mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-07 07:20:07 +00:00
c646ac2e3c
- move patch interpolation code out of Far::PatchTables into far/interpolate - add bilinear quad interpolation function with derivatives - switch OsdCpuEvalLimitController to far/interpolate - add support for bilinear quad interpolation & clean varying interpolation
314 lines
9.6 KiB
C++
314 lines
9.6 KiB
C++
//
|
|
// Copyright 2013 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
#include "../far/interpolate.h"
|
|
|
|
#include <cassert>
|
|
#include <cstring>
|
|
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
namespace Far {
|
|
|
|
enum SplineBasis {
|
|
BASIS_BILINEAR,
|
|
BASIS_BEZIER,
|
|
BASIS_BSPLINE,
|
|
BASIS_BOX_SPLINE
|
|
};
|
|
|
|
template <SplineBasis BASIS>
|
|
class Spline {
|
|
|
|
public:
|
|
|
|
// curve weights
|
|
static void GetWeights(float t, float point[], float deriv[]);
|
|
|
|
// box-spline weights
|
|
static void GetWeights(float v, float w, float point[]);
|
|
|
|
// patch weights
|
|
static void GetPatchWeights(PatchParam::BitField bits,
|
|
float s, float t, float point[], float deriv1[], float deriv2[]);
|
|
};
|
|
|
|
template <>
|
|
inline void Spline<BASIS_BEZIER>::GetWeights(
|
|
float t, float point[4], float deriv[3]) {
|
|
|
|
// The weights for the four uniform cubic Bezier basis functions are:
|
|
// (1 - t)^3
|
|
// 3 * t * (1-t)
|
|
// 3 * t^2 * (1-t)
|
|
// t^3
|
|
float t2 = t*t,
|
|
w0 = 1.0f - t,
|
|
w2 = w0 * w0;
|
|
|
|
assert(point);
|
|
point[0] = w0*w2;
|
|
point[1] = 3.0f * t * w2;
|
|
point[2] = 3.0f * t2 * w0;
|
|
point[3] = t * t2;
|
|
|
|
// The weights for the three uniform quadratic basis functions are:
|
|
// (1-t)^2
|
|
// 2 * t * (1-t)
|
|
// t^2
|
|
if (deriv) {
|
|
deriv[0] = w2;
|
|
deriv[1] = 2.0f * t * w0;
|
|
deriv[2] = t2;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline void Spline<BASIS_BSPLINE>::GetWeights(
|
|
float t, float point[4], float deriv[3]) {
|
|
|
|
// The weights for the four uniform cubic B-Spline basis functions are:
|
|
// (1/6)(1 - t)^3
|
|
// (1/6)(3t^3 - 6t^2 + 4)
|
|
// (1/6)(-3t^3 + 3t^2 + 3t + 1)
|
|
// (1/6)t^3
|
|
float t2 = t*t,
|
|
t3 = 3.0f*t2*t,
|
|
w0 = 1.0f-t;
|
|
|
|
assert(point);
|
|
point[0] = (w0*w0*w0) / 6.0f;
|
|
point[1] = (t3 - 6.0f*t2 + 4.0f) / 6.0f;
|
|
point[2] = (3.0f*t2 - t3 + 3.0f*t + 1.0f) / 6.0f;
|
|
point[3] = t3 / 18.0f;
|
|
|
|
|
|
// The weights for the three uniform quadratic basis functions are:
|
|
// (1/2)(1-t)^2
|
|
// (1/2)(1 + 2t - 2t^2)
|
|
// (1/2)t^2
|
|
if (deriv) {
|
|
deriv[0] = 0.5f * w0 * w0;
|
|
deriv[1] = 0.5f + t - t2;
|
|
deriv[2] = 0.5f * t2;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline void Spline<BASIS_BOX_SPLINE>::GetWeights(
|
|
float v, float w, float point[12]) {
|
|
|
|
float u = 1.0f - v - w;
|
|
|
|
//
|
|
// The 12 basis functions of the quartic box spline (unscaled by their common
|
|
// factor of 1/12 until later, and formatted to make it easy to spot any
|
|
// typing errors):
|
|
//
|
|
// 15 terms for the 3 points above the triangle corners
|
|
// 9 terms for the 3 points on faces opposite the triangle edges
|
|
// 2 terms for the 6 points on faces opposite the triangle corners
|
|
//
|
|
// Powers of each variable for notational convenience:
|
|
float u2 = u*u;
|
|
float u3 = u*u2;
|
|
float u4 = u*u3;
|
|
float v2 = v*v;
|
|
float v3 = v*v2;
|
|
float v4 = v*v3;
|
|
float w2 = w*w;
|
|
float w3 = w*w2;
|
|
float w4 = w*w3;
|
|
|
|
// And now the basis functions:
|
|
point[ 0] = u4 + 2.0f*u3*v;
|
|
point[ 1] = u4 + 2.0f*u3*w;
|
|
point[ 8] = w4 + 2.0f*w3*u;
|
|
point[11] = w4 + 2.0f*w3*v;
|
|
point[ 9] = v4 + 2.0f*v3*w;
|
|
point[ 5] = v4 + 2.0f*v3*u;
|
|
|
|
point[ 2] = u4 + 2.0f*u3*w + 6.0f*u3*v + 6.0f*u2*v*w + 12.0f*u2*v2 +
|
|
v4 + 2.0f*v3*w + 6.0f*v3*u + 6.0f*v2*u*w;
|
|
point[ 4] = w4 + 2.0f*w3*v + 6.0f*w3*u + 6.0f*w2*u*v + 12.0f*w2*u2 +
|
|
u4 + 2.0f*u3*v + 6.0f*u3*w + 6.0f*u2*v*w;
|
|
point[10] = v4 + 2.0f*v3*u + 6.0f*v3*w + 6.0f*v2*w*u + 12.0f*v2*w2 +
|
|
w4 + 2.0f*w3*u + 6.0f*w3*v + 6.0f*w3*u*v;
|
|
|
|
point[ 3] = v4 + 6*v3*w + 8*v3*u + 36*v2*w*u + 24*v2*u2 + 24*v*u3 +
|
|
w4 + 6*w3*v + 8*w3*u + 36*w2*v*u + 24*w2*u2 + 24*w*u3 + 6*u4 + 60*u2*v*w + 12*v2*w2;
|
|
point[ 6] = w4 + 6*w3*u + 8*w3*v + 36*w2*u*v + 24*w2*v2 + 24*w*v3 +
|
|
u4 + 6*u3*w + 8*u3*v + 36*u2*v*w + 24*u2*v2 + 24*u*v3 + 6*v4 + 60*v2*w*u + 12*w2*u2;
|
|
point[ 7] = u4 + 6*u3*v + 8*u3*w + 36*u2*v*w + 24*u2*w2 + 24*u*w3 +
|
|
v4 + 6*v3*u + 8*v3*w + 36*v2*u*w + 24*v2*w2 + 24*v*w3 + 6*w4 + 60*w2*u*v + 12*u2*v2;
|
|
|
|
for (int i = 0; i < 12; ++i) {
|
|
point[i] *= 1.0f / 12.0f;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline void Spline<BASIS_BILINEAR>::GetPatchWeights(PatchParam::BitField bits,
|
|
float s, float t, float point[4], float deriv1[4], float deriv2[4]) {
|
|
|
|
static int const rots[4][4] =
|
|
{ { 0, 1, 2, 3 },
|
|
{ 3, 0, 1, 2 },
|
|
{ 2, 3, 0, 1 },
|
|
{ 1, 2, 3, 0 } };
|
|
|
|
assert(bits.GetRotation()<4);
|
|
int const * rot = rots[bits.GetRotation()];
|
|
|
|
bits.Normalize(s,t);
|
|
|
|
float os = 1.0f - s,
|
|
ot = 1.0f - t;
|
|
|
|
if (point) {
|
|
point[rot[0]] = os*ot;
|
|
point[rot[1]] = s*ot;
|
|
point[rot[2]] = s*t;
|
|
point[rot[3]] = os*t;
|
|
}
|
|
|
|
if (deriv1 and deriv2) {
|
|
deriv1[rot[0]] = t-1.0f;
|
|
deriv1[rot[1]] = ot;
|
|
deriv1[rot[2]] = t;
|
|
deriv1[rot[3]] = -t;
|
|
|
|
deriv2[rot[0]] = s-1.0f;
|
|
deriv2[rot[1]] = -s;
|
|
deriv2[rot[2]] = s;
|
|
deriv2[rot[3]] = os;
|
|
}
|
|
}
|
|
|
|
template <SplineBasis BASIS>
|
|
void Spline<BASIS>::GetPatchWeights(PatchParam::BitField bits,
|
|
float s, float t, float point[16], float deriv1[16], float deriv2[16]) {
|
|
|
|
static int const rots[4][16] =
|
|
{ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
|
|
{ 12, 8, 4, 0, 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3 },
|
|
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 },
|
|
{ 3, 7, 11, 15, 2, 6, 10, 14, 1, 5, 9, 13, 0, 4, 8, 12 } };
|
|
|
|
assert(bits.GetRotation()<4);
|
|
int const * rot = rots[bits.GetRotation()];
|
|
|
|
float sWeights[4], tWeights[4], d1Weights[3], d2Weights[3];
|
|
|
|
bits.Normalize(s,t);
|
|
|
|
Spline<BASIS>::GetWeights(s, point ? sWeights : 0, deriv1 ? d1Weights : 0);
|
|
Spline<BASIS>::GetWeights(t, point ? tWeights : 0, deriv2 ? d2Weights : 0);
|
|
|
|
if (point) {
|
|
// Compute the tensor product weight corresponding to each control
|
|
// vertex
|
|
memset(point, 0, 16*sizeof(float));
|
|
for (int i = 0; i < 4; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
point[rot[4*i+j]] += sWeights[j] * tWeights[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (deriv1 and deriv2) {
|
|
// Compute the tangent stencil. This is done by taking the tensor
|
|
// product between the quadratic weights computed for s and the cubic
|
|
// weights computed for t. The stencil is constructed using
|
|
// differences between consecutive vertices in each row (i.e.
|
|
// in the s direction).
|
|
memset(deriv1, 0, 16*sizeof(float));
|
|
for (int i = 0, k = 0; i < 4; ++i) {
|
|
float prevWeight = 0.0f;
|
|
for (int j = 0; j < 3; ++j) {
|
|
float weight = d1Weights[j]*tWeights[i];
|
|
deriv1[rot[k++]] += prevWeight - weight;
|
|
prevWeight = weight;
|
|
}
|
|
deriv1[rot[k++]]+=prevWeight;
|
|
}
|
|
|
|
memset(deriv2, 0, 16*sizeof(float));
|
|
#define FASTER_TENSOR
|
|
#ifdef FASTER_TENSOR
|
|
// XXXX manuelk this might be slightly more efficient ?
|
|
float dW[4];
|
|
dW[0] = - d2Weights[0];
|
|
dW[1] = d2Weights[0] - d2Weights[1];
|
|
dW[2] = d2Weights[1] - d2Weights[2];
|
|
dW[3] = d2Weights[2];
|
|
for (int i = 0, k = 0; i < 4; ++i) {
|
|
for (int j = 0; j < 4; ++j) {
|
|
deriv2[rot[k++]] = sWeights[j] * dW[i];
|
|
}
|
|
}
|
|
#else
|
|
for (int j = 0; j < 4; ++j) {
|
|
float prevWeight = 0.0f;
|
|
for (int i = 0; i < 3; ++i) {
|
|
float weight = sWeights[j]*d2Weights[i];
|
|
deriv2[rot[4*i+j]]+=prevWeight - weight;
|
|
prevWeight = weight;
|
|
}
|
|
deriv2[rot[12+j]] += prevWeight;
|
|
}
|
|
#endif
|
|
// Scale derivatives up based on level of subdivision
|
|
float scale = float(1 << bits.GetDepth());
|
|
for (int k=0; k<16; ++k) {
|
|
deriv1[k] *= scale;
|
|
deriv2[k] *= scale;
|
|
}
|
|
}
|
|
}
|
|
|
|
void GetBilinearWeights(PatchParam::BitField bits,
|
|
float s, float t, float point[4], float deriv1[4], float deriv2[4]) {
|
|
|
|
Spline<BASIS_BILINEAR>::GetPatchWeights(bits, s, t, point, deriv1, deriv2);
|
|
}
|
|
|
|
void GetBezierWeights(PatchParam::BitField bits,
|
|
float s, float t, float point[16], float deriv1[16], float deriv2[16]) {
|
|
|
|
Spline<BASIS_BEZIER>::GetPatchWeights(bits, s, t, point, deriv1, deriv2);
|
|
}
|
|
|
|
void GetBSplineWeights(PatchParam::BitField bits,
|
|
float s, float t, float point[16], float deriv1[16], float deriv2[16]) {
|
|
|
|
Spline<BASIS_BSPLINE>::GetPatchWeights(bits, s, t, point, deriv1, deriv2);
|
|
}
|
|
|
|
} // end namespace Far
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
} // end namespace OpenSubdiv
|