchTables PatchArrays.
///
class FVarPatchTables {
public:
/// \brief Returns the number of face-varying primvar channels
int GetNumChannels() const {
return (int)_channels.size();
}
/// \brief Returns the face-varying patches vertex indices
///
/// @param channel Then face-varying primvar channel index
///
std::vector<Index> const & GetPatchVertices(int channel) const {
return _channels[channel].patchVertIndices;
}
private:
friend class PatchTablesFactory;
struct Channel {
friend class PatchTablesFactory;
std::vector<Index> patchVertIndices; // face-varying vertex indices
};
std::vector<Channel> _channels; // face-varying primvar channels
};
/// \brief Returns the face-varying patches
FVarPatchTables const * GetFVarPatchTables() const { return _fvarPatchTables; }
/// \brief Public constructor
///
/// @param patchArrays Vector of descriptors and ranges for arrays of patches
///
/// @param patches Indices of the control vertices of the patches
///
/// @param vertexValences Vertex valance table
///
/// @param quadOffsets Quad offset table
///
/// @param fvarPatchTables Indices of the face-varying control vertices of the patches
///
/// @param patchParams Local patch parameterization
///
/// @param maxValence Highest vertex valence allowed in the mesh
///
PatchTables(PatchArrayVector const & patchArrays,
PTable const & patches,
VertexValenceTable const * vertexValences,
QuadOffsetTable const * quadOffsets,
StencilTables const * endcapStencilTables,
PatchParamTable const * patchParams,
FVarPatchTables const * fvarPatchTables,
int maxValence);
/// \brief Destructor
~PatchTables();
public:
//
// Interpolation methods
//
/// \brief Interpolate the (s,t) parametric location of a *bilinear* patch
///
/// \note This method can only be used on uniform PatchTables of quads (see
/// IsFeatureAdaptive() method)
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void Interpolate(PatchHandle const & handle,
float s, float t, T const & src, U & dst) const;
/// \brief Interpolate the (s,t) parametric location of a bilinear (quad)
/// patch
///
template <class T, class U> static void
InterpolateBilinear(Index const * cvs, float s, float t,
T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a regular bicubic
/// patch
///
/// @param cvs Array of 16 control vertex indices
///
/// @param Q Array of 16 bicubic weights for the control vertices
///
/// @param Qd1 Array of 16 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 16 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateRegularPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2, T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a boundary bicubic
/// patch
///
/// @param cvs Array of 12 control vertex indices
///
/// @param Q Array of 12 bicubic weights for the control vertices
///
/// @param Qd1 Array of 12 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 12 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateBoundaryPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2, T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a corner bicubic
/// patch
///
/// @param cvs Array of 9 control vertex indices
///
/// @param Q Array of 9 bicubic weights for the control vertices
///
/// @param Qd1 Array of 9 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 9 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateCornerPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2, T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a Gregory bicubic
/// patch
///
/// @param basisStencils Stencil tables driving the 20 CV basis of the patches
///
/// @param stencilIndex Index of the first CV stencil in the basis stencils tables
///
/// @param Q Array of 9 bicubic weights for the control vertices
///
/// @param Qd1 Array of 9 bicubic 's' tangent weights for the control
/// vertices
///
/// @param Qd2 Array of 9 bicubic 't' tangent weights for the control
/// vertices
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> static void
InterpolateGregoryPatch(StencilTables const * basisStencils, int stencilIndex,
float s, float t, float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst);
/// \brief Interpolate the (s,t) parametric location of a *bicubic* patch
///
/// \note This method can only be used on feature adaptive PatchTables (ie.
/// IsFeatureAdaptive() is false)
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void Limit(PatchHandle const & handle,
float s, float t, T const & src, U & dst) const;
private:
friend class PatchTablesFactory;
enum TensorBasis {
BASIS_BEZIER,
BASIS_BSPLINE
};
// Returns bi-cubic interpolation coefficients for a given (s,t) location
// on a b-spline patch
static void getBasisWeightsAtUV(TensorBasis basis, PatchParam::BitField bits,
float s, float t, float point[16], float deriv1[16], float deriv2[16]);
private:
// Returns the array of patches of type "desc", or NULL if there aren't any in the primitive
PatchArray * findPatchArray( Descriptor desc );
static DescriptorVector const & getBilinearDescriptors();
static DescriptorVector const & getAdaptiveCatmarkDescriptors();
static DescriptorVector const & getAdaptiveLoopDescriptors();
// Factory constructor
PatchTables(int maxvalence) : _maxValence(maxvalence),
_endcapStencilTables(0), _fvarPatchTables(0) { }
private:
//
// Topology
//
int _maxValence, // highest vertex valence found in the mesh
_numPtexFaces; // total number of ptex faces
PatchArrayVector _patchArrays; // Vector of descriptors for arrays of patches
PTable _patches; // Indices of the control vertices of the patches
PatchParamTable _paramTable; // PatchParam bitfields (one per patch)
//
// Extraordinary vertex closed-form evaluation
//
// XXXX manuelk end-cap stencils will obsolete the other tables
VertexValenceTable _vertexValenceTable; // Vertex valence table (for Gregory patches)
QuadOffsetTable _quadOffsetTable; // Quad offsets table (for Gregory patches)
StencilTables const * _endcapStencilTables;
//
// Face-varying data
//
FVarPatchTables const * _fvarPatchTables; // sparse face-varying patch table (one per patch)
//
// 'single-crease' patch sharpness tables
//
std::vector<Index> _sharpnessIndexTable; // Indices of single-crease sharpness (one per patch)
std::vector<float> _sharpnessValues; // Sharpness values.
};
// Returns the number of control vertices expected for a patch of this type
inline short
PatchTables::Descriptor::GetNumControlVertices( PatchTables::Type type ) {
switch (type) {
case REGULAR : return PatchTables::GetRegularPatchSize();
case SINGLE_CREASE : return PatchTables::GetRegularPatchSize();
case QUADS : return 4;
case GREGORY :
case GREGORY_BOUNDARY : return PatchTables::GetGregoryPatchSize();
case GREGORY_BASIS : return PatchTables::GetGregoryBasisSize();
case BOUNDARY : return PatchTables::GetBoundaryPatchSize();
case CORNER : return PatchTables::GetCornerPatchSize();
case TRIANGLES : return 3;
case LINES : return 2;
case POINTS : return 1;
default : return -1;
}
}
// Returns the number of face-varying control vertices expected for a patch of this type
inline short
PatchTables::Descriptor::GetNumFVarControlVertices( PatchTables::Type type ) {
switch (type) {
case REGULAR : // We only support bilinear interpolation for now,
case SINGLE_CREASE :
case QUADS : // so all these patches only carry 4 CVs.
case GREGORY :
case GREGORY_BOUNDARY :
case GREGORY_BASIS :
case BOUNDARY :
case CORNER : return 4;
case TRIANGLES : return 3;
case LINES : return 2;
case POINTS : return 1;
default : return -1;
}
}
// Allows ordering of patches by type
inline bool
PatchTables::Descriptor::operator < ( Descriptor const other ) const {
return _pattern < other._pattern or ((_pattern == other._pattern) and
(_type < other._type or ((_type == other._type) and
(_rotation < other._rotation))));
}
// True if the descriptors are identical
inline bool
PatchTables::Descriptor::operator == ( Descriptor const other ) const {
return _pattern == other._pattern and
_type == other._type and
_rotation == other._rotation;
}
template <class T, class U>
inline void
PatchTables::InterpolateBilinear(Index const * cvs, float s, float t,
T const & src, U & dst) {
float os = 1.0f - s,
ot = 1.0f - t,
Q[4] = { os*ot, s*ot, s*t, os*t },
dQ1[4] = { t-1.0f, ot, t, -t },
dQ2[4] = { s-1.0f, -s, s, os };
for (int k=0; k<4; ++k) {
dst.AddWithWeight(src[cvs[k]], Q[k], dQ1[k], dQ2[k]);
}
}
template <class T, class U>
inline void
PatchTables::InterpolateRegularPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
//
// v0 -- v1 -- v2 -- v3
// |.....|.....|.....|
// |.....|.....|.....|
// v4 -- v5 -- v6 -- v7
// |.....|.....|.....|
// |.....|.....|.....|
// v8 -- v9 -- v10-- v11
// |.....|.....|.....|
// |.....|.....|.....|
// v12-- v13-- v14-- v15
//
for (int k=0; k<16; ++k) {
dst.AddWithWeight(src[cvs[k]], Q[k], Qd1[k], Qd2[k]);
}
}
template <class T, class U>
inline void
PatchTables::InterpolateBoundaryPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- v3 M : mirrored
// |.....|.....|.....|
// |.....|.....|.....|
// v4 -- v5 -- v6 -- v7 v : original Cv
// |.....|.....|.....|
// |.....|.....|.....|
// v8 -- v9 -- v10-- v11
//
for (int k=0; k<4; ++k) { // M0 - M3
dst.AddWithWeight(src[cvs[k]], 2.0f*Q[k], 2.0f*Qd1[k], 2.0f*Qd2[k]);
dst.AddWithWeight(src[cvs[k+4]], -1.0f*Q[k], -1.0f*Qd1[k], -1.0f*Qd2[k]);
}
for (int k=0; k<12; ++k) {
dst.AddWithWeight(src[cvs[k]], Q[k+4], Qd1[k+4], Qd2[k+4]);
}
}
template <class T, class U>
inline void
PatchTables::InterpolateCornerPatch(Index const * cvs,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
// mirror the missing vertices (M)
//
// M0 -- M1 -- M2 -- M3 (corner)
// | | | |
// | | | |
// v0 -- v1 -- v2 -- M4 M : mirrored
// |.....|.....| |
// |.....|.....| |
// v3.--.v4.--.v5 -- M5 v : original Cv
// |.....|.....| |
// |.....|.....| |
// v6 -- v7 -- v8 -- M6
//
for (int k=0; k<3; ++k) { // M0 - M2
dst.AddWithWeight(src[cvs[k ]], 2.0f*Q[k], 2.0f*Qd1[k], 2.0f*Qd2[k]);
dst.AddWithWeight(src[cvs[k+3]], -1.0f*Q[k], -1.0f*Qd1[k], -1.0f*Qd2[k]);
}
for (int k=0; k<3; ++k) { // M4 - M6
int idx = (k+1)*4 + 3;
dst.AddWithWeight(src[cvs[k*3+2]], 2.0f*Q[idx], 2.0f*Qd1[idx], 2.0f*Qd2[idx]);
dst.AddWithWeight(src[cvs[k*3+1]], -1.0f*Q[idx], -1.0f*Qd1[idx], -1.0f*Qd2[idx]);
}
// M3 = -2.v1 + 4.v2 + v4 - 2.v5
dst.AddWithWeight(src[cvs[1]], -2.0f*Q[3], -2.0f*Qd1[3], -2.0f*Qd2[3]);
dst.AddWithWeight(src[cvs[2]], 4.0f*Q[3], 4.0f*Qd1[3], 4.0f*Qd2[3]);
dst.AddWithWeight(src[cvs[4]], 1.0f*Q[3], 1.0f*Qd1[3], 1.0f*Qd2[3]);
dst.AddWithWeight(src[cvs[5]], -2.0f*Q[3], -2.0f*Qd1[3], -2.0f*Qd2[3]);
for (int y=0; y<3; ++y) { // v0 - v8
for (int x=0; x<3; ++x) {
int idx = y*4+x+4;
dst.AddWithWeight(src[cvs[y*3+x]], Q[idx], Qd1[idx], Qd2[idx]);
}
}
}
template <class T, class U>
inline void
PatchTables::InterpolateGregoryPatch(StencilTables const * basisStencils,
int stencilIndex, float s, float t,
float const * Q, float const *Qd1, float const *Qd2,
T const & src, U & dst) {
float ss = 1-s,
tt = 1-t;
// remark #1572: floating-point equality and inequality comparisons are unreliable
#ifdef __INTEL_COMPILER
#pragma warning disable 1572
#endif
float d11 = s+t; if(s+t==0.0f) d11 = 1.0f;
float d12 = ss+t; if(ss+t==0.0f) d12 = 1.0f;
float d21 = s+tt; if(s+tt==0.0f) d21 = 1.0f;
float d22 = ss+tt; if(ss+tt==0.0f) d22 = 1.0f;
#ifdef __INTEL_COMPILER
#pragma warning enable 1572
#endif
float weights[4][2] = { { s/d11, t/d11 },
{ ss/d12, t/d12 },
{ s/d21, tt/d21 },
{ ss/d22, tt/d22 } };
//
// P3 e3- e2+ P2
// O--------O--------O--------O
// | | | |
// | | | |
// | | f3- | f2+ |
// | O O |
// e3+ O------O O------O e2-
// | f3+ f2- |
// | |
// | |
// | f0- f1+ |
// e0- O------O O------O e1+
// | O O |
// | | f0+ | f1- |
// | | | |
// | | | |
// O--------O--------O--------O
// P0 e0+ e1- P1
//
// XXXX manuelk re-order stencils in factory and get rid of permutation ?
int const permute[16] =
{ 0, 1, 7, 5, 2, -1, -1, 6, 16, -1, -1, 12, 15, 17, 11, 10 };
for (int i=0, fcount=0; i<16; ++i) {
int index = permute[i],
offset = stencilIndex;
if (index==-1) {
// 0-ring vertex: blend 2 extra basis CVs
int const fpermute[4][2] = { {3, 4}, {9, 8}, {19, 18}, {13, 14} };
assert(fcount < 4);
int v0 = fpermute[fcount][0],
v1 = fpermute[fcount][1];
Stencil s0 = basisStencils->GetStencil(offset + v0),
s1 = basisStencils->GetStencil(offset + v1);
float w0=weights[fcount][0],
w1=weights[fcount][1];
{
Index const * srcIndices = s0.GetVertexIndices();
float const * srcWeights = s0.GetWeights();
for (int j=0; j<s0.GetSize(); ++j) {
dst.AddWithWeight(src[srcIndices[j]],
Q[i]*w0*srcWeights[j], Qd1[i]*w0*srcWeights[j],
Qd2[i]*w0*srcWeights[j]);
}
}
{
Index const * srcIndices = s1.GetVertexIndices();
float const * srcWeights = s1.GetWeights();
for (int j=0; j<s1.GetSize(); ++j) {
dst.AddWithWeight(src[srcIndices[j]],
Q[i]*w1*srcWeights[j], Qd1[i]*w1*srcWeights[j],
Qd2[i]*w1*srcWeights[j]);
}
}
++fcount;
} else {
Stencil s = basisStencils->GetStencil(offset + index);
Index const * srcIndices = s.GetVertexIndices();
float const * srcWeights = s.GetWeights();
for (int j=0; j<s.GetSize(); ++j) {
dst.AddWithWeight( src[srcIndices[j]],
Q[i]*srcWeights[j], Qd1[i]*srcWeights[j],
Qd2[i]*srcWeights[j]);
}
}
}
}
// Interpolates the limit position of a parametric location on a patch
template <class T, class U>
inline void
PatchTables::Interpolate(PatchHandle const & handle, float s, float t,
T const & src, U & dst) const {
assert(not IsFeatureAdaptive());
PatchTables::PatchArray const & parray =
_patchArrays[handle.patchArrayIdx];
Index const * cvs =
&_patches[parray.GetVertIndex() + handle.vertexOffset];
PatchParam::BitField const & bits =
_paramTable[handle.patchIdx].bitField;
bits.Normalize(s,t);
Type ptype = parray.GetDescriptor().GetType();
assert(ptype==QUADS);
dst.Clear();
InterpolateBilinear(cvs, s, t, src, dst);
}
// Interpolates the limit position of a parametric location on a patch
template <class T, class U>
inline void
PatchTables::Limit(PatchHandle const & handle, float s, float t,
T const & src, U & dst) const {
assert(IsFeatureAdaptive());
PatchTables::PatchArray const & parray =
_patchArrays[handle.patchArrayIdx];
PatchParam::BitField const & bits =
_paramTable[handle.patchIdx].bitField;
bits.Normalize(s,t);
Type ptype = parray.GetDescriptor().GetType();
dst.Clear();
float Q[16], Qd1[16], Qd2[16];
if (ptype>=REGULAR and ptype<=CORNER) {
getBasisWeightsAtUV(BASIS_BSPLINE, bits, s, t, Q, Qd1, Qd2);
Index const * cvs =
&_patches[parray.GetVertIndex() + handle.vertexOffset];
switch (ptype) {
case REGULAR:
InterpolateRegularPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
case SINGLE_CREASE:
// TODO: implement InterpolateSingleCreasePatch().
//InterpolateRegularPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
case BOUNDARY:
InterpolateBoundaryPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
case CORNER:
InterpolateCornerPatch(cvs, Q, Qd1, Qd2, src, dst);
break;
case GREGORY:
case GREGORY_BOUNDARY:
assert(0);
break;
default:
assert(0);
}
} else if (ptype==GREGORY_BASIS) {
assert(_endcapStencilTables);
getBasisWeightsAtUV(BASIS_BEZIER, bits, s, t, Q, Qd1, Qd2);
InterpolateGregoryPatch(_endcapStencilTables, handle.vertexOffset,
s, t, Q, Qd1, Qd2, src, dst);
} else {
assert(0);
}
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_PATCH_TABLES */