OpenSubdiv/opensubdiv/osd/hlslComputeKernel.hlsl
manuelk 3ae50d1c50 Amending Apache license language & file headers.
New text:

     Copyright 2013 Pixar

     Licensed under the Apache License, Version 2.0 (the "Apache License")
     with the following modification; you may not use this file except in
     compliance with the Apache License and the following modification to it:
     Section 6. Trademarks. is deleted and replaced with:

     6. Trademarks. This License does not grant permission to use the trade
        names, trademarks, service marks, or product names of the Licensor
        and its affiliates, except as required to comply with Section 4(c) of
        the License and to reproduce the content of the NOTICE file.

     You may obtain a copy of the Apache License at

         http://www.apache.org/licenses/LICENSE-2.0

     Unless required by applicable law or agreed to in writing, software
     distributed under the Apache License with the above modification is
     distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
     KIND, either express or implied. See the Apache License for the specific
     language governing permissions and limitations under the Apache License.
2013-09-26 12:04:57 -07:00

402 lines
11 KiB
HLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
interface IComputeKernel {
void runKernel( uint3 ID );
};
IComputeKernel kernel;
cbuffer KernelCB : register( b0 ) {
int vertexOffset; // vertex index offset for the batch
int tableOffset; // offset of subdivision table
int indexStart; // start index relative to tableOffset
int indexEnd; // end index relative to tableOffset
bool vertexPass;
// vertex edit kernel
int editPrimVarOffset;
int editPrimVarWidth;
};
/*
+-----+---------------------------------+-----
n-1 | Level n |<batch range>| | n+1
+-----+---------------------------------+-----
^ ^ ^
vertexOffset | |
indexStart indexEnd
*/
RWBuffer<float> vertexBuffer : register( u0 );
RWBuffer<float> varyingBuffer : register( u1 );
Buffer<int> _F_IT : register( t2 );
Buffer<int> _F_ITa : register( t3 );
Buffer<int> _E_IT : register( t4 );
Buffer<int> _V_IT : register( t5 );
Buffer<int> _V_ITa : register( t6 );
Buffer<float> _E_W : register( t7 );
Buffer<float> _V_W : register( t8 );
Buffer<int> _editIndices : register( t9 );
Buffer<float> _editValues : register( t10 );
//--------------------------------------------------------------------------------
struct Vertex
{
#if NUM_VERTEX_ELEMENTS > 0
float vertexData[NUM_VERTEX_ELEMENTS];
#endif
#if NUM_VARYING_ELEMENTS > 0
float varyingData[NUM_VARYING_ELEMENTS];
#endif
};
void clear(out Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = 0;
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] = 0;
}
#endif
}
Vertex readVertex(int index)
{
Vertex v;
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = vertexBuffer[index*NUM_VERTEX_ELEMENTS+i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
v.varyingData[i] = varyingBuffer[index*NUM_VARYING_ELEMENTS+i];
}
#endif
return v;
}
void writeVertex(int index, Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
vertexBuffer[index*NUM_VERTEX_ELEMENTS+i] = v.vertexData[i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
varyingBuffer[index*NUM_VARYING_ELEMENTS+i] = v.varyingData[i];
}
#endif
}
void addWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] += weight * src.vertexData[i];
}
#endif
}
void addVaryingWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VARYING_ELEMENTS > 0
for (int i = 0; i < NUM_VARYING_ELEMENTS; i++) {
v.varyingData[i] += weight * src.varyingData[i];
}
#endif
}
//--------------------------------------------------------------------------------
// Face-vertices compute Kernel
class CatmarkComputeFace : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _F_ITa[2*i];
int n = _F_ITa[2*i+1];
float weight = 1.0/n;
Vertex dst;
clear(dst);
for(int j=0; j<n; ++j){
int index = _F_IT[h+j];
addWithWeight(dst, readVertex(index), weight);
addVaryingWithWeight(dst, readVertex(index), weight);
}
writeVertex(vid, dst);
}
};
// Edge-vertices compute Kernel
class CatmarkComputeEdge : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
Vertex dst;
clear(dst);
int eidx0 = _E_IT[4*i+0];
int eidx1 = _E_IT[4*i+1];
int eidx2 = _E_IT[4*i+2];
int eidx3 = _E_IT[4*i+3];
int4 eidx = int4(eidx0, eidx1, eidx2, eidx3);
float vertWeight = _E_W[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
addWithWeight(dst, readVertex(eidx.x), vertWeight);
addWithWeight(dst, readVertex(eidx.y), vertWeight);
if(eidx.z != -1){
float faceWeight = _E_W[i*2+1];
addWithWeight(dst, readVertex(eidx.z), faceWeight);
addWithWeight(dst, readVertex(eidx.w), faceWeight);
}
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(vid, dst);
}
};
// Edge-vertices compute Kernel (bilinear scheme)
class BilinearComputeEdge : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
Vertex dst;
clear(dst);
int2 eidx = int2(_E_IT[2*i+0],
_E_IT[2*i+1]);
addWithWeight(dst, readVertex(eidx.x), 0.5f);
addWithWeight(dst, readVertex(eidx.y), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(vid, dst);
}
};
// Vertex-vertices compute Kernel (bilinear scheme)
class BilinearComputeVertex : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
Vertex dst;
clear(dst);
int p = _V_ITa[i];
addWithWeight(dst, readVertex(p), 1.0f);
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(vid, dst);
}
};
// Vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
class CatmarkComputeVertexA : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int n = _V_ITa[5*i+1];
int p = _V_ITa[5*i+2];
int eidx0 = _V_ITa[5*i+3];
int eidx1 = _V_ITa[5*i+4];
float weight = vertexPass
? _V_W[i]
: 1.0 - _V_W[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0 && weight<1.0 && n > 0)
weight=1.0-weight;
Vertex dst;
if(! vertexPass)
clear(dst);
else
dst = readVertex(vid);
if (eidx0==-1 || (vertexPass==false && (n==-1)) ) {
addWithWeight(dst, readVertex(p), weight);
} else {
addWithWeight(dst, readVertex(p), weight * 0.75f);
addWithWeight(dst, readVertex(eidx0), weight * 0.125f);
addWithWeight(dst, readVertex(eidx1), weight * 0.125f);
}
if(! vertexPass)
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
};
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
class CatmarkComputeVertexB : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _V_ITa[5*i];
int n = _V_ITa[5*i+1];
int p = _V_ITa[5*i+2];
float weight = _V_W[i];
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * wv);
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(_V_IT[h+j*2]), weight * wp);
addWithWeight(dst, readVertex(_V_IT[h+j*2+1]), weight * wp);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
};
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
class LoopComputeVertexB : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
float PI = 3.14159265358979323846264;
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
int vid = i + vertexOffset;
i += tableOffset;
int h = _V_ITa[5*i];
int n = _V_ITa[5*i+1];
int p = _V_ITa[5*i+2];
float weight = _V_W[i];
float wp = 1.0/n;
float beta = 0.25 * cos(PI*2.0f*wp)+0.375f;
beta = beta * beta;
beta = (0.625f-beta)*wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * (1.0-(beta*n)));
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(_V_IT[h+j]), weight * beta);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(vid, dst);
}
};
class EditAdd : IComputeKernel {
int placeholder;
void runKernel( uint3 ID )
{
int i = int(ID.x) + indexStart;
if (i >= indexEnd) return;
i += tableOffset;
int v = _editIndices[i];
Vertex dst = readVertex(v + vertexOffset);
// seemingly we can't iterate dynamically over vertexData[n]
// due to mysterious glsl runtime limitation...?
for (int j = 0; j < NUM_VERTEX_ELEMENTS; ++j) {
float editValue = _editValues[i*editPrimVarOffset+min(j, editPrimVarWidth)];
editValue *= float(j >= editPrimVarOffset);
editValue *= float(j < (editPrimVarWidth + editPrimVarOffset));
dst.vertexData[j] += editValue;
}
writeVertex(v + vertexOffset, dst);
}
};
CatmarkComputeFace catmarkComputeFace;
CatmarkComputeEdge catmarkComputeEdge;
BilinearComputeEdge bilinearComputeEdge;
BilinearComputeVertex bilinearComputeVertex;
CatmarkComputeVertexA catmarkComputeVertexA;
CatmarkComputeVertexB catmarkComputeVertexB;
LoopComputeVertexB loopComputeVertexB;
EditAdd editAdd;
[numthreads(WORK_GROUP_SIZE, 1, 1)]
void cs_main( uint3 ID : SV_DispatchThreadID )
{
// call kernel
kernel.runKernel(ID);
}