OpenSubdiv/examples/mayaViewer/shader.glsl
manuelk 10c687ecd5 Release Candidate 1.0 :
- [Feature Adaptive GPU Rendering of Catmull-Clark Surfaces](http://research.microsoft.com/en-us/um/people/cloop/tog2012.pdf).

- New API architecture : we are planning to lock on to this new framework as the basis for backward compatibility, which we will enforce from Release 1.0 onward. Subsequent releases of OpenSubdiv should not break client code.

- DirectX 11 support

- and much more...
2012-12-10 17:15:13 -08:00

362 lines
10 KiB
GLSL

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#line 57
//--------------------------------------------------------------
// Vertex Shader
//--------------------------------------------------------------
#ifdef VERTEX_SHADER
layout (location=0) in vec4 position;
out block {
OutputVertex v;
} output;
void main()
{
output.v.position = ModelViewMatrix * position;
}
#endif // VERTEX_SHADER
//--------------------------------------------------------------
// Geometry Shader
//--------------------------------------------------------------
#ifdef GEOMETRY_SHADER
uniform samplerBuffer g_uvFVarBuffer;
#ifdef PRIM_QUAD
layout(lines_adjacency) in;
#ifdef GEOMETRY_OUT_FILL
layout(triangle_strip, max_vertices = 4) out;
#endif
#ifdef GEOMETRY_OUT_LINE
layout(line_strip, max_vertices = 5) out;
#endif
in block {
OutputVertex v;
} input[4];
#endif // PRIM_QUAD
#ifdef PRIM_TRI
layout(triangles) in;
#ifdef GEOMETRY_OUT_FILL
layout(triangle_strip, max_vertices = 3) out;
#endif
#ifdef GEOMETRY_OUT_LINE
layout(line_strip, max_vertices = 4) out;
#endif
in block {
OutputVertex v;
} input[3];
#endif // PRIM_TRI
#ifdef PRIM_POINT
layout(points) in;
layout(points, max_vertices = 1) out;
in block {
OutputVertex v;
} input[1];
#endif // PRIM_POINT
out block {
OutputVertex v;
} output;
void emitUniform(int index, vec3 normal)
{
output.v.position = input[index].v.position;
#ifdef SMOOTH_NORMALS
output.v.normal = input[index].v.normal;
#else
output.v.normal = normal;
#endif
// We fetch each uv component separately since the texture buffer
// has a single component internal format, i.e. R32F instead of RG32F.
// Start with an offset representing 4 verts per primitive and
// multiply by 2 on each fetch to account for two floats per UV.
// uvFVarBuffer is a flat array of floats, but is accessed as if it
// has the structure of float[p][4][2] where p=primitiveID:
// [ [ uv uv uv uv ] [ uv uv uv uv ] [ ... ] ]
// prim 0 prim 1
int uvOffset = gl_PrimitiveID * 4;
output.v.patchCoord.st =
vec2( texelFetchBuffer( g_uvFVarBuffer, (uvOffset+index)*2 ).s,
texelFetchBuffer( g_uvFVarBuffer, (uvOffset+index)*2+1 ).s );
gl_Position = ProjectionMatrix * input[index].v.position;
EmitVertex();
}
void emitAdaptive(int index, vec3 normal, vec2 uvs[4])
{
output.v.position = input[index].v.position;
#ifdef SMOOTH_NORMALS
output.v.normal = input[index].v.normal;
#else
output.v.normal = normal;
#endif
// Bi-linear interpolation within the patch
vec2 st = input[index].v.patchCoord.st;
output.v.patchCoord.st =
vec2( mix( mix(uvs[0].x, uvs[1].x, st.s ), mix(uvs[3].x, uvs[2].x, st.s ), st.t),
mix( mix(uvs[0].y, uvs[1].y, st.s ), mix(uvs[3].y, uvs[2].y, st.s ), st.t) );
gl_Position = ProjectionMatrix * input[index].v.position;
EmitVertex();
}
void main()
{
gl_PrimitiveID = gl_PrimitiveIDIn;
#ifdef FVAR_ADAPTIVE
// We fetch each uv component separately since the texture buffer
// has a single component internal format, i.e. R32F instead of RG32F.
// Start with an offset representing 4 verts per primitive and
// multiply by 2 on each fetch to account for two floats per UV.
// uvFVarBuffer is a flat array of floats, but is accessed as if it
// has the structure of float[p][4][2] where p=primitiveID:
// [ [ uv uv uv uv ] [ uv uv uv uv ] [ ... ] ]
// prim 0 prim 1
// Offset based on prim id and offset into patch-type fvar data table
int uvOffset = (gl_PrimitiveID+LevelBase) * 4;
vec2 uvs[4];
uvs[0] = vec2( texelFetchBuffer( g_uvFVarBuffer, (uvOffset+0)*2 ).s,
texelFetchBuffer( g_uvFVarBuffer, (uvOffset+0)*2+1 ).s );
uvs[1] = vec2( texelFetchBuffer( g_uvFVarBuffer, (uvOffset+1)*2 ).s,
texelFetchBuffer( g_uvFVarBuffer, (uvOffset+1)*2+1 ).s );
uvs[2] = vec2( texelFetchBuffer( g_uvFVarBuffer, (uvOffset+2)*2 ).s,
texelFetchBuffer( g_uvFVarBuffer, (uvOffset+2)*2+1 ).s );
uvs[3] = vec2( texelFetchBuffer( g_uvFVarBuffer, (uvOffset+3)*2 ).s,
texelFetchBuffer( g_uvFVarBuffer, (uvOffset+3)*2+1 ).s );
#endif
vec3 n0 = vec3(0);
#if defined( PRIM_POINT )
emitUniform(0, n0);
#elif defined ( PRIM_TRI)
vec3 A = (input[1].v.position - input[0].v.position).xyz;
vec3 B = (input[2].v.position - input[0].v.position).xyz;
n0 = normalize(cross(B, A));
#ifdef FVAR_ADAPTIVE
emitAdaptive(0, n0, uvs);
emitAdaptive(1, n0, uvs);
emitAdaptive(2, n0, uvs);
#ifdef GEOMETRY_OUT_LINE
emitAdaptive(0, n0, uvs);
#endif //GEOMETRY_OUT_LINE
#else
emitUniform(0, n0);
emitUniform(1, n0);
emitUniform(2, n0);
#ifdef GEOMETRY_OUT_LINE
emitUniform(0, n0);
#endif //GEOMETRY_OUT_LINE
#endif //FVAR_ADAPTIVE
#elif defined ( PRIM_QUAD )
vec3 A = (input[0].v.position - input[1].v.position).xyz;
vec3 B = (input[3].v.position - input[1].v.position).xyz;
//vec3 C = (input[2].v.position - input[1].v.position).xyz;
n0 = normalize(cross(B, A));
#ifdef GEOMETRY_OUT_FILL
emitUniform(0, n0);
emitUniform(1, n0);
emitUniform(3, n0);
emitUniform(2, n0);
#else // GEOMETRY_OUT_LINE
emitUniform(0, n0);
emitUniform(1, n0);
emitUniform(2, n0);
emitUniform(3, n0);
emitUniform(0, n0);
#endif //GEOMETRY_OUT_LINE
#endif //PRIM_*
EndPrimitive();
}
#endif // GEOMETRY_SHADER
//--------------------------------------------------------------
// Fragment Shader
//--------------------------------------------------------------
#ifdef FRAGMENT_SHADER
uniform sampler2D diffuseMap;
in block {
OutputVertex v;
} input;
#define NUM_LIGHTS 2
struct LightSource {
vec4 position;
vec4 diffuse;
vec4 ambient;
vec4 specular;
};
layout(std140) uniform Lighting {
LightSource lightSource[NUM_LIGHTS];
};
uniform vec4 diffuseColor = vec4(0.8);
uniform vec4 ambientColor = vec4(0.2);
uniform vec4 specularColor = vec4(0.8);
uniform float shininess = 64;
vec4
lighting(vec3 Peye, vec3 Neye, vec4 texColor)
{
vec4 color = vec4(0);
for (int i = 0; i < NUM_LIGHTS; ++i) {
vec4 Plight = lightSource[i].position;
vec3 l = (Plight.w == 0.0)
? normalize(Plight.xyz) : normalize(Plight.xyz - Peye);
vec3 n = normalize(Neye);
vec3 h = normalize(l + vec3(0,0,1)); // directional viewer
float d = max(0.0, dot(n, l));
float s = pow(max(0.0, dot(n, h)), shininess);
color += lightSource[i].ambient * ambientColor
+ d * lightSource[i].diffuse * diffuseColor * texColor
+ s * lightSource[i].specular * specularColor;
}
color.a = 1;
return color;
}
#ifdef PRIM_POINT
uniform vec4 fragColor;
void
main()
{
gl_FragColor = fragColor;
}
#endif
#ifdef GEOMETRY_OUT_LINE
uniform vec4 fragColor;
void
main()
{
gl_FragColor = fragColor;
}
#endif
#ifdef GEOMETRY_OUT_FILL
void
main()
{
vec3 N = (gl_FrontFacing ? input.v.normal : -input.v.normal);
#ifdef USE_DIFFUSE_MAP
vec4 texColor = texture(diffuseMap, input.v.patchCoord.st);
gl_FragColor = lighting(input.v.position.xyz, N, texColor);
#else
gl_FragColor = lighting(input.v.position.xyz, N, vec4(1.0));
#endif
}
#endif // GEOMETRY_OUT_LINE
#endif // FRAGMENT_SHADER