Storage was in place already, so mostly just dealing with bitcasts and
constants.
Simplies some of the bitcasting logic, and this exposed some bugs in the
implementation. Refactor to use correct width integers with explicit bitcast opcodes.
This is a fairly fundamental change on how IDs are handled.
It serves many purposes:
- Improve performance. We only need to iterate over IDs which are
relevant at any one time.
- Makes sure we iterate through IDs in SPIR-V module declaration order
rather than ID space. IDs don't have to be monotonically increasing,
which was an assumption SPIRV-Cross used to have. It has apparently
never been a problem until now.
- Support LUTs of structs. We do this by interleaving declaration of
constants and struct types in SPIR-V module order.
To support this, the ParsedIR interface needed to change slightly.
Before setting any ID with variant_set<T> we let ParsedIR know
that an ID with a specific type has been added. The surface for change
should be minimal.
ParsedIR will maintain a per-type list of IDs which the cross-compiler
will need to consider for later.
Instead of looping over ir.ids[] (which can be extremely large), we loop
over types now, using:
ir.for_each_typed_id<SPIRVariable>([&](uint32_t id, SPIRVariable &var) {
handle_variable(var);
});
Now we make sure that we're never looking at irrelevant types.
Previously, when generating non-Vulkan GLSL, each use of a spec constant
would be subsituted for its default value and the declaration of the constant
itself would be omitted completely.
This change slightly alters this behavior. The uses of the constant are kept,
as well as the declaration, although the latter is stripped of the layout
qualifier. The declaration is also prepended with the following code:
#ifndef <constant name>_value
#define <constant name> <default constant value>
#endif
and the constant itself now looks like
const <constant type> <constant name> = <constant name>_value;
The rationale for this change is that it gives the user a way to provide
custom values for specialization constants even when the target does not
support them.
This is kinda tricky, because if we only conditionally write to a
function parameter variable it is implicitly preserved in SPIR-V, so we must force
an in qualifier on the parameter to get the same behavior in GLSL.
Previously, we would generate parentheses proactively when generating
binary ops, however, this leads to uglier code and hits warnings in
compilers when used as a conditional.