OpenSubdiv/opensubdiv/far/subdivisionTablesFactory.h
2014-06-25 11:16:36 -07:00

661 lines
25 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_SUBDIVISION_TABLES_FACTORY_H
#define FAR_SUBDIVISION_TABLES_FACTORY_H
#include "../version.h"
// note: currently, this file has to be included from meshFactory.h
#include "../far/subdivisionTables.h"
#include "../far/kernelBatch.h"
#include <cassert>
#include <utility>
#include <vector>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
template <class T, class U> class FarBilinearSubdivisionTablesFactory;
template <class T, class U> class FarCatmarkSubdivisionTablesFactory;
template <class T, class U> class FarLoopSubdivisionTablesFactory;
/// \brief A specialized factory for FarSubdivisionTables
///
/// This factory is private to Far and should not be used by client code.
///
template <class T, class U> class FarSubdivisionTablesFactory {
public:
typedef std::vector<FarMesh<U> const *> FarMeshVector;
/// \brief Splices subdivision tables and batches from multiple meshes and returns them
/// Client code is responsible for deallocation.
static FarSubdivisionTables *Splice(FarMeshVector const &meshes, FarKernelBatchVector *resultBatches);
protected:
friend class FarBilinearSubdivisionTablesFactory<T,U>;
friend class FarCatmarkSubdivisionTablesFactory<T,U>;
friend class FarLoopSubdivisionTablesFactory<T,U>;
template <class X, class Y> friend class FarMeshFactory;
typedef bool (*CompareVerticesOperator)(const HbrVertex<T> *, const HbrVertex<T> *);
// This factory accumulates vertex topology data that will be shared among the
// specialized subdivision scheme factories (Bilinear / Catmark / Loop).
// It also populates the FarMeshFactory vertex remapping vector that ties the
// Hbr vertex indices to the FarVertexEdit tables.
FarSubdivisionTablesFactory( HbrMesh<T> const * mesh, int maxlevel, std::vector<int> & remapTable, CompareVerticesOperator compareVertices = CompareVertices );
// Returns the number of coarse vertices found in the mesh
int GetNumCoarseVertices() const {
return (int)(_vertVertsList[0].size());
}
// Total number of face vertices up to 'level'
int GetNumFaceVerticesTotal(int level) const {
return sumList<HbrVertex<T> *>(_faceVertsList, level);
}
// Total number of edge vertices up to 'level'
int GetNumEdgeVerticesTotal(int level) const {
return sumList<HbrVertex<T> *>(_edgeVertsList, level);
}
// Total number of vertex vertices up to 'level'
int GetNumVertexVerticesTotal(int level) const {
return sumList<HbrVertex<T> *>(_vertVertsList, level);
}
// Valence summation up to 'level'
int GetFaceVertsValenceSum() const { return _faceVertsValenceSum; }
// Valence summation for face vertices
int GetVertVertsValenceSum() const { return _vertVertsValenceSum; }
// Minimum valence for coarse faces
int GetMinCoarseFaceValence() const { return _minCoarseFaceValence; }
// Maximum valence for coarse faces
int GetMaxCoarseFaceValence() const { return _maxCoarseFaceValence; }
// Number of coarse triangle faces
int GetNumCoarseTriangleFaces() const { return _numCoarseTriangleFaces; }
// Returns an integer based on the order in which the kernels are applied
static int GetMaskRanking( unsigned char mask0, unsigned char mask1 );
bool HasFractionalEdgeSharpness() const { return _hasFractionalEdgeSharpness; }
bool HasFractionalVertexSharpness() const { return _hasFractionalVertexSharpness; }
// Compares vertices based on their topological configuration
// (see subdivisionTables::GetMaskRanking for more details)
static bool CompareVertices( HbrVertex<T> const *x, HbrVertex<T> const *y );
// Compare vertices operator
CompareVerticesOperator _compareVertices;
// Per-level counters and offsets for each type of vertex (face,edge,vert)
std::vector<int> _faceVertIdx,
_edgeVertIdx,
_vertVertIdx;
// Number of indices required for the face-vert and vertex-vert
// iteration tables at each level
int _faceVertsValenceSum,
_vertVertsValenceSum;
// lists of vertices sorted by type and level
std::vector<std::vector< HbrVertex<T> *> > _faceVertsList,
_edgeVertsList,
_vertVertsList;
// Minimum and maximum valence for coarse faces
int _minCoarseFaceValence,
_maxCoarseFaceValence;
// Number of coarse triangle faces
int _numCoarseTriangleFaces;
// Indicates if an edge or vertex has a fractional (non-integer) sharpness
bool _hasFractionalEdgeSharpness,
_hasFractionalVertexSharpness;
private:
// Returns the subdivision level of a vertex
static int getVertexDepth(HbrVertex<T> * v);
template <class Type> static int sumList( std::vector<std::vector<Type> > const & list, int level );
// Sums the number of adjacent vertices required to interpolate a Vert-Vertex
static int sumVertVertexValence(HbrVertex<T> * vertex);
};
template <class T, class U>
FarSubdivisionTablesFactory<T,U>::FarSubdivisionTablesFactory( HbrMesh<T> const * mesh, int maxlevel, std::vector<int> & remapTable, CompareVerticesOperator compareVertices ) :
_compareVertices(compareVertices),
_faceVertIdx(maxlevel+1,0),
_edgeVertIdx(maxlevel+1,0),
_vertVertIdx(maxlevel+1,0),
_faceVertsValenceSum(0),
_vertVertsValenceSum(0),
_faceVertsList(maxlevel+1),
_edgeVertsList(maxlevel+1),
_vertVertsList(maxlevel+1),
_minCoarseFaceValence(0),
_maxCoarseFaceValence(0),
_numCoarseTriangleFaces(0),
_hasFractionalEdgeSharpness(false),
_hasFractionalVertexSharpness(false)
{
assert( mesh );
int numVertices = mesh->GetNumVertices();
std::vector<int> faceCounts(maxlevel+1,0),
edgeCounts(maxlevel+1,0),
vertCounts(maxlevel+1,0);
// First pass (vertices) : count the vertices of each type for each depth
// up to maxlevel (values are dependent on topology).
int maxvertid=-1;
for (int i=0; i<numVertices; ++i) {
HbrVertex<T> * v = mesh->GetVertex(i);
assert(v);
if (not v->IsConnected()) {
continue;
}
int depth = getVertexDepth( v );
if (depth>maxlevel)
continue;
if (depth==0 )
vertCounts[depth]++;
if (v->GetID()>maxvertid)
maxvertid = v->GetID();
if (v->GetParentFace()) {
faceCounts[depth]++;
int valence = v->GetParentFace()->GetNumVertices();
_faceVertsValenceSum += valence;
if (depth == 1) {
_minCoarseFaceValence = (_minCoarseFaceValence == 0 ? valence : std::min(_minCoarseFaceValence, valence));
_maxCoarseFaceValence = (_maxCoarseFaceValence == 0 ? valence : std::max(_maxCoarseFaceValence, valence));
if (valence == 3)
++_numCoarseTriangleFaces;
}
} else if (v->GetParentEdge()) {
edgeCounts[depth]++;
// Determine if any edges have fractional sharpness.
float sharpness = v->GetParentEdge()->GetSharpness();
if (sharpness > HbrHalfedge<T>::k_Smooth and sharpness < HbrHalfedge<T>::k_Sharp)
_hasFractionalEdgeSharpness = true;
} else if (v->GetParentVertex()) {
vertCounts[depth]++;
_vertVertsValenceSum+=sumVertVertexValence(v);
float sharpness = v->GetParentVertex()->GetSharpness();
if (sharpness > 0.0f and sharpness < 1.0f)
_hasFractionalVertexSharpness = true;
}
}
int nsingulars = (int)mesh->GetSplitVertices().size();
vertCounts[0] -= nsingulars;
// Per-level offset to the first vertex of each type in the global vertex map
_vertVertsList[0].reserve( vertCounts[0] );
for (int l=1; l<(maxlevel+1); ++l) {
_faceVertIdx[l]= _vertVertIdx[l-1]+vertCounts[l-1];
_edgeVertIdx[l]= _faceVertIdx[l]+faceCounts[l];
_vertVertIdx[l]= _edgeVertIdx[l]+edgeCounts[l];
_faceVertsList[l].reserve( faceCounts[l] );
_edgeVertsList[l].reserve( edgeCounts[l] );
_vertVertsList[l].reserve( vertCounts[l] );
}
// reset counters
faceCounts.assign(maxlevel+1,0);
edgeCounts.assign(maxlevel+1,0);
remapTable.resize( maxvertid+1, -1);
// Second pass (vertices) : calculate the starting indices of the sub-tables
// (face, edge, verts...) and populate the remapping table.
for (int i=0; i<numVertices; ++i) {
HbrVertex<T> * v = mesh->GetVertex(i);
assert(v);
if (not v->IsConnected()) {
remapTable[ v->GetID() ] = v->GetID();
continue;
}
int depth = getVertexDepth( v );
if (depth>maxlevel)
continue;
assert( remapTable[ v->GetID() ] == -1 );
if (depth==0) {
_vertVertsList[ depth ].push_back( v );
remapTable[ v->GetID() ] = v->GetID();
} else if (v->GetParentFace()) {
remapTable[ v->GetID() ]=_faceVertIdx[depth]+faceCounts[depth]++;
_faceVertsList[ depth ].push_back( v );
} else if (v->GetParentEdge()) {
remapTable[ v->GetID() ]=_edgeVertIdx[depth]+edgeCounts[depth]++;
_edgeVertsList[ depth ].push_back( v );
} else if (v->GetParentVertex()) {
// vertices need to be sorted separately based on compute kernel :
// the remapping step is done just after this
_vertVertsList[ depth ].push_back( v );
}
}
// Sort the the vertices that are the child of a vertex based on their weight
// mask. The masks combinations are ordered so as to minimize the compute
// kernel switching.(see subdivisionTables::GetMaskRanking for more details)
for (size_t i=1; i<_vertVertsList.size(); ++i)
std::sort( _vertVertsList[i].begin(), _vertVertsList[i].end(), _compareVertices );
// These vertices still need a remapped index
for (int l=1; l<(maxlevel+1); ++l)
for (size_t i=0; i<_vertVertsList[l].size(); ++i)
remapTable[ _vertVertsList[l][i]->GetID() ]=_vertVertIdx[l]+(int)i;
// Remap singular vertices to their origin vertices
std::vector<std::pair<int, int> > const & singulars = mesh->GetSplitVertices();
for (int i=0; i<(int)singulars.size(); ++i) {
remapTable[singulars[i].first]=singulars[i].second;
}
}
template <class T, class U> int
FarSubdivisionTablesFactory<T,U>::getVertexDepth(HbrVertex<T> * v) {
if (v->IsConnected()) {
return v->GetFace()->GetDepth();
} else {
// Un-connected vertices do not have a face pointer, so we have to seek
// the parent. Note : subdivision tables can only work with face-vertices,
// so we assert out of the other types.
HbrFace<T> * parent = v->GetParentFace();
assert(parent);
return parent->GetDepth()+1;
}
}
template <class T, class U>
template <class Type> int
FarSubdivisionTablesFactory<T,U>::sumList( std::vector<std::vector<Type> > const & list, int level) {
level = std::min(level, (int)list.size()-1);
int total = 0;
for (int i=0; i<=level; ++i)
total += (int)list[i].size();
return total;
}
// The ranking matrix defines the order of execution for the various combinations
// of Corner, Crease, Dart and Smooth topological configurations. This matrix is
// somewhat arbitrary as it is possible to perform some permutations in the
// ordering without adverse effects, but it does try to minimize kernel switching
// during the exececution of Apply(). This table is identical for both the Loop
// and Catmull-Clark schemes.
//
// The matrix is derived from this table :
// Rules +----+----+----+----+----+----+----+----+----+----+
// Pass 0 | Dt | Sm | Sm | Dt | Sm | Dt | Sm | Cr | Co | Cr |
// Pass 1 | | | | Co | Co | Cr | Cr | Co | | |
// Kernel +----+----+----+----+----+----+----+----+----+----+
// Pass 0 | B | B | B | B | B | B | B | A | A | A |
// Pass 1 | | | | A | A | A | A | A | | |
// +----+----+----+----+----+----+----+----+----+----+
// Rank | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
// +----+----+----+----+----+----+----+----+----+----+
// with :
// - A : compute kernel applying k_Crease / k_Corner rules
// - B : compute kernel applying k_Smooth / k_Dart rules
template <class T, class U> int
FarSubdivisionTablesFactory<T,U>::GetMaskRanking( unsigned char mask0, unsigned char mask1 ) {
static short masks[4][4] = { { 0, 1, 6, 4 },
{ 0xFF, 2, 5, 3 },
{ 0xFF, 0xFF, 9, 7 },
{ 0xFF, 0xFF, 0xFF, 8 } };
return masks[mask0][mask1];
}
// Sums the number of adjacent vertices required to interpolate a Vert-Vertex
template <class T, class U> int
FarSubdivisionTablesFactory<T,U>::sumVertVertexValence(HbrVertex<T> * vertex) {
int masks[2], npasses=1, result=0;
HbrVertex<T> * pv = vertex->GetParentVertex();
assert(pv);
masks[0] = pv->GetMask(false);
masks[1] = pv->GetMask(true);
if (masks[0] != masks[1]and (
not (masks[0]==HbrVertex<T>::k_Smooth and
masks[1]==HbrVertex<T>::k_Dart)))
npasses = 2;
int valence = pv->GetValence();
for (int i=0; i<npasses; ++i)
switch (masks[i]) {
case HbrVertex<T>::k_Smooth:
case HbrVertex<T>::k_Dart: result+=valence; break;
default: break;
}
return result;
}
// Compare the weight masks of 2 vertices using the following ordering table.
//
// Assuming 2 computer kernels :
// - A handles the k_Crease and K_Corner rules
// - B handles the K_Smooth and K_Dart rules
// The vertices should be sorted so as to minimize the number execution calls of
// these kernels to match the 2 pass interpolation scheme used in Hbr.
template <class T, class U> bool
FarSubdivisionTablesFactory<T,U>::CompareVertices( HbrVertex<T> const * x, HbrVertex<T> const * y ) {
// Masks of the parent vertex decide for the current vertex.
HbrVertex<T> * px=x->GetParentVertex(),
* py=y->GetParentVertex();
assert( (GetMaskRanking(px->GetMask(false), px->GetMask(true) )!=0xFF) and
(GetMaskRanking(py->GetMask(false), py->GetMask(true) )!=0xFF) );
return GetMaskRanking(px->GetMask(false), px->GetMask(true) ) <
GetMaskRanking(py->GetMask(false), py->GetMask(true) );
}
// splice subdivision tables
template <typename V, typename IT> static IT
copyWithOffset(IT dst_iterator, V const &src, int offset) {
return std::transform(src.begin(), src.end(), dst_iterator,
std::bind2nd(std::plus<typename V::value_type>(), offset));
}
template <typename V, typename IT> static IT
copyWithPtexFaceOffset(IT dst_iterator, V const &src, int start, int count, int offset) {
for (typename V::const_iterator it = src.begin()+start; it != src.begin()+start+count; ++it) {
typename V::value_type ptexCoord = *it;
ptexCoord.faceIndex += offset;
*dst_iterator++ = ptexCoord;
}
return dst_iterator;
}
template <typename V, typename IT> static IT
copyWithOffsetF_ITa(IT dst_iterator, V const &src, int offset) {
for (typename V::const_iterator it = src.begin(); it != src.end();) {
*dst_iterator++ = *it++ + offset; // offset to F_IT
*dst_iterator++ = *it++; // valence
}
return dst_iterator;
}
template <typename V, typename IT> static IT
copyWithOffsetE_IT(IT dst_iterator, V const &src, int offset) {
for (typename V::const_iterator it = src.begin(); it != src.end(); ++it) {
*dst_iterator++ = (*it == -1) ? -1 : (*it + offset);
}
return dst_iterator;
}
template <typename V, typename IT> static IT
copyWithOffsetV_ITa(IT dst_iterator, V const &src, int tableOffset, int vertexOffset) {
for (typename V::const_iterator it = src.begin(); it != src.end();) {
*dst_iterator++ = *it++ + tableOffset; // offset to V_IT
*dst_iterator++ = *it++; // valence
*dst_iterator++ = (*it == -1) ? -1 : (*it + vertexOffset); ++it;
*dst_iterator++ = (*it == -1) ? -1 : (*it + vertexOffset); ++it;
*dst_iterator++ = (*it == -1) ? -1 : (*it + vertexOffset); ++it;
}
return dst_iterator;
}
template <class T, class U> FarSubdivisionTables*
FarSubdivisionTablesFactory<T,U>::Splice(FarMeshVector const &meshes, FarKernelBatchVector *batches ) {
// count total table size
size_t total_F_ITa = 0, total_F_IT = 0;
size_t total_E_IT = 0, total_E_W = 0;
size_t total_V_ITa = 0, total_V_IT = 0, total_V_W = 0;
FarSubdivisionTables::Scheme scheme = FarSubdivisionTables::UNDEFINED;
int maxLevel = 0;
for (size_t i = 0; i < meshes.size(); ++i) {
FarSubdivisionTables const * tables = meshes[i]->GetSubdivisionTables();
assert(tables);
total_F_ITa += tables->Get_F_ITa().size();
total_F_IT += tables->Get_F_IT().size();
total_E_IT += tables->Get_E_IT().size();
total_E_W += tables->Get_E_W().size();
total_V_ITa += tables->Get_V_ITa().size();
total_V_IT += tables->Get_V_IT().size();
total_V_W += tables->Get_V_W().size();
maxLevel = std::max(maxLevel, tables->GetMaxLevel()-1);
if (scheme == FarSubdivisionTables::UNDEFINED) {
scheme = tables->GetScheme();
} else {
assert(scheme == tables->GetScheme());
}
}
// pad E_W to align with E_IT when only some meshes use CATMARK_RESTRICTED_EDGE_VERTEX kernel
if (total_E_W != 0)
total_E_W = total_E_IT / 2;
FarSubdivisionTables *result = new FarSubdivisionTables(maxLevel, scheme);
result->_F_ITa.resize(total_F_ITa);
result->_F_IT.resize(total_F_IT);
result->_E_IT.resize(total_E_IT);
result->_E_W.resize(total_E_W);
result->_V_ITa.resize(total_V_ITa);
result->_V_IT.resize(total_V_IT);
result->_V_W.resize(total_V_W);
// compute table offsets;
std::vector<int> vertexOffsets;
std::vector<int> fvOffsets;
std::vector<int> evOffsets;
std::vector<int> vvOffsets;
std::vector<int> F_IToffsets;
std::vector<int> V_IToffsets;
{
int vertexOffset = 0;
int F_IToffset = 0;
int V_IToffset = 0;
int fvOffset = 0;
int evOffset = 0;
int vvOffset = 0;
for (size_t i = 0; i < meshes.size(); ++i) {
FarSubdivisionTables const * tables = meshes[i]->GetSubdivisionTables();
assert(tables);
vertexOffsets.push_back(vertexOffset);
F_IToffsets.push_back(F_IToffset);
V_IToffsets.push_back(V_IToffset);
fvOffsets.push_back(fvOffset);
evOffsets.push_back(evOffset);
vvOffsets.push_back(vvOffset);
vertexOffset += meshes[i]->GetNumVertices();
F_IToffset += (int)tables->Get_F_IT().size();
fvOffset += (int)tables->Get_F_ITa().size()/2;
V_IToffset += (int)tables->Get_V_IT().size();
if (scheme == FarSubdivisionTables::CATMARK or
scheme == FarSubdivisionTables::LOOP) {
evOffset += (int)tables->Get_E_IT().size()/4;
vvOffset += (int)tables->Get_V_ITa().size()/5;
} else {
evOffset += (int)tables->Get_E_IT().size()/2;
vvOffset += (int)tables->Get_V_ITa().size();
}
}
}
// concat F_IT and V_IT
std::vector<unsigned int>::iterator F_IT = result->_F_IT.begin();
std::vector<unsigned int>::iterator V_IT = result->_V_IT.begin();
for (size_t i = 0; i < meshes.size(); ++i) {
FarSubdivisionTables const * tables = meshes[i]->GetSubdivisionTables();
int vertexOffset = vertexOffsets[i];
// remap F_IT, V_IT tables
F_IT = copyWithOffset(F_IT, tables->Get_F_IT(), vertexOffset);
V_IT = copyWithOffset(V_IT, tables->Get_V_IT(), vertexOffset);
}
// merge other tables
std::vector<int>::iterator F_ITa = result->_F_ITa.begin();
std::vector<int>::iterator E_IT = result->_E_IT.begin();
std::vector<float>::iterator E_W = result->_E_W.begin();
std::vector<float>::iterator V_W = result->_V_W.begin();
std::vector<int>::iterator V_ITa = result->_V_ITa.begin();
for (size_t i = 0; i < meshes.size(); ++i) {
FarSubdivisionTables const * tables = meshes[i]->GetSubdivisionTables();
// copy face tables
F_ITa = copyWithOffsetF_ITa(F_ITa, tables->Get_F_ITa(), F_IToffsets[i]);
// copy edge tables
E_IT = copyWithOffsetE_IT(E_IT, tables->Get_E_IT(), vertexOffsets[i]);
if (not tables->Get_E_W().empty())
E_W = copyWithOffset(E_W, tables->Get_E_W(), 0);
else
E_W += tables->Get_E_IT().size() / 2;
// copy vert tables
if (scheme == FarSubdivisionTables::CATMARK or
scheme == FarSubdivisionTables::LOOP) {
V_ITa = copyWithOffsetV_ITa(V_ITa, tables->Get_V_ITa(), V_IToffsets[i], vertexOffsets[i]);
} else {
V_ITa = copyWithOffset(V_ITa, tables->Get_V_ITa(), vertexOffsets[i]);
}
V_W = copyWithOffset(V_W, tables->Get_V_W(), 0);
}
// merge batch, model by model
int editTableIndexOffset = 0;
for (int i = 0; i < (int)meshes.size(); ++i) {
int numBatches = (int)meshes[i]->GetKernelBatches().size();
for (int j = 0; j < numBatches; ++j) {
FarKernelBatch batch = meshes[i]->GetKernelBatches()[j];
batch._meshIndex = i;
batch._vertexOffset += vertexOffsets[i];
if (batch._kernelType == FarKernelBatch::CATMARK_FACE_VERTEX or
batch._kernelType == FarKernelBatch::BILINEAR_FACE_VERTEX) {
batch._tableOffset += fvOffsets[i];
} else if (batch._kernelType == FarKernelBatch::CATMARK_QUAD_FACE_VERTEX or
batch._kernelType == FarKernelBatch::CATMARK_TRI_QUAD_FACE_VERTEX) {
batch._tableOffset += F_IToffsets[i];
} else if (batch._kernelType == FarKernelBatch::CATMARK_EDGE_VERTEX or
batch._kernelType == FarKernelBatch::CATMARK_RESTRICTED_EDGE_VERTEX or
batch._kernelType == FarKernelBatch::LOOP_EDGE_VERTEX or
batch._kernelType == FarKernelBatch::BILINEAR_EDGE_VERTEX) {
batch._tableOffset += evOffsets[i];
} else if (batch._kernelType == FarKernelBatch::CATMARK_VERT_VERTEX_A1 or
batch._kernelType == FarKernelBatch::CATMARK_VERT_VERTEX_A2 or
batch._kernelType == FarKernelBatch::CATMARK_VERT_VERTEX_B or
batch._kernelType == FarKernelBatch::CATMARK_RESTRICTED_VERT_VERTEX_A or
batch._kernelType == FarKernelBatch::CATMARK_RESTRICTED_VERT_VERTEX_B1 or
batch._kernelType == FarKernelBatch::CATMARK_RESTRICTED_VERT_VERTEX_B2 or
batch._kernelType == FarKernelBatch::LOOP_VERT_VERTEX_A1 or
batch._kernelType == FarKernelBatch::LOOP_VERT_VERTEX_A2 or
batch._kernelType == FarKernelBatch::LOOP_VERT_VERTEX_B or
batch._kernelType == FarKernelBatch::BILINEAR_VERT_VERTEX) {
batch._tableOffset += vvOffsets[i];
} else if (batch._kernelType == FarKernelBatch::HIERARCHICAL_EDIT) {
batch._tableIndex += editTableIndexOffset;
}
batches->push_back(batch);
}
editTableIndexOffset += meshes[i]->GetVertexEditTables() ?
meshes[i]->GetVertexEditTables()->GetNumBatches() : 0;
}
// count verts offsets
result->_vertsOffsets.resize(maxLevel+2);
for (size_t i = 0; i < meshes.size(); ++i) {
FarSubdivisionTables const * tables = meshes[i]->GetSubdivisionTables();
for (size_t j = 0; j < tables->_vertsOffsets.size(); ++j) {
result->_vertsOffsets[j] += tables->_vertsOffsets[j];
}
}
return result;
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_SUBDIVISION_TABLES_H */