mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-09 00:00:18 +00:00
a1c7be7c8e
This set of commits includes the addition of a new evaluation interface that treats a subdivision mesh more like a piecewise parametric surface primitive. The new interface was placed in namespace "Bfr" for "Base Face Representation" as all concepts and classes relate to a single face of the base mesh.
707 lines
21 KiB
C++
707 lines
21 KiB
C++
//
|
|
// Copyright 2021 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
//
|
|
// Functions for hashing to 32- and 64-bit integers. These are the same
|
|
// functions used in USD (pxr/base/arch/hash.*) under similar conditions.
|
|
//
|
|
|
|
#include "hash.h"
|
|
|
|
//
|
|
// SpookyHash: a 128-bit noncryptographic hash function
|
|
// By Bob Jenkins, public domain
|
|
// Oct 31 2010: alpha, framework + SpookyHash::Mix appears right
|
|
// Oct 31 2011: alpha again, Mix only good to 2^^69 but rest appears right
|
|
// Dec 31 2011: beta, improved Mix, tested it for 2-bit deltas
|
|
// Feb 2 2012: production, same bits as beta
|
|
// Feb 5 2012: adjusted definitions of uint* to be more portable
|
|
// Mar 30 2012: 3 bytes/cycle, not 4. Alpha was 4 but wasn't thorough enough.
|
|
// August 5 2012: SpookyV2 (different results)
|
|
//
|
|
// Up to 3 bytes/cycle for long messages. Reasonably fast for short messages.
|
|
// All 1 or 2 bit deltas achieve avalanche within 1% bias per output bit.
|
|
//
|
|
// This was developed for and tested on 64-bit x86-compatible processors.
|
|
// It assumes the processor is little-endian. There is a macro
|
|
// controlling whether unaligned reads are allowed (by default they are).
|
|
// This should be an equally good hash on big-endian machines, but it will
|
|
// compute different results on them than on little-endian machines.
|
|
//
|
|
// Google's CityHash has similar specs to SpookyHash, and CityHash is faster
|
|
// on new Intel boxes. MD4 and MD5 also have similar specs, but they are orders
|
|
// of magnitude slower. CRCs are two or more times slower, but unlike
|
|
// SpookyHash, they have nice math for combining the CRCs of pieces to form
|
|
// the CRCs of wholes. There are also cryptographic hashes, but those are even
|
|
// slower than MD5.
|
|
//
|
|
|
|
#include <cstring>
|
|
#include <cstddef>
|
|
|
|
// Local typedefs to match the original code:
|
|
typedef uint64_t uint64;
|
|
typedef uint32_t uint32;
|
|
typedef uint16_t uint16;
|
|
typedef uint8_t uint8;
|
|
|
|
namespace {
|
|
|
|
class SpookyHash
|
|
{
|
|
public:
|
|
//
|
|
// SpookyHash: hash a single message in one call, produce 128-bit output
|
|
//
|
|
static void Hash128(
|
|
const void *message, // message to hash
|
|
size_t length, // length of message in bytes
|
|
uint64 *hash1, // in/out: in seed 1, out hash value 1
|
|
uint64 *hash2); // in/out: in seed 2, out hash value 2
|
|
|
|
//
|
|
// Hash64: hash a single message in one call, return 64-bit output
|
|
//
|
|
static uint64 Hash64(
|
|
const void *message, // message to hash
|
|
size_t length, // length of message in bytes
|
|
uint64 seed) // seed
|
|
{
|
|
uint64 hash1 = seed;
|
|
Hash128(message, length, &hash1, &seed);
|
|
return hash1;
|
|
}
|
|
|
|
//
|
|
// Hash32: hash a single message in one call, produce 32-bit output
|
|
//
|
|
static uint32 Hash32(
|
|
const void *message, // message to hash
|
|
size_t length, // length of message in bytes
|
|
uint32 seed) // seed
|
|
{
|
|
uint64 hash1 = seed, hash2 = seed;
|
|
Hash128(message, length, &hash1, &hash2);
|
|
return (uint32)hash1;
|
|
}
|
|
|
|
#ifdef OPENSUBDIV3_BFR_HASH_INCLUDE_UNUSED_FUNCTIONS
|
|
//
|
|
// Init: initialize the context of a SpookyHash
|
|
//
|
|
void Init(
|
|
uint64 seed1, // any 64-bit value will do, including 0
|
|
uint64 seed2); // different seeds produce independent hashes
|
|
|
|
//
|
|
// Update: add a piece of a message to a SpookyHash state
|
|
//
|
|
void Update(
|
|
const void *message, // message fragment
|
|
size_t length); // length of message fragment in bytes
|
|
|
|
|
|
//
|
|
// Final: compute the hash for the current SpookyHash state
|
|
//
|
|
// This does not modify the state; you can keep updating it afterward
|
|
//
|
|
// The result is the same as if SpookyHash() had been called with
|
|
// all the pieces concatenated into one message.
|
|
//
|
|
void Final(
|
|
uint64 *hash1, // out only: first 64 bits of hash value.
|
|
uint64 *hash2); // out only: second 64 bits of hash value.
|
|
#endif
|
|
|
|
//
|
|
// left rotate a 64-bit value by k bytes
|
|
//
|
|
static inline uint64 Rot64(uint64 x, int k)
|
|
{
|
|
return (x << k) | (x >> (64 - k));
|
|
}
|
|
|
|
//
|
|
// This is used if the input is 96 bytes long or longer.
|
|
//
|
|
// The internal state is fully overwritten every 96 bytes.
|
|
// Every input bit appears to cause at least 128 bits of entropy
|
|
// before 96 other bytes are combined, when run forward or backward
|
|
// For every input bit,
|
|
// Two inputs differing in just that input bit
|
|
// Where "differ" means xor or subtraction
|
|
// And the base value is random
|
|
// When run forward or backwards one Mix
|
|
// I tried 3 pairs of each; they all differed by at least 212 bits.
|
|
//
|
|
static inline void Mix(
|
|
const uint64 *data,
|
|
uint64 &s0, uint64 &s1, uint64 &s2, uint64 &s3,
|
|
uint64 &s4, uint64 &s5, uint64 &s6, uint64 &s7,
|
|
uint64 &s8, uint64 &s9, uint64 &s10,uint64 &s11)
|
|
{
|
|
s0 += data[0]; s2 ^= s10; s11 ^= s0; s0 = Rot64(s0,11); s11 += s1;
|
|
s1 += data[1]; s3 ^= s11; s0 ^= s1; s1 = Rot64(s1,32); s0 += s2;
|
|
s2 += data[2]; s4 ^= s0; s1 ^= s2; s2 = Rot64(s2,43); s1 += s3;
|
|
s3 += data[3]; s5 ^= s1; s2 ^= s3; s3 = Rot64(s3,31); s2 += s4;
|
|
s4 += data[4]; s6 ^= s2; s3 ^= s4; s4 = Rot64(s4,17); s3 += s5;
|
|
s5 += data[5]; s7 ^= s3; s4 ^= s5; s5 = Rot64(s5,28); s4 += s6;
|
|
s6 += data[6]; s8 ^= s4; s5 ^= s6; s6 = Rot64(s6,39); s5 += s7;
|
|
s7 += data[7]; s9 ^= s5; s6 ^= s7; s7 = Rot64(s7,57); s6 += s8;
|
|
s8 += data[8]; s10 ^= s6; s7 ^= s8; s8 = Rot64(s8,55); s7 += s9;
|
|
s9 += data[9]; s11 ^= s7; s8 ^= s9; s9 = Rot64(s9,54); s8 += s10;
|
|
s10 += data[10]; s0 ^= s8; s9 ^= s10; s10 = Rot64(s10,22); s9 += s11;
|
|
s11 += data[11]; s1 ^= s9; s10 ^= s11; s11 = Rot64(s11,46); s10 += s0;
|
|
}
|
|
|
|
//
|
|
// Mix all 12 inputs together so that h0, h1 are a hash of them all.
|
|
//
|
|
// For two inputs differing in just the input bits
|
|
// Where "differ" means xor or subtraction
|
|
// And the base value is random, or a counting value starting at that bit
|
|
// The final result will have each bit of h0, h1 flip
|
|
// For every input bit,
|
|
// with probability 50 +- .3%
|
|
// For every pair of input bits,
|
|
// with probability 50 +- 3%
|
|
//
|
|
// This does not rely on the last Mix() call having already mixed some.
|
|
// Two iterations was almost good enough for a 64-bit result, but a
|
|
// 128-bit result is reported, so End() does three iterations.
|
|
//
|
|
static inline void EndPartial(
|
|
uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
|
|
uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
|
|
uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
|
|
{
|
|
h11+= h1; h2 ^= h11; h1 = Rot64(h1,44);
|
|
h0 += h2; h3 ^= h0; h2 = Rot64(h2,15);
|
|
h1 += h3; h4 ^= h1; h3 = Rot64(h3,34);
|
|
h2 += h4; h5 ^= h2; h4 = Rot64(h4,21);
|
|
h3 += h5; h6 ^= h3; h5 = Rot64(h5,38);
|
|
h4 += h6; h7 ^= h4; h6 = Rot64(h6,33);
|
|
h5 += h7; h8 ^= h5; h7 = Rot64(h7,10);
|
|
h6 += h8; h9 ^= h6; h8 = Rot64(h8,13);
|
|
h7 += h9; h10^= h7; h9 = Rot64(h9,38);
|
|
h8 += h10; h11^= h8; h10= Rot64(h10,53);
|
|
h9 += h11; h0 ^= h9; h11= Rot64(h11,42);
|
|
h10+= h0; h1 ^= h10; h0 = Rot64(h0,54);
|
|
}
|
|
|
|
static inline void End(
|
|
const uint64 *data,
|
|
uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3,
|
|
uint64 &h4, uint64 &h5, uint64 &h6, uint64 &h7,
|
|
uint64 &h8, uint64 &h9, uint64 &h10,uint64 &h11)
|
|
{
|
|
h0 += data[0]; h1 += data[1]; h2 += data[2]; h3 += data[3];
|
|
h4 += data[4]; h5 += data[5]; h6 += data[6]; h7 += data[7];
|
|
h8 += data[8]; h9 += data[9]; h10 += data[10]; h11 += data[11];
|
|
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
EndPartial(h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
}
|
|
|
|
//
|
|
// The goal is for each bit of the input to expand into 128 bits of
|
|
// apparent entropy before it is fully overwritten.
|
|
// n trials both set and cleared at least m bits of h0 h1 h2 h3
|
|
// n: 2 m: 29
|
|
// n: 3 m: 46
|
|
// n: 4 m: 57
|
|
// n: 5 m: 107
|
|
// n: 6 m: 146
|
|
// n: 7 m: 152
|
|
// when run forwards or backwards
|
|
// for all 1-bit and 2-bit diffs
|
|
// with diffs defined by either xor or subtraction
|
|
// with a base of all zeros plus a counter, or plus another bit, or random
|
|
//
|
|
static inline void ShortMix(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
|
|
{
|
|
h2 = Rot64(h2,50); h2 += h3; h0 ^= h2;
|
|
h3 = Rot64(h3,52); h3 += h0; h1 ^= h3;
|
|
h0 = Rot64(h0,30); h0 += h1; h2 ^= h0;
|
|
h1 = Rot64(h1,41); h1 += h2; h3 ^= h1;
|
|
h2 = Rot64(h2,54); h2 += h3; h0 ^= h2;
|
|
h3 = Rot64(h3,48); h3 += h0; h1 ^= h3;
|
|
h0 = Rot64(h0,38); h0 += h1; h2 ^= h0;
|
|
h1 = Rot64(h1,37); h1 += h2; h3 ^= h1;
|
|
h2 = Rot64(h2,62); h2 += h3; h0 ^= h2;
|
|
h3 = Rot64(h3,34); h3 += h0; h1 ^= h3;
|
|
h0 = Rot64(h0,5); h0 += h1; h2 ^= h0;
|
|
h1 = Rot64(h1,36); h1 += h2; h3 ^= h1;
|
|
}
|
|
|
|
//
|
|
// Mix all 4 inputs together so that h0, h1 are a hash of them all.
|
|
//
|
|
// For two inputs differing in just the input bits
|
|
// Where "differ" means xor or subtraction
|
|
// And the base value is random, or a counting value starting at that bit
|
|
// The final result will have each bit of h0, h1 flip
|
|
// For every input bit,
|
|
// with probability 50 +- .3% (it is probably better than that)
|
|
// For every pair of input bits,
|
|
// with probability 50 +- .75% (the worst case is approximately that)
|
|
//
|
|
static inline void ShortEnd(uint64 &h0, uint64 &h1, uint64 &h2, uint64 &h3)
|
|
{
|
|
h3 ^= h2; h2 = Rot64(h2,15); h3 += h2;
|
|
h0 ^= h3; h3 = Rot64(h3,52); h0 += h3;
|
|
h1 ^= h0; h0 = Rot64(h0,26); h1 += h0;
|
|
h2 ^= h1; h1 = Rot64(h1,51); h2 += h1;
|
|
h3 ^= h2; h2 = Rot64(h2,28); h3 += h2;
|
|
h0 ^= h3; h3 = Rot64(h3,9); h0 += h3;
|
|
h1 ^= h0; h0 = Rot64(h0,47); h1 += h0;
|
|
h2 ^= h1; h1 = Rot64(h1,54); h2 += h1;
|
|
h3 ^= h2; h2 = Rot64(h2,32); h3 += h2;
|
|
h0 ^= h3; h3 = Rot64(h3,25); h0 += h3;
|
|
h1 ^= h0; h0 = Rot64(h0,63); h1 += h0;
|
|
}
|
|
|
|
private:
|
|
|
|
//
|
|
// Short is used for messages under 192 bytes in length
|
|
// Short has a low startup cost, the normal mode is good for long
|
|
// keys, the cost crossover is at about 192 bytes. The two modes were
|
|
// held to the same quality bar.
|
|
//
|
|
static void Short(
|
|
const void *message, // message (array of bytes, not necessarily
|
|
// aligned)
|
|
size_t length, // length of message (in bytes)
|
|
uint64 *hash1, // in/out: in the seed, out the hash value
|
|
uint64 *hash2); // in/out: in the seed, out the hash value
|
|
|
|
// number of uint64's in internal state
|
|
static const size_t sc_numVars = 12;
|
|
|
|
// size of the internal state
|
|
static const size_t sc_blockSize = sc_numVars*8;
|
|
|
|
// size of buffer of unhashed data, in bytes
|
|
static const size_t sc_bufSize = 2*sc_blockSize;
|
|
|
|
//
|
|
// sc_const: a constant which:
|
|
// * is not zero
|
|
// * is odd
|
|
// * is a not-very-regular mix of 1's and 0's
|
|
// * does not need any other special mathematical properties
|
|
//
|
|
static const uint64 sc_const = 0xdeadbeefdeadbeefLL;
|
|
|
|
uint64 m_data[2*sc_numVars]; // unhashed data, for partial messages
|
|
uint64 m_state[sc_numVars]; // internal state of the hash
|
|
size_t m_length; // total length of the input so far
|
|
uint8 m_remainder; // length of unhashed data stashed in m_data
|
|
};
|
|
|
|
#define ALLOW_UNALIGNED_READS 1
|
|
|
|
//
|
|
// short hash ... it could be used on any message,
|
|
// but it's used by Spooky just for short messages.
|
|
//
|
|
void SpookyHash::Short(
|
|
const void *message,
|
|
size_t length,
|
|
uint64 *hash1,
|
|
uint64 *hash2)
|
|
{
|
|
uint64 buf[2*sc_numVars];
|
|
union
|
|
{
|
|
const uint8 *p8;
|
|
uint32 *p32;
|
|
uint64 *p64;
|
|
size_t i;
|
|
} u;
|
|
|
|
u.p8 = (const uint8 *)message;
|
|
|
|
if (!ALLOW_UNALIGNED_READS && (u.i & 0x7))
|
|
{
|
|
memcpy(buf, message, length);
|
|
u.p64 = buf;
|
|
}
|
|
|
|
size_t remainder = length%32;
|
|
uint64 a=*hash1;
|
|
uint64 b=*hash2;
|
|
uint64 c=sc_const;
|
|
uint64 d=sc_const;
|
|
|
|
if (length > 15)
|
|
{
|
|
const uint64 *end = u.p64 + (length/32)*4;
|
|
|
|
// handle all complete sets of 32 bytes
|
|
for (; u.p64 < end; u.p64 += 4)
|
|
{
|
|
c += u.p64[0];
|
|
d += u.p64[1];
|
|
ShortMix(a,b,c,d);
|
|
a += u.p64[2];
|
|
b += u.p64[3];
|
|
}
|
|
|
|
//Handle the case of 16+ remaining bytes.
|
|
if (remainder >= 16)
|
|
{
|
|
c += u.p64[0];
|
|
d += u.p64[1];
|
|
ShortMix(a,b,c,d);
|
|
u.p64 += 2;
|
|
remainder -= 16;
|
|
}
|
|
}
|
|
|
|
// Handle the last 0..15 bytes, and its length
|
|
d += ((uint64)length) << 56;
|
|
switch (remainder)
|
|
{
|
|
case 15:
|
|
d += ((uint64)u.p8[14]) << 48;
|
|
// FALLTHRU
|
|
case 14:
|
|
d += ((uint64)u.p8[13]) << 40;
|
|
// FALLTHRU
|
|
case 13:
|
|
d += ((uint64)u.p8[12]) << 32;
|
|
// FALLTHRU
|
|
case 12:
|
|
d += u.p32[2];
|
|
c += u.p64[0];
|
|
break;
|
|
case 11:
|
|
d += ((uint64)u.p8[10]) << 16;
|
|
// FALLTHRU
|
|
case 10:
|
|
d += ((uint64)u.p8[9]) << 8;
|
|
// FALLTHRU
|
|
case 9:
|
|
d += (uint64)u.p8[8];
|
|
// FALLTHRU
|
|
case 8:
|
|
c += u.p64[0];
|
|
break;
|
|
case 7:
|
|
c += ((uint64)u.p8[6]) << 48;
|
|
// FALLTHRU
|
|
case 6:
|
|
c += ((uint64)u.p8[5]) << 40;
|
|
// FALLTHRU
|
|
case 5:
|
|
c += ((uint64)u.p8[4]) << 32;
|
|
// FALLTHRU
|
|
case 4:
|
|
c += u.p32[0];
|
|
break;
|
|
case 3:
|
|
c += ((uint64)u.p8[2]) << 16;
|
|
// FALLTHRU
|
|
case 2:
|
|
c += ((uint64)u.p8[1]) << 8;
|
|
// FALLTHRU
|
|
case 1:
|
|
c += (uint64)u.p8[0];
|
|
break;
|
|
case 0:
|
|
c += sc_const;
|
|
d += sc_const;
|
|
}
|
|
ShortEnd(a,b,c,d);
|
|
*hash1 = a;
|
|
*hash2 = b;
|
|
}
|
|
|
|
// do the whole hash in one call
|
|
void SpookyHash::Hash128(
|
|
const void *message,
|
|
size_t length,
|
|
uint64 *hash1,
|
|
uint64 *hash2)
|
|
{
|
|
if (length < sc_bufSize)
|
|
{
|
|
Short(message, length, hash1, hash2);
|
|
return;
|
|
}
|
|
|
|
uint64 h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
|
|
uint64 buf[sc_numVars];
|
|
uint64 *end;
|
|
union
|
|
{
|
|
const uint8 *p8;
|
|
uint64 *p64;
|
|
size_t i;
|
|
} u;
|
|
size_t remainder;
|
|
|
|
h0=h3=h6=h9 = *hash1;
|
|
h1=h4=h7=h10 = *hash2;
|
|
h2=h5=h8=h11 = sc_const;
|
|
|
|
u.p8 = (const uint8 *)message;
|
|
end = u.p64 + (length/sc_blockSize)*sc_numVars;
|
|
|
|
// handle all whole sc_blockSize blocks of bytes
|
|
if (ALLOW_UNALIGNED_READS || ((u.i & 0x7) == 0))
|
|
{
|
|
while (u.p64 < end)
|
|
{
|
|
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
u.p64 += sc_numVars;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (u.p64 < end)
|
|
{
|
|
memcpy(buf, u.p64, sc_blockSize);
|
|
Mix(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
u.p64 += sc_numVars;
|
|
}
|
|
}
|
|
|
|
// handle the last partial block of sc_blockSize bytes
|
|
remainder = (length - ((const uint8 *)end-(const uint8 *)message));
|
|
memcpy(buf, end, remainder);
|
|
memset(((uint8 *)buf)+remainder, 0, sc_blockSize-remainder);
|
|
((uint8 *)buf)[sc_blockSize-1] = static_cast<uint8>(remainder);
|
|
|
|
// do some final mixing
|
|
End(buf, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
*hash1 = h0;
|
|
*hash2 = h1;
|
|
}
|
|
|
|
#ifdef OPENSUBDIV3_BFR_HASH_INCLUDE_UNUSED_FUNCTIONS
|
|
// init spooky state
|
|
void SpookyHash::Init(uint64 seed1, uint64 seed2)
|
|
{
|
|
m_length = 0;
|
|
m_remainder = 0;
|
|
m_state[0] = seed1;
|
|
m_state[1] = seed2;
|
|
}
|
|
|
|
// add a message fragment to the state
|
|
void SpookyHash::Update(const void *message, size_t length)
|
|
{
|
|
uint64 h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11;
|
|
size_t newLength = length + m_remainder;
|
|
uint8 remainder;
|
|
union
|
|
{
|
|
const uint8 *p8;
|
|
uint64 *p64;
|
|
size_t i;
|
|
} u;
|
|
const uint64 *end;
|
|
|
|
// Is this message fragment too short? If it is, stuff it away.
|
|
if (newLength < sc_bufSize)
|
|
{
|
|
memcpy(&((uint8 *)m_data)[m_remainder], message, length);
|
|
m_length = length + m_length;
|
|
m_remainder = (uint8)newLength;
|
|
return;
|
|
}
|
|
|
|
// init the variables
|
|
if (m_length < sc_bufSize)
|
|
{
|
|
h0=h3=h6=h9 = m_state[0];
|
|
h1=h4=h7=h10 = m_state[1];
|
|
h2=h5=h8=h11 = sc_const;
|
|
}
|
|
else
|
|
{
|
|
h0 = m_state[0];
|
|
h1 = m_state[1];
|
|
h2 = m_state[2];
|
|
h3 = m_state[3];
|
|
h4 = m_state[4];
|
|
h5 = m_state[5];
|
|
h6 = m_state[6];
|
|
h7 = m_state[7];
|
|
h8 = m_state[8];
|
|
h9 = m_state[9];
|
|
h10 = m_state[10];
|
|
h11 = m_state[11];
|
|
}
|
|
m_length = length + m_length;
|
|
|
|
// if we've got anything stuffed away, use it now
|
|
if (m_remainder)
|
|
{
|
|
uint8 prefix = sc_bufSize-m_remainder;
|
|
memcpy(&(((uint8 *)m_data)[m_remainder]), message, prefix);
|
|
u.p64 = m_data;
|
|
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
Mix(&u.p64[sc_numVars], h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
u.p8 = ((const uint8 *)message) + prefix;
|
|
length -= prefix;
|
|
}
|
|
else
|
|
{
|
|
u.p8 = (const uint8 *)message;
|
|
}
|
|
|
|
// handle all whole blocks of sc_blockSize bytes
|
|
end = u.p64 + (length/sc_blockSize)*sc_numVars;
|
|
remainder = (uint8)(length-((const uint8 *)end-u.p8));
|
|
if (ALLOW_UNALIGNED_READS || (u.i & 0x7) == 0)
|
|
{
|
|
while (u.p64 < end)
|
|
{
|
|
Mix(u.p64, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
u.p64 += sc_numVars;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (u.p64 < end)
|
|
{
|
|
memcpy(m_data, u.p8, sc_blockSize);
|
|
Mix(m_data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
u.p64 += sc_numVars;
|
|
}
|
|
}
|
|
|
|
// stuff away the last few bytes
|
|
m_remainder = remainder;
|
|
memcpy(m_data, end, remainder);
|
|
|
|
// stuff away the variables
|
|
m_state[0] = h0;
|
|
m_state[1] = h1;
|
|
m_state[2] = h2;
|
|
m_state[3] = h3;
|
|
m_state[4] = h4;
|
|
m_state[5] = h5;
|
|
m_state[6] = h6;
|
|
m_state[7] = h7;
|
|
m_state[8] = h8;
|
|
m_state[9] = h9;
|
|
m_state[10] = h10;
|
|
m_state[11] = h11;
|
|
}
|
|
|
|
// report the hash for the concatenation of all message fragments so far
|
|
void SpookyHash::Final(uint64 *hash1, uint64 *hash2)
|
|
{
|
|
// init the variables
|
|
if (m_length < sc_bufSize)
|
|
{
|
|
*hash1 = m_state[0];
|
|
*hash2 = m_state[1];
|
|
Short( m_data, m_length, hash1, hash2);
|
|
return;
|
|
}
|
|
|
|
const uint64 *data = (const uint64 *)m_data;
|
|
uint8 remainder = m_remainder;
|
|
|
|
uint64 h0 = m_state[0];
|
|
uint64 h1 = m_state[1];
|
|
uint64 h2 = m_state[2];
|
|
uint64 h3 = m_state[3];
|
|
uint64 h4 = m_state[4];
|
|
uint64 h5 = m_state[5];
|
|
uint64 h6 = m_state[6];
|
|
uint64 h7 = m_state[7];
|
|
uint64 h8 = m_state[8];
|
|
uint64 h9 = m_state[9];
|
|
uint64 h10 = m_state[10];
|
|
uint64 h11 = m_state[11];
|
|
|
|
if (remainder >= sc_blockSize)
|
|
{
|
|
// m_data can contain two blocks; handle any whole first block
|
|
Mix(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
data += sc_numVars;
|
|
remainder -= sc_blockSize;
|
|
}
|
|
|
|
// mix in the last partial block, and the length mod sc_blockSize
|
|
memset(&((uint8 *)data)[remainder], 0, (sc_blockSize-remainder));
|
|
|
|
((uint8 *)data)[sc_blockSize-1] = remainder;
|
|
|
|
// do some final mixing
|
|
End(data, h0,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,h11);
|
|
|
|
*hash1 = h0;
|
|
*hash2 = h1;
|
|
}
|
|
#endif
|
|
|
|
} // anon
|
|
|
|
|
|
//
|
|
// Public functions exposed for OpenSubdiv:
|
|
//
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
namespace Bfr {
|
|
namespace internal {
|
|
|
|
uint32_t
|
|
Hash32(const void *data, size_t len)
|
|
{
|
|
return SpookyHash::Hash32(data, len, /*seed=*/0);
|
|
}
|
|
|
|
uint32_t
|
|
Hash32(const void *data, size_t len, uint32_t seed)
|
|
{
|
|
return SpookyHash::Hash32(data, len, seed);
|
|
}
|
|
|
|
uint64_t
|
|
Hash64(const void *data, size_t len)
|
|
{
|
|
return SpookyHash::Hash64(data, len, /*seed=*/0);
|
|
}
|
|
|
|
uint64_t
|
|
Hash64(const void *data, size_t len, uint64_t seed)
|
|
{
|
|
return SpookyHash::Hash64(data, len, seed);
|
|
}
|
|
|
|
} // end namespace internal
|
|
} // end namespace Bfr
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
} // end namespace OpenSubdiv
|