OpenSubdiv/examples/dxPtexViewer/dxPtexViewer.cpp
2013-10-15 17:47:58 -07:00

1744 lines
58 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <D3D11.h>
#include <D3Dcompiler.h>
#include <osd/error.h>
#include <osd/vertex.h>
#include <osd/d3d11DrawContext.h>
#include <osd/d3d11DrawRegistry.h>
#include <osd/d3d11PtexMipmapTexture.h>
#include <osd/cpuD3D11VertexBuffer.h>
#include <osd/cpuComputeContext.h>
#include <osd/cpuComputeController.h>
OpenSubdiv::OsdCpuComputeController * g_cpuComputeController = NULL;
#ifdef OPENSUBDIV_HAS_OPENMP
#include <osd/ompComputeController.h>
OpenSubdiv::OsdOmpComputeController * g_ompComputeController = NULL;
#endif
#undef OPENSUBDIV_HAS_OPENCL // XXX: dyu OpenCL D3D11 interop needs work...
#ifdef OPENSUBDIV_HAS_OPENCL
#include <osd/clD3D11VertexBuffer.h>
#include <osd/clComputeContext.h>
#include <osd/clComputeController.h>
#include "../common/clInit.h"
cl_context g_clContext;
cl_command_queue g_clQueue;
OpenSubdiv::OsdCLComputeController * g_clComputeController = NULL;
#endif
#ifdef OPENSUBDIV_HAS_CUDA
#include <osd/cudaD3D11VertexBuffer.h>
#include <osd/cudaComputeContext.h>
#include <osd/cudaComputeController.h>
#include <cuda_runtime_api.h>
#include <cuda_d3d11_interop.h>
bool g_cudaInitialized = false;
OpenSubdiv::OsdCudaComputeController * g_cudaComputeController = NULL;
#endif
#include <osd/d3d11VertexBuffer.h>
#include <osd/d3d11ComputeContext.h>
#include <osd/d3d11ComputeController.h>
OpenSubdiv::OsdD3D11ComputeController * g_d3d11ComputeController = NULL;
#include <osd/d3d11Mesh.h>
OpenSubdiv::OsdD3D11MeshInterface *g_mesh;
#include "Ptexture.h"
#include "PtexUtils.h"
#include "../common/stopwatch.h"
#include "../common/simple_math.h"
#include "../common/d3d11_hud.h"
#include "../../regression/common/shape_utils.h"
static const char *g_shaderSource =
#include "shader.inc"
;
#include <algorithm>
#include <cfloat>
#include <fstream>
#include <string>
#include <sstream>
#include <vector>
#define SAFE_RELEASE(p) { if(p) { (p)->Release(); (p)=NULL; } }
typedef OpenSubdiv::HbrMesh<OpenSubdiv::OsdVertex> OsdHbrMesh;
typedef OpenSubdiv::HbrVertex<OpenSubdiv::OsdVertex> OsdHbrVertex;
typedef OpenSubdiv::HbrFace<OpenSubdiv::OsdVertex> OsdHbrFace;
typedef OpenSubdiv::HbrHalfedge<OpenSubdiv::OsdVertex> OsdHbrHalfedge;
enum KernelType { kCPU = 0,
kOPENMP = 1,
kCUDA = 2,
kCL = 3,
kDirectCompute = 4 };
enum HudCheckBox { HUD_CB_ADAPTIVE,
HUD_CB_DISPLAY_OCCLUSION,
HUD_CB_DISPLAY_NORMALMAP,
HUD_CB_DISPLAY_SPECULAR,
HUD_CB_ANIMATE_VERTICES,
HUD_CB_VIEW_LOD,
HUD_CB_FRACTIONAL_SPACING,
HUD_CB_PATCH_CULL,
HUD_CB_IBL,
HUD_CB_BLOOM,
HUD_CB_SEAMLESS_MIPMAP,
HUD_CB_FREEZE };
enum HudRadioGroup { HUD_RB_KERNEL,
HUD_RB_LEVEL,
HUD_RB_SCHEME,
HUD_RB_WIRE,
HUD_RB_COLOR,
HUD_RB_DISPLACEMENT,
HUD_RB_NORMAL };
enum DisplayType { DISPLAY_WIRE,
DISPLAY_SHADED,
DISPLAY_WIRE_ON_SHADED };
enum ColorType { COLOR_NONE,
COLOR_PTEX_NEAREST,
COLOR_PTEX_HW_BILINEAR,
COLOR_PTEX_BILINEAR,
COLOR_PTEX_BIQUADRATIC,
COLOR_PATCHTYPE,
COLOR_PATCHCOORD,
COLOR_NORMAL };
enum DisplacementType { DISPLACEMENT_NONE,
DISPLACEMENT_HW_BILINEAR,
DISPLACEMENT_BILINEAR,
DISPLACEMENT_BIQUADRATIC };
enum NormalType { NORMAL_SURFACE,
NORMAL_FACET,
NORMAL_HW_SCREENSPACE,
NORMAL_SCREENSPACE,
NORMAL_BIQUADRATIC,
NORMAL_BIQUADRATIC_WG };
//-----------------------------------------------------------------------------
int g_frame = 0,
g_repeatCount = 0;
// GUI variables
int g_fullscreen = 0,
g_wire = DISPLAY_SHADED,
g_drawNormals = 0,
g_mbutton[3] = {0, 0, 0},
g_level = 2,
g_tessLevel = 2,
g_kernel = kCPU,
g_scheme = 0,
g_running = 1,
g_maxMipmapLevels = 10,
g_color = COLOR_PTEX_BILINEAR,
g_displacement = DISPLACEMENT_NONE,
g_normal = NORMAL_SURFACE;
float g_moveScale = 0.0f,
g_displacementScale = 1.0f,
g_mipmapBias = 0.0;
bool g_adaptive = true,
g_yup = false,
g_patchCull = true,
g_screenSpaceTess = true,
g_fractionalSpacing = true,
g_ibl = false,
g_bloom = false,
g_freeze = false;
// ptex switch
bool g_occlusion = false,
g_specular = false;
bool g_seamless = true;
// camera
float g_rotate[2] = {0, 0},
g_prev_x = 0,
g_prev_y = 0,
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0;
// viewport
int g_width = 1024,
g_height = 1024;
D3D11hud *g_hud = NULL;
// performance
float g_cpuTime = 0;
float g_gpuTime = 0;
#define NUM_FPS_TIME_SAMPLES 6
float g_fpsTimeSamples[NUM_FPS_TIME_SAMPLES] = {0, 0, 0, 0, 0, 0};
int g_currentFpsTimeSample = 0;
Stopwatch g_fpsTimer;
float g_animTime = 0;
// geometry
std::vector<float> g_positions,
g_normals;
OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexImage = 0;
OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexDisplacement = 0;
OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexOcclusion = 0;
OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexSpecular = 0;
const char * g_ptexColorFilename;
ID3D11Device * g_pd3dDevice = NULL;
ID3D11DeviceContext * g_pd3dDeviceContext = NULL;
IDXGISwapChain * g_pSwapChain = NULL;
ID3D11RenderTargetView * g_pSwapChainRTV = NULL;
ID3D11RasterizerState* g_pRasterizerState = NULL;
ID3D11InputLayout* g_pInputLayout = NULL;
ID3D11DepthStencilState* g_pDepthStencilState = NULL;
ID3D11Texture2D * g_pDepthStencilBuffer = NULL;
ID3D11Buffer* g_pcbPerFrame = NULL;
ID3D11Buffer* g_pcbTessellation = NULL;
ID3D11Buffer* g_pcbLighting = NULL;
ID3D11Buffer* g_pcbConfig = NULL;
ID3D11DepthStencilView* g_pDepthStencilView = NULL;
bool g_bDone = false;
//------------------------------------------------------------------------------
static void
calcNormals(OsdHbrMesh * mesh, std::vector<float> const & pos, std::vector<float> & result ) {
// calc normal vectors
int nverts = (int)pos.size()/3;
int nfaces = mesh->GetNumCoarseFaces();
for (int i = 0; i < nfaces; ++i) {
OsdHbrFace * f = mesh->GetFace(i);
float const * p0 = &pos[f->GetVertex(0)->GetID()*3],
* p1 = &pos[f->GetVertex(1)->GetID()*3],
* p2 = &pos[f->GetVertex(2)->GetID()*3];
float n[3];
cross(n, p0, p1, p2);
for (int j = 0; j < f->GetNumVertices(); j++) {
int idx = f->GetVertex(j)->GetID() * 3;
result[idx ] += n[0];
result[idx+1] += n[1];
result[idx+2] += n[2];
}
}
for (int i = 0; i < nverts; ++i)
normalize(&result[i*3]);
}
//------------------------------------------------------------------------------
static void
updateGeom() {
int nverts = (int)g_positions.size() / 3;
std::vector<float> vertex;
vertex.reserve(nverts*6);
const float *p = &g_positions[0];
const float *n = &g_normals[0];
for (int i = 0; i < nverts; ++i) {
float move = g_size*0.005f*cosf(p[0]*100/g_size+g_frame*0.01f);
vertex.push_back(p[0]);
vertex.push_back(p[1]+g_moveScale*move);
vertex.push_back(p[2]);
p += 3;
// if (g_adaptive == false)
{
vertex.push_back(n[0]);
vertex.push_back(n[1]);
vertex.push_back(n[2]);
n += 3;
}
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
Stopwatch s;
s.Start();
g_mesh->Refine();
s.Stop();
g_cpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
g_mesh->Synchronize();
s.Stop();
g_gpuTime = float(s.GetElapsed() * 1000.0f);
}
//-------------------------------------------------------------------------------
static void
fitFrame()
{
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
}
//-------------------------------------------------------------------------------
template <class T>
OpenSubdiv::HbrMesh<T> * createPTexGeo(PtexTexture * r)
{
PtexMetaData* meta = r->getMetaData();
if (meta->numKeys() < 3) return NULL;
const float* vp;
const int *vi, *vc;
int nvp, nvi, nvc;
meta->getValue("PtexFaceVertCounts", vc, nvc);
if (nvc == 0)
return NULL;
meta->getValue("PtexVertPositions", vp, nvp);
if (nvp == 0)
return NULL;
meta->getValue("PtexFaceVertIndices", vi, nvi);
if (nvi == 0)
return NULL;
static OpenSubdiv::HbrCatmarkSubdivision<T> _catmark;
static OpenSubdiv::HbrBilinearSubdivision<T> _bilinear;
OpenSubdiv::HbrMesh<T> * mesh;
if (g_scheme == 0)
mesh = new OpenSubdiv::HbrMesh<T>(&_catmark);
else
mesh = new OpenSubdiv::HbrMesh<T>(&_bilinear);
g_positions.clear();
g_positions.reserve(nvp);
// compute model bounding
float min[3] = {vp[0], vp[1], vp[2]};
float max[3] = {vp[0], vp[1], vp[2]};
for (int i = 0; i < nvp/3; ++i) {
for (int j = 0; j < 3; ++j) {
float v = vp[i*3+j];
g_positions.push_back(v);
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
mesh->NewVertex(i, T());
}
for (int j = 0; j < 3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
const int *fv = vi;
for (int i = 0, ptxidx = 0; i < nvc; ++i) {
int nv = vc[i];
OpenSubdiv::HbrFace<T> * face = mesh->NewFace(nv, (int *)fv, 0);
face->SetPtexIndex(ptxidx);
if (nv != 4)
ptxidx += nv;
else
ptxidx++;
fv += nv;
}
mesh->SetInterpolateBoundaryMethod(OpenSubdiv::HbrMesh<T>::k_InterpolateBoundaryEdgeOnly);
// set creases here
// applyTags<T>( mesh, sh );
mesh->Finish();
return mesh;
}
//------------------------------------------------------------------------------
static const char *
getKernelName(int kernel) {
if (kernel == kCPU)
return "CPU";
else if (kernel == kOPENMP)
return "OpenMP";
else if (kernel == kCUDA)
return "Cuda";
else if (kernel == kCL)
return "OpenCL";
else if (kernel == kDirectCompute)
return "DirectCompute";
return "Unknown";
}
//------------------------------------------------------------------------------
union Effect {
struct {
unsigned int wire:2;
unsigned int color:3;
unsigned int displacement:2;
unsigned int normal:3;
int occlusion:1;
int specular:1;
int patchCull:1;
int screenSpaceTess:1;
int fractionalSpacing:1;
int ibl:1;
int seamless:1;
};
int value;
bool operator < (const Effect &e) const {
return value < e.value;
}
};
typedef std::pair<OpenSubdiv::OsdDrawContext::PatchDescriptor, Effect> EffectDesc;
class EffectDrawRegistry : public OpenSubdiv::OsdD3D11DrawRegistry<EffectDesc> {
protected:
virtual ConfigType *
_CreateDrawConfig(DescType const & desc,
SourceConfigType const * sconfig,
ID3D11Device * pd3dDevice,
ID3D11InputLayout ** ppInputLayout,
D3D11_INPUT_ELEMENT_DESC const * pInputElementDescs,
int numInputElements);
virtual SourceConfigType *
_CreateDrawSourceConfig(DescType const & desc, ID3D11Device * pd3dDevice);
};
EffectDrawRegistry::SourceConfigType *
EffectDrawRegistry::_CreateDrawSourceConfig(DescType const & desc, ID3D11Device *pd3dDevice)
{
Effect effect = desc.second;
SourceConfigType * sconfig =
BaseRegistry::_CreateDrawSourceConfig(desc.first, pd3dDevice);
assert(sconfig);
if (effect.patchCull)
sconfig->commonShader.AddDefine("OSD_ENABLE_PATCH_CULL");
if (effect.screenSpaceTess)
sconfig->commonShader.AddDefine("OSD_ENABLE_SCREENSPACE_TESSELLATION");
if (effect.fractionalSpacing)
sconfig->commonShader.AddDefine("OSD_FRACTIONAL_ODD_SPACING");
bool quad = true;
if (desc.first.GetType() == OpenSubdiv::FarPatchTables::QUADS ||
desc.first.GetType() == OpenSubdiv::FarPatchTables::TRIANGLES) {
sconfig->vertexShader.source = g_shaderSource;
sconfig->vertexShader.target = "vs_5_0";
sconfig->vertexShader.entry = "vs_main";
if (effect.displacement) {
sconfig->geometryShader.AddDefine("FLAT_NORMALS");
}
} else {
quad = false;
sconfig->domainShader.source = g_shaderSource + sconfig->domainShader.source;
if (effect.displacement and (not effect.normal))
sconfig->geometryShader.AddDefine("FLAT_NORMALS");
}
sconfig->geometryShader.source = g_shaderSource;
sconfig->geometryShader.target = "gs_5_0";
sconfig->geometryShader.entry = "gs_main";
sconfig->pixelShader.source = g_shaderSource;
sconfig->pixelShader.target = "ps_5_0";
sconfig->pixelShader.entry = "ps_main";
switch (effect.color) {
case COLOR_NONE:
break;
case COLOR_PTEX_NEAREST:
sconfig->pixelShader.AddDefine("COLOR_PTEX_NEAREST");
break;
case COLOR_PTEX_HW_BILINEAR:
sconfig->pixelShader.AddDefine("COLOR_PTEX_HW_BILINEAR");
break;
case COLOR_PTEX_BILINEAR:
sconfig->pixelShader.AddDefine("COLOR_PTEX_BILINEAR");
break;
case COLOR_PTEX_BIQUADRATIC:
sconfig->pixelShader.AddDefine("COLOR_PTEX_BIQUADRATIC");
break;
case COLOR_PATCHTYPE:
sconfig->pixelShader.AddDefine("COLOR_PATCHTYPE");
break;
case COLOR_PATCHCOORD:
sconfig->pixelShader.AddDefine("COLOR_PATCHCOORD");
break;
case COLOR_NORMAL:
sconfig->pixelShader.AddDefine("COLOR_NORMAL");
break;
}
switch (effect.displacement) {
case DISPLACEMENT_NONE:
break;
case DISPLACEMENT_HW_BILINEAR:
sconfig->commonShader.AddDefine("DISPLACEMENT_HW_BILINEAR");
break;
case DISPLACEMENT_BILINEAR:
sconfig->commonShader.AddDefine("DISPLACEMENT_BILINEAR");
break;
case DISPLACEMENT_BIQUADRATIC:
sconfig->commonShader.AddDefine("DISPLACEMENT_BIQUADRATIC");
break;
}
switch (effect.normal) {
case NORMAL_FACET:
sconfig->commonShader.AddDefine("NORMAL_FACET");
break;
case NORMAL_HW_SCREENSPACE:
sconfig->commonShader.AddDefine("NORMAL_HW_SCREENSPACE");
break;
case NORMAL_SCREENSPACE:
sconfig->commonShader.AddDefine("NORMAL_SCREENSPACE");
break;
case NORMAL_BIQUADRATIC:
sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC");
break;
case NORMAL_BIQUADRATIC_WG:
sconfig->commonShader.AddDefine("OSD_COMPUTE_NORMAL_DERIVATIVES");
sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC_WG");
break;
}
if (effect.occlusion)
sconfig->pixelShader.AddDefine("USE_PTEX_OCCLUSION");
if (effect.specular)
sconfig->pixelShader.AddDefine("USE_PTEX_SPECULAR");
if (effect.ibl)
sconfig->pixelShader.AddDefine("USE_IBL");
if (quad) {
sconfig->geometryShader.AddDefine("PRIM_QUAD");
sconfig->pixelShader.AddDefine("PRIM_QUAD");
} else {
sconfig->geometryShader.AddDefine("PRIM_TRI");
sconfig->pixelShader.AddDefine("PRIM_TRI");
}
if (effect.seamless) {
sconfig->commonShader.AddDefine("SEAMLESS_MIPMAP");
}
if (effect.wire == 0) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_WIRE");
sconfig->pixelShader.AddDefine("GEOMETRY_OUT_WIRE");
} else if (effect.wire == 1) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_FILL");
sconfig->pixelShader.AddDefine("GEOMETRY_OUT_FILL");
} else if (effect.wire == 2) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_LINE");
sconfig->pixelShader.AddDefine("GEOMETRY_OUT_LINE");
}
return sconfig;
}
EffectDrawRegistry::ConfigType *
EffectDrawRegistry::_CreateDrawConfig(
DescType const & desc,
SourceConfigType const * sconfig,
ID3D11Device * pd3dDevice,
ID3D11InputLayout ** ppInputLayout,
D3D11_INPUT_ELEMENT_DESC const * pInputElementDescs,
int numInputElements)
{
ConfigType * config = BaseRegistry::_CreateDrawConfig(desc.first, sconfig,
pd3dDevice, ppInputLayout, pInputElementDescs, numInputElements);
assert(config);
return config;
}
EffectDrawRegistry effectRegistry;
//------------------------------------------------------------------------------
OpenSubdiv::OsdD3D11PtexMipmapTexture *
createPtex(const char *filename)
{
Ptex::String ptexError;
printf("Loading ptex : %s\n", filename);
#define USE_PTEX_CACHE
#define PTEX_CACHE_SIZE (512*1024*1024)
#ifdef USE_PTEX_CACHE
PtexCache *cache = PtexCache::create(1, PTEX_CACHE_SIZE);
PtexTexture *ptex = cache->get(filename, ptexError);
#else
PtexTexture *ptex = PtexTexture::open(filename, ptexError, true);
#endif
if (ptex == NULL) {
printf("Error in reading %s\n", filename);
exit(1);
}
OpenSubdiv::OsdD3D11PtexMipmapTexture *osdPtex =
OpenSubdiv::OsdD3D11PtexMipmapTexture::Create(g_pd3dDeviceContext,
ptex, g_maxMipmapLevels);
ptex->release();
#ifdef USE_PTEX_CACHE
cache->release();
#endif
return osdPtex;
}
void
createOsdMesh(int level, int kernel)
{
Ptex::String ptexError;
PtexTexture *ptexColor = PtexTexture::open(g_ptexColorFilename, ptexError, true);
if (ptexColor == NULL) {
printf("Error in reading %s\n", g_ptexColorFilename);
exit(1);
}
// generate Hbr representation from ptex
OsdHbrMesh * hmesh = createPTexGeo<OpenSubdiv::OsdVertex>(ptexColor);
if (hmesh == NULL) return;
g_normals.resize(g_positions.size(), 0.0f);
calcNormals(hmesh, g_positions, g_normals);
delete g_mesh;
g_mesh = NULL;
// Adaptive refinement currently supported only for catmull-clark scheme
bool doAdaptive = (g_adaptive != 0 and g_scheme == 0);
OpenSubdiv::OsdMeshBitset bits;
bits.set(OpenSubdiv::MeshAdaptive, doAdaptive);
bits.set(OpenSubdiv::MeshPtexData, true);
int numVertexElements = 6; //g_adaptive ? 3 : 6;
int numVaryingElements = 0;
if (kernel == kCPU) {
if (not g_cpuComputeController) {
g_cpuComputeController = new OpenSubdiv::OsdCpuComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCpuD3D11VertexBuffer,
OpenSubdiv::OsdCpuComputeController,
OpenSubdiv::OsdD3D11DrawContext>(
g_cpuComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits, g_pd3dDeviceContext);
#ifdef OPENSUBDIV_HAS_OPENMP
} else if (kernel == kOPENMP) {
if (not g_ompComputeController) {
g_ompComputeController = new OpenSubdiv::OsdOmpComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCpuD3D11VertexBuffer,
OpenSubdiv::OsdOmpComputeController,
OpenSubdiv::OsdD3D11DrawContext>(
g_ompComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits, g_pd3dDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
} else if (kernel == kCL) {
if (not g_clComputeController) {
g_clComputeController = new OpenSubdiv::OsdCLComputeController(g_clContext, g_clQueue);
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCLD3D11VertexBuffer,
OpenSubdiv::OsdCLComputeController,
OpenSubdiv::OsdD3D11DrawContext>(
g_clComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits, g_pd3dDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
} else if (kernel == kCUDA) {
if (not g_cudaComputeController) {
g_cudaComputeController = new OpenSubdiv::OsdCudaComputeController();
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdCudaD3D11VertexBuffer,
OpenSubdiv::OsdCudaComputeController,
OpenSubdiv::OsdD3D11DrawContext>(
g_cudaComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits, g_pd3dDeviceContext);
#endif
} else if (g_kernel == kDirectCompute) {
if (not g_d3d11ComputeController) {
g_d3d11ComputeController = new OpenSubdiv::OsdD3D11ComputeController(g_pd3dDeviceContext);
}
g_mesh = new OpenSubdiv::OsdMesh<OpenSubdiv::OsdD3D11VertexBuffer,
OpenSubdiv::OsdD3D11ComputeController,
OpenSubdiv::OsdD3D11DrawContext>(
g_d3d11ComputeController,
hmesh,
numVertexElements,
numVaryingElements,
level, bits, g_pd3dDeviceContext);
} else {
printf("Unsupported kernel %s\n", getKernelName(kernel));
}
// Hbr mesh can be deleted
delete hmesh;
updateGeom();
}
//------------------------------------------------------------------------------
static void
bindProgram(Effect effect, OpenSubdiv::OsdDrawContext::PatchArray const & patch)
{
EffectDesc effectDesc(patch.GetDescriptor(), effect);
// input layout
const D3D11_INPUT_ELEMENT_DESC hInElementDesc[] = {
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 4*3, D3D11_INPUT_PER_VERTEX_DATA, 0 }
};
EffectDrawRegistry::ConfigType *
config = effectRegistry.GetDrawConfig(
effectDesc, g_pd3dDevice,
&g_pInputLayout, hInElementDesc, ARRAYSIZE(hInElementDesc));
assert(g_pInputLayout);
// Update transform state
{
__declspec(align(16))
struct CB_PER_FRAME_CONSTANTS
{
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
};
if (! g_pcbPerFrame) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(CB_PER_FRAME_CONSTANTS);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbPerFrame);
}
assert(g_pcbPerFrame);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbPerFrame, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
CB_PER_FRAME_CONSTANTS* pData = ( CB_PER_FRAME_CONSTANTS* )MappedResource.pData;
float aspect = (g_height > 0) ? (float)g_width / g_height : 1.0f;
identity(pData->ModelViewMatrix);
translate(pData->ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(pData->ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(pData->ModelViewMatrix, g_rotate[0], 0, 1, 0);
translate(pData->ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]);
identity(pData->ProjectionMatrix);
perspective(pData->ProjectionMatrix, 45.0, aspect, 0.01f, 500.0);
multMatrix(pData->ModelViewProjectionMatrix, pData->ModelViewMatrix, pData->ProjectionMatrix);
g_pd3dDeviceContext->Unmap( g_pcbPerFrame, 0 );
}
// Update tessellation state
{
__declspec(align(16))
struct Tessellation {
float TessLevel;
int GregoryQuadOffsetBase;
int PrimitiveIdBase;
};
if (! g_pcbTessellation) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(Tessellation);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbTessellation);
}
assert(g_pcbTessellation);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbTessellation, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
Tessellation * pData = ( Tessellation* )MappedResource.pData;
pData->TessLevel = static_cast<float>(1 << g_tessLevel);
pData->GregoryQuadOffsetBase = patch.GetQuadOffsetIndex();
pData->PrimitiveIdBase = patch.GetPatchIndex();
g_pd3dDeviceContext->Unmap( g_pcbTessellation, 0 );
}
// Update config state
{
__declspec(align(16))
struct Config {
float displacementScale;
float mipmapBias;
};
if (! g_pcbConfig) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(Config);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbConfig);
}
assert(g_pcbConfig);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbConfig, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
Config * pData = ( Config* )MappedResource.pData;
pData->displacementScale = g_displacementScale;
pData->mipmapBias = g_mipmapBias;
g_pd3dDeviceContext->Unmap( g_pcbConfig, 0 );
}
g_pd3dDeviceContext->IASetInputLayout(g_pInputLayout);
g_pd3dDeviceContext->VSSetShader(config->vertexShader, NULL, 0);
g_pd3dDeviceContext->VSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->HSSetShader(config->hullShader, NULL, 0);
g_pd3dDeviceContext->HSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->HSSetConstantBuffers(1, 1, &g_pcbTessellation);
g_pd3dDeviceContext->DSSetShader(config->domainShader, NULL, 0);
g_pd3dDeviceContext->DSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->DSSetConstantBuffers(3, 1, &g_pcbConfig);
g_pd3dDeviceContext->GSSetShader(config->geometryShader, NULL, 0);
g_pd3dDeviceContext->GSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->PSSetShader(config->pixelShader, NULL, 0);
g_pd3dDeviceContext->PSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->PSSetConstantBuffers(2, 1, &g_pcbLighting);
g_pd3dDeviceContext->PSSetConstantBuffers(3, 1, &g_pcbConfig);
if (g_mesh->GetDrawContext()->vertexBufferSRV) {
g_pd3dDeviceContext->VSSetShaderResources(0, 1, &g_mesh->GetDrawContext()->vertexBufferSRV);
}
if (g_mesh->GetDrawContext()->vertexValenceBufferSRV) {
g_pd3dDeviceContext->VSSetShaderResources(1, 1, &g_mesh->GetDrawContext()->vertexValenceBufferSRV);
}
if (g_mesh->GetDrawContext()->quadOffsetBufferSRV) {
g_pd3dDeviceContext->HSSetShaderResources(2, 1, &g_mesh->GetDrawContext()->quadOffsetBufferSRV);
}
if (g_mesh->GetDrawContext()->ptexCoordinateBufferSRV) {
g_pd3dDeviceContext->HSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV);
g_pd3dDeviceContext->DSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV);
}
g_pd3dDeviceContext->PSSetShaderResources(4, 1, g_osdPTexImage->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(5, 1, g_osdPTexImage->GetLayoutSRV());
if (g_osdPTexDisplacement) {
g_pd3dDeviceContext->DSSetShaderResources(6, 1, g_osdPTexDisplacement->GetTexelsSRV());
g_pd3dDeviceContext->DSSetShaderResources(7, 1, g_osdPTexDisplacement->GetLayoutSRV());
g_pd3dDeviceContext->PSSetShaderResources(6, 1, g_osdPTexDisplacement->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(7, 1, g_osdPTexDisplacement->GetLayoutSRV());
}
if (g_osdPTexOcclusion) {
g_pd3dDeviceContext->PSSetShaderResources(8, 1, g_osdPTexOcclusion->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(9, 1, g_osdPTexOcclusion->GetLayoutSRV());
}
if (g_osdPTexSpecular) {
g_pd3dDeviceContext->PSSetShaderResources(10, 1, g_osdPTexSpecular->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(11, 1, g_osdPTexSpecular->GetLayoutSRV());
}
}
static void
drawModel()
{
ID3D11Buffer *buffer = g_mesh->BindVertexBuffer();
assert(buffer);
UINT hStrides = 6*sizeof(float);
UINT hOffsets = 0;
g_pd3dDeviceContext->IASetVertexBuffers(0, 1, &buffer, &hStrides, &hOffsets);
OpenSubdiv::OsdDrawContext::PatchArrayVector const & patches =
g_mesh->GetDrawContext()->patchArrays;
g_pd3dDeviceContext->IASetIndexBuffer(g_mesh->GetDrawContext()->patchIndexBuffer,
DXGI_FORMAT_R32_UINT, 0);
// patch drawing
for (int i = 0; i < (int)patches.size(); ++i) {
OpenSubdiv::OsdDrawContext::PatchArray const & patch = patches[i];
D3D11_PRIMITIVE_TOPOLOGY topology;
// if (patch.GetDescriptor().GetType() != OpenSubdiv::FarPatchTables::REGULAR) continue;
if (g_mesh->GetDrawContext()->IsAdaptive()) {
switch (patch.GetDescriptor().GetNumControlVertices()) {
case 4:
topology = D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST;
break;
case 9:
topology = D3D11_PRIMITIVE_TOPOLOGY_9_CONTROL_POINT_PATCHLIST;
break;
case 12:
topology = D3D11_PRIMITIVE_TOPOLOGY_12_CONTROL_POINT_PATCHLIST;
break;
case 16:
topology = D3D11_PRIMITIVE_TOPOLOGY_16_CONTROL_POINT_PATCHLIST;
break;
default:
assert(false);
break;
}
} else {
if (g_scheme == kLoop) {
topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
} else {
topology = D3D11_PRIMITIVE_TOPOLOGY_LINELIST_ADJ;
}
}
Effect effect;
effect.value = 0;
effect.color = g_color;
effect.displacement = g_displacement;
effect.occlusion = g_occlusion;
effect.normal = g_normal;
effect.specular = g_specular;
effect.patchCull = g_patchCull;
effect.screenSpaceTess = g_screenSpaceTess;
effect.fractionalSpacing = g_fractionalSpacing;
effect.ibl = g_ibl;
effect.wire = g_wire;
effect.seamless = g_seamless;
bindProgram(effect, patch);
g_pd3dDeviceContext->IASetPrimitiveTopology(topology);
g_pd3dDeviceContext->DrawIndexed(patch.GetNumIndices(),
patch.GetVertIndex(), 0);
}
}
//------------------------------------------------------------------------------
static void
display()
{
float color[4] = {0.006f, 0.006f, 0.006f, 1.0f};
g_pd3dDeviceContext->ClearRenderTargetView(g_pSwapChainRTV, color);
// Clear the depth buffer.
g_pd3dDeviceContext->ClearDepthStencilView(g_pDepthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0);
g_pd3dDeviceContext->OMSetDepthStencilState(g_pDepthStencilState, 1);
g_pd3dDeviceContext->RSSetState(g_pRasterizerState);
drawModel();
if (g_hud->IsVisible()) {
g_fpsTimer.Stop();
double fps = 1.0/g_fpsTimer.GetElapsed();
g_fpsTimer.Start();
g_hud->DrawString(10, -100, "# of Vertices = %d", g_mesh->GetNumVertices());
g_hud->DrawString(10, -60, "GPU TIME = %.3f ms", g_gpuTime);
g_hud->DrawString(10, -40, "CPU TIME = %.3f ms", g_cpuTime);
g_hud->DrawString(10, -20, "FPS = %3.1f", fps);
}
g_hud->Flush();
g_pSwapChain->Present(0, 0);
}
//------------------------------------------------------------------------------
static void
mouse(int button, int state, int x, int y) {
if (state == 0)
g_hud->MouseRelease();
if (button == 0 && state == 1 && g_hud->MouseClick(x, y)) return;
if (button < 3) {
g_prev_x = float(x);
g_prev_y = float(y);
g_mbutton[button] = state;
}
}
//------------------------------------------------------------------------------
static void
motion(int x, int y) {
if (g_hud->MouseCapture()) {
// check gui
g_hud->MouseMotion(x, y);
} else if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) or
(!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if(g_dolly <= 0.01) g_dolly = 0.01f;
}
g_prev_x = float(x);
g_prev_y = float(y);
}
//-----------------------------------------------------------------------------
static void
quit() {
g_bDone = true;
if (g_osdPTexImage) delete g_osdPTexImage;
if (g_osdPTexDisplacement) delete g_osdPTexDisplacement;
if (g_osdPTexOcclusion) delete g_osdPTexOcclusion;
if (g_osdPTexSpecular) delete g_osdPTexSpecular;
if (g_mesh) delete g_mesh;
if (g_hud) delete g_hud;
SAFE_RELEASE(g_pRasterizerState);
SAFE_RELEASE(g_pInputLayout);
SAFE_RELEASE(g_pDepthStencilState);
SAFE_RELEASE(g_pcbPerFrame);
SAFE_RELEASE(g_pcbTessellation);
SAFE_RELEASE(g_pcbLighting);
SAFE_RELEASE(g_pcbConfig);
SAFE_RELEASE(g_pDepthStencilView);
SAFE_RELEASE(g_pSwapChainRTV);
SAFE_RELEASE(g_pSwapChain);
SAFE_RELEASE(g_pd3dDeviceContext);
SAFE_RELEASE(g_pd3dDevice);
delete g_cpuComputeController;
#ifdef OPENSUBDIV_HAS_OPENMP
delete g_ompComputeController;
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
delete g_clComputeController;
uninitCL(g_clContext, g_clQueue);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
delete g_cudaComputeController;
cudaDeviceReset();
#endif
delete g_d3d11ComputeController;
PostQuitMessage(0);
exit(0);
}
//------------------------------------------------------------------------------
static void
keyboard(char key) {
if (g_hud->KeyDown((int)tolower(key))) return;
switch (key) {
case 'Q': quit();
case 'F': fitFrame(); break;
case '+':
case '=': g_tessLevel++; break;
case '-': g_tessLevel = std::max(1, g_tessLevel-1); break;
case 0x1b: g_hud->SetVisible(!g_hud->IsVisible()); break;
}
}
//------------------------------------------------------------------------------
static void
callbackWireframe(int b)
{
g_wire = b;
}
static void
callbackKernel(int k)
{
g_kernel = k;
#ifdef OPENSUBDIV_HAS_OPENCL
if (g_kernel == kCL and g_clContext == NULL) {
if (initCL(&g_clContext, &g_clQueue) == false) {
printf("Error in initializing OpenCL\n");
exit(1);
}
}
#endif
#ifdef OPENSUBDIV_HAS_CUDA
if (g_kernel == kCUDA and g_cudaInitialized == false) {
g_cudaInitialized = true;
cudaD3D11SetDirect3DDevice( g_pd3dDevice );
}
#endif
createOsdMesh(g_level, g_kernel);
}
static void
callbackScheme(int s)
{
g_scheme = s;
createOsdMesh(g_level, g_kernel);
}
static void
callbackLevel(int l)
{
g_level = l;
createOsdMesh(g_level, g_kernel);
}
static void
callbackColor(int c)
{
g_color = c;
}
static void
callbackDisplacement(int d)
{
g_displacement = d;
}
static void
callbackNormal(int n)
{
g_normal = n;
}
static void
callbackCheckBox(bool checked, int button)
{
bool rebuild = false;
switch (button) {
case HUD_CB_ADAPTIVE:
g_adaptive = checked;
rebuild = true;
break;
case HUD_CB_DISPLAY_OCCLUSION:
g_occlusion = checked;
break;
case HUD_CB_DISPLAY_SPECULAR:
g_specular = checked;
break;
case HUD_CB_ANIMATE_VERTICES:
g_moveScale = checked ? 1.0f : 0.0f;
g_animTime = 0;
break;
case HUD_CB_VIEW_LOD:
g_screenSpaceTess = checked;
break;
case HUD_CB_FRACTIONAL_SPACING:
g_fractionalSpacing = checked;
break;
case HUD_CB_PATCH_CULL:
g_patchCull = checked;
break;
case HUD_CB_IBL:
g_ibl = checked;
break;
case HUD_CB_SEAMLESS_MIPMAP:
g_seamless = checked;
break;
case HUD_CB_FREEZE:
g_freeze = checked;
break;
}
if (rebuild)
createOsdMesh(g_level, g_kernel);
}
static void
callbackSlider(float value, int data)
{
switch (data) {
case 0:
g_mipmapBias = value;
break;
case 1:
g_displacementScale = value;
break;
}
}
static void
initHUD()
{
g_hud = new D3D11hud(g_pd3dDeviceContext);
g_hud->Init(g_width, g_height);
g_hud->AddRadioButton(0, "CPU (K)", true, 10, 10, callbackKernel, kCPU, 'K');
#ifdef OPENSUBDIV_HAS_OPENMP
g_hud->AddRadioButton(0, "OPENMP", false, 10, 30, callbackKernel, kOPENMP, 'K');
#endif
#ifdef OPENSUBDIV_HAS_CUDA
g_hud->AddRadioButton(0, "CUDA", false, 10, 50, callbackKernel, kCUDA, 'K');
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
g_hud->AddRadioButton(0, "OPENCL", false, 10, 70, callbackKernel, kCL, 'K');
#endif
g_hud->AddRadioButton(0, "DirectCompute", false, 10, 90, callbackKernel, kDirectCompute, 'K');
g_hud->AddCheckBox("Adaptive (`)", g_adaptive,
10, 150, callbackCheckBox, HUD_CB_ADAPTIVE, '`');
g_hud->AddRadioButton(HUD_RB_SCHEME, "CATMARK", true, 10, 190, callbackScheme, 0, 's');
g_hud->AddRadioButton(HUD_RB_SCHEME, "BILINEAR", false, 10, 210, callbackScheme, 1, 's');
for (int i = 1; i < 8; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud->AddRadioButton(HUD_RB_LEVEL, level, i == g_level,
10, 220+i*20, callbackLevel, i, '0'+i);
}
g_hud->AddRadioButton(HUD_RB_WIRE, "Wire (W)", (g_wire == DISPLAY_WIRE),
100, 10, callbackWireframe, 0, 'w');
g_hud->AddRadioButton(HUD_RB_WIRE, "Shaded", (g_wire == DISPLAY_SHADED),
100, 30, callbackWireframe, 1, 'w');
g_hud->AddRadioButton(HUD_RB_WIRE, "Wire on Shaded", (g_wire == DISPLAY_WIRE_ON_SHADED),
100, 50, callbackWireframe, 2, 'w');
g_hud->AddLabel("Color (C)", -200, 10);
g_hud->AddRadioButton(HUD_RB_COLOR, "None", (g_color == COLOR_NONE),
-200, 30, callbackColor, COLOR_NONE, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex Nearest", (g_color == COLOR_PTEX_NEAREST),
-200, 50, callbackColor, COLOR_PTEX_NEAREST, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex HW bilinear", (g_color == COLOR_PTEX_HW_BILINEAR),
-200, 70, callbackColor, COLOR_PTEX_HW_BILINEAR, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex bilinear", (g_color == COLOR_PTEX_BILINEAR),
-200, 90, callbackColor, COLOR_PTEX_BILINEAR, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex biquadratic", (g_color == COLOR_PTEX_BIQUADRATIC),
-200, 110, callbackColor, COLOR_PTEX_BIQUADRATIC, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Patch type", (g_color == COLOR_PATCHTYPE),
-200, 130, callbackColor, COLOR_PATCHTYPE, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Patch coord", (g_color == COLOR_PATCHCOORD),
-200, 150, callbackColor, COLOR_PATCHCOORD, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Normal", (g_color == COLOR_NORMAL),
-200, 170, callbackColor, COLOR_NORMAL, 'c');
if (g_osdPTexDisplacement != NULL) {
g_hud->AddLabel("Displacement (D)", -200, 200);
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "None",
(g_displacement == DISPLACEMENT_NONE),
-200, 220, callbackDisplacement, DISPLACEMENT_NONE, 'd');
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "HW bilinear",
(g_displacement == DISPLACEMENT_HW_BILINEAR),
-200, 240, callbackDisplacement, DISPLACEMENT_HW_BILINEAR, 'd');
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "Bilinear",
(g_displacement == DISPLACEMENT_BILINEAR),
-200, 260, callbackDisplacement, DISPLACEMENT_BILINEAR, 'd');
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "Biquadratic",
(g_displacement == DISPLACEMENT_BIQUADRATIC),
-200, 280, callbackDisplacement, DISPLACEMENT_BIQUADRATIC, 'd');
g_hud->AddLabel("Normal (N)", -200, 310);
g_hud->AddRadioButton(HUD_RB_NORMAL, "Surface",
(g_normal == NORMAL_SURFACE),
-200, 330, callbackNormal, NORMAL_SURFACE, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Facet",
(g_normal == NORMAL_FACET),
-200, 350, callbackNormal, NORMAL_FACET, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "HW Screen space",
(g_normal == NORMAL_HW_SCREENSPACE),
-200, 370, callbackNormal, NORMAL_HW_SCREENSPACE, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Screen space",
(g_normal == NORMAL_SCREENSPACE),
-200, 390, callbackNormal, NORMAL_SCREENSPACE, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Biquadratic",
(g_normal == NORMAL_BIQUADRATIC),
-200, 410, callbackNormal, NORMAL_BIQUADRATIC, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Biquadratic WG",
(g_normal == NORMAL_BIQUADRATIC_WG),
-200, 430, callbackNormal, NORMAL_BIQUADRATIC_WG, 'n');
}
g_hud->AddSlider("Mipmap Bias", 0, 5, 0,
-200, 450, 20, false, callbackSlider, 0);
g_hud->AddSlider("Displacement", 0, 5, 1,
-200, 490, 20, false, callbackSlider, 1);
g_hud->AddCheckBox("Seamless Mipmap", g_seamless,
-200, 530, callbackCheckBox, HUD_CB_SEAMLESS_MIPMAP, 'j');
if (g_osdPTexOcclusion != NULL) {
g_hud->AddCheckBox("Ambient Occlusion (A)", g_occlusion,
250, 10, callbackCheckBox, HUD_CB_DISPLAY_OCCLUSION, 'a');
}
if (g_osdPTexSpecular != NULL)
g_hud->AddCheckBox("Specular (S)", g_specular,
250, 30, callbackCheckBox, HUD_CB_DISPLAY_SPECULAR, 's');
g_hud->AddCheckBox("Animate vertices (M)", g_moveScale != 0.0,
450, 10, callbackCheckBox, HUD_CB_ANIMATE_VERTICES, 'm');
g_hud->AddCheckBox("Screen space LOD (V)", g_screenSpaceTess,
450, 30, callbackCheckBox, HUD_CB_VIEW_LOD, 'v');
g_hud->AddCheckBox("Fractional spacing (T)", g_fractionalSpacing,
450, 50, callbackCheckBox, HUD_CB_FRACTIONAL_SPACING, 't');
g_hud->AddCheckBox("Frustum Patch Culling (B)", g_patchCull,
450, 70, callbackCheckBox, HUD_CB_PATCH_CULL, 'b');
g_hud->AddCheckBox("Freeze (spc)", g_freeze,
450, 90, callbackCheckBox, HUD_CB_FREEZE, ' ');
}
//------------------------------------------------------------------------------
static bool
initD3D11(HWND hWnd)
{
D3D_DRIVER_TYPE driverTypes[] = {
D3D_DRIVER_TYPE_HARDWARE,
D3D_DRIVER_TYPE_WARP,
D3D_DRIVER_TYPE_REFERENCE,
};
UINT numDriverTypes = ARRAYSIZE(driverTypes);
DXGI_SWAP_CHAIN_DESC hDXGISwapChainDesc;
hDXGISwapChainDesc.BufferDesc.Width = g_width;
hDXGISwapChainDesc.BufferDesc.Height = g_height;
hDXGISwapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
hDXGISwapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
hDXGISwapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM_SRGB;
hDXGISwapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
hDXGISwapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
hDXGISwapChainDesc.SampleDesc.Count = 1;
hDXGISwapChainDesc.SampleDesc.Quality = 0;
hDXGISwapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
hDXGISwapChainDesc.BufferCount = 1;
hDXGISwapChainDesc.OutputWindow = hWnd;
hDXGISwapChainDesc.Windowed = TRUE;
hDXGISwapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;
hDXGISwapChainDesc.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH;
// create device and swap chain
HRESULT hr;
D3D_DRIVER_TYPE hDriverType = D3D_DRIVER_TYPE_NULL;
D3D_FEATURE_LEVEL hFeatureLevel = D3D_FEATURE_LEVEL_11_0;
for(UINT driverTypeIndex=0; driverTypeIndex < numDriverTypes; driverTypeIndex++){
hDriverType = driverTypes[driverTypeIndex];
hr = D3D11CreateDeviceAndSwapChain(NULL,
hDriverType, NULL, 0, NULL, 0,
D3D11_SDK_VERSION, &hDXGISwapChainDesc,
&g_pSwapChain, &g_pd3dDevice,
&hFeatureLevel, &g_pd3dDeviceContext);
if(SUCCEEDED(hr)){
break;
}
}
if(FAILED(hr)){
MessageBoxW(hWnd, L"D3D11CreateDeviceAndSwapChain", L"Err", MB_ICONSTOP);
return false;
}
// create rasterizer
D3D11_RASTERIZER_DESC rasterDesc;
ZeroMemory(&rasterDesc, sizeof(rasterDesc));
rasterDesc.AntialiasedLineEnable = false;
rasterDesc.CullMode = D3D11_CULL_NONE; // XXX
rasterDesc.DepthBias = 0;
rasterDesc.DepthBiasClamp = 0.0f;
rasterDesc.DepthClipEnable = true;
rasterDesc.FillMode = D3D11_FILL_SOLID;
rasterDesc.FrontCounterClockwise = true;
rasterDesc.MultisampleEnable = false;
rasterDesc.ScissorEnable = false;
rasterDesc.SlopeScaledDepthBias = 0.0f;
g_pd3dDevice->CreateRasterizerState(&rasterDesc, &g_pRasterizerState);
assert(g_pRasterizerState);
__declspec(align(16))
struct Lighting {
struct Light {
float position[4];
float ambient[4];
float diffuse[4];
float specular[4];
} lightSource[2];
} lightingData = {
0.5, 0.2f, 1.0f, 0.0f,
0.1f, 0.1f, 0.1f, 1.0f,
0.7f, 0.7f, 0.7f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
-0.8f, 0.4f, -1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
};
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(lightingData);
D3D11_SUBRESOURCE_DATA initData;
initData.pSysMem = &lightingData;
g_pd3dDevice->CreateBuffer(&cbDesc, &initData, &g_pcbLighting);
assert(g_pcbLighting);
// create depth stencil state
D3D11_DEPTH_STENCIL_DESC depthStencilDesc;
ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc));
depthStencilDesc.DepthEnable = true;
depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL;
depthStencilDesc.StencilEnable = false;
g_pd3dDevice->CreateDepthStencilState(&depthStencilDesc, &g_pDepthStencilState);
assert(g_pDepthStencilState);
return true;
}
static bool
updateRenderTarget(HWND hWnd)
{
RECT rc;
GetClientRect(hWnd, &rc);
UINT width = rc.right - rc.left;
UINT height = rc.bottom - rc.top;
if (g_pSwapChainRTV && (g_width == width) && (g_height == height)) {
return true;
}
g_width = width;
g_height = height;
g_hud->Rebuild(g_width, g_height);
SAFE_RELEASE(g_pSwapChainRTV);
g_pSwapChain->ResizeBuffers(0, g_width, g_height, DXGI_FORMAT_UNKNOWN, 0);
// get backbuffer of swap chain
ID3D11Texture2D* hpBackBuffer = NULL;
if(FAILED(g_pSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&hpBackBuffer))){
MessageBoxW(hWnd, L"SwpChain GetBuffer", L"Err", MB_ICONSTOP);
return false;
}
// create render target from the back buffer
if(FAILED(g_pd3dDevice->CreateRenderTargetView(hpBackBuffer, NULL, &g_pSwapChainRTV))){
MessageBoxW(hWnd, L"CreateRenderTargetView", L"Err", MB_ICONSTOP);
return false;
}
SAFE_RELEASE(hpBackBuffer);
// create depth buffer
D3D11_TEXTURE2D_DESC depthBufferDesc;
ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc));
depthBufferDesc.Width = g_width;
depthBufferDesc.Height = g_height;
depthBufferDesc.MipLevels = 1;
depthBufferDesc.ArraySize = 1;
depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthBufferDesc.SampleDesc.Count = 1;
depthBufferDesc.SampleDesc.Quality = 0;
depthBufferDesc.Usage = D3D11_USAGE_DEFAULT;
depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
depthBufferDesc.CPUAccessFlags = 0;
depthBufferDesc.MiscFlags = 0;
g_pd3dDevice->CreateTexture2D(&depthBufferDesc, NULL, &g_pDepthStencilBuffer);
assert(g_pDepthStencilBuffer);
D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc));
depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
depthStencilViewDesc.Texture2D.MipSlice = 0;
g_pd3dDevice->CreateDepthStencilView(g_pDepthStencilBuffer, &depthStencilViewDesc, &g_pDepthStencilView);
assert(g_pDepthStencilView);
// set device context to the render target
g_pd3dDeviceContext->OMSetRenderTargets(1, &g_pSwapChainRTV, g_pDepthStencilView);
// init viewport
D3D11_VIEWPORT vp;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
vp.Width = (float)g_width;
vp.Height = (float)g_height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
g_pd3dDeviceContext->RSSetViewports(1, &vp);
return true;
}
//------------------------------------------------------------------------------
static void
callbackError(OpenSubdiv::OsdErrorType err, const char *message)
{
std::ostringstream s;
s << "OsdError: " << err << "\n";
s << message;
OutputDebugString(s.str().c_str());
}
//------------------------------------------------------------------------------
static LRESULT WINAPI
msgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam)
{
switch(msg)
{
case WM_KEYDOWN:
keyboard(MapVirtualKey(UINT(wParam), MAPVK_VK_TO_CHAR));
break;
case WM_DESTROY:
quit();
return 0;
case WM_MOUSEMOVE:
motion(LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_LBUTTONDOWN:
mouse(0, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_LBUTTONUP:
mouse(0, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_MBUTTONDOWN:
mouse(1, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_MBUTTONUP:
mouse(1, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_RBUTTONDOWN:
mouse(2, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_RBUTTONUP:
mouse(2, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_PAINT:
ValidateRect(hWnd, NULL);
return 0;
}
return DefWindowProc(hWnd, msg, wParam, lParam);
}
static std::vector<std::string>
tokenize(std::string const & src)
{
std::vector<std::string> result;
std::stringstream input(src);
std::copy(std::istream_iterator<std::string>(input),
std::istream_iterator<std::string>(),
std::back_inserter< std::vector<std::string> >(result));
return result;
}
int WINAPI
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow)
{
// register window class
TCHAR szWindowClass[] = "OPENSUBDIV_EXAMPLE";
WNDCLASS wcex;
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = msgProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = NULL;
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = NULL;
wcex.lpszClassName = szWindowClass;
RegisterClass(&wcex);
// crete window
RECT rect = { 0, 0, g_width, g_height };
AdjustWindowRect(&rect, WS_OVERLAPPEDWINDOW, FALSE);
HWND hWnd = CreateWindow(szWindowClass,
"OpenSubdiv DirectX Ptex Viewer",
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
rect.right - rect.left,
rect.bottom - rect.top,
NULL,
NULL,
hInstance,
NULL);
std::vector<std::string> argv = tokenize(lpCmdLine);
std::vector<std::string> animobjs;
const char *diffuseEnvironmentMap = NULL, *specularEnvironmentMap = NULL;
const char *colorFilename = NULL, *displacementFilename = NULL,
*occlusionFilename = NULL, *specularFilename = NULL;
for (int i = 0; i < (int)argv.size(); ++i) {
if (strstr(argv[i].c_str(), ".obj"))
animobjs.push_back(argv[i]);
else if (argv[i] == "-l")
g_level = atoi(argv[++i].c_str());
else if (argv[i] == "-c")
g_repeatCount = atoi(argv[++i].c_str());
else if (argv[i] == "-d")
diffuseEnvironmentMap = argv[++i].c_str();
else if (argv[i] == "-e")
specularEnvironmentMap = argv[++i].c_str();
else if (argv[i] == "-y")
g_yup = true;
else if (argv[i] == "-m")
g_maxMipmapLevels = atoi(argv[++i].c_str());
else if (argv[i] == "--disp")
g_displacementScale = (float)atof(argv[++i].c_str());
else if (colorFilename == NULL)
colorFilename = argv[i].c_str();
else if (displacementFilename == NULL) {
displacementFilename = argv[i].c_str();
g_displacement = DISPLACEMENT_BILINEAR;
g_normal = NORMAL_BIQUADRATIC;
} else if (occlusionFilename == NULL) {
occlusionFilename = argv[i].c_str();
g_occlusion = 1;
} else if (specularFilename == NULL) {
specularFilename = argv[i].c_str();
g_specular = 1;
}
}
OsdSetErrorCallback(callbackError);
g_ptexColorFilename = colorFilename;
if (g_ptexColorFilename == NULL) {
printf("Usage: \n");
return 1;
}
initD3D11(hWnd);
createOsdMesh(g_level, g_kernel);
// load ptex files
g_osdPTexImage = createPtex(colorFilename);
if (displacementFilename)
g_osdPTexDisplacement = createPtex(displacementFilename);
if (occlusionFilename)
g_osdPTexOcclusion = createPtex(occlusionFilename);
if (specularFilename)
g_osdPTexSpecular = createPtex(specularFilename);
initHUD();
fitFrame();
// main loop
while (g_bDone == false) {
MSG msg;
ZeroMemory(&msg, sizeof(msg));
while (msg.message != WM_QUIT) {
while (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
if (msg.message == WM_QUIT) goto end;
TranslateMessage(&msg);
DispatchMessage(&msg);
}
if (not g_freeze)
g_frame++;
updateGeom();
updateRenderTarget(hWnd);
display();
}
}
end:
quit();
return 0;
}
//------------------------------------------------------------------------------