SPIRV-Cross-Vulnerable/spirv_common.hpp
Hans-Kristian Arntzen 5d4bb687bc Support arrays which have spec constant size.
The size of an array can be a specialization constant or a spec constant
op. This complicates things quite a lot.

Reflection becomes very painful in the presence of expressions instead
of literals so add a new array which expresses this.

It is unlikely that we will need to do accurate reflection of interface
types which have specialization constant size.

SSBOs and UBOs will for now throw exception if a dynamic size is used since it
is very difficult to know the real size.
2016-10-03 17:17:11 +02:00

874 lines
18 KiB
C++

/*
* Copyright 2015-2016 ARM Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SPIRV_COMMON_HPP
#define SPIRV_COMMON_HPP
#include <functional>
#include <sstream>
#include <stdio.h>
#include <string.h>
namespace spirv_cross
{
class CompilerError : public std::runtime_error
{
public:
CompilerError(const std::string &str)
: std::runtime_error(str)
{
}
};
namespace inner
{
template <typename T>
void join_helper(std::ostringstream &stream, T &&t)
{
stream << std::forward<T>(t);
}
template <typename T, typename... Ts>
void join_helper(std::ostringstream &stream, T &&t, Ts &&... ts)
{
stream << std::forward<T>(t);
join_helper(stream, std::forward<Ts>(ts)...);
}
}
// Helper template to avoid lots of nasty string temporary munging.
template <typename... Ts>
std::string join(Ts &&... ts)
{
std::ostringstream stream;
inner::join_helper(stream, std::forward<Ts>(ts)...);
return stream.str();
}
inline std::string merge(const std::vector<std::string> &list)
{
std::string s;
for (auto &elem : list)
{
s += elem;
if (&elem != &list.back())
s += ", ";
}
return s;
}
template <typename T>
inline std::string convert_to_string(T &&t)
{
return std::to_string(std::forward<T>(t));
}
// Allow implementations to set a convenient standard precision
#ifndef SPIRV_CROSS_FLT_FMT
#define SPIRV_CROSS_FLT_FMT "%.32g"
#endif
inline std::string convert_to_string(float t)
{
// std::to_string for floating point values is broken.
// Fallback to something more sane.
char buf[64];
sprintf(buf, SPIRV_CROSS_FLT_FMT, t);
// Ensure that the literal is float.
if (!strchr(buf, '.') && !strchr(buf, 'e'))
strcat(buf, ".0");
return buf;
}
inline std::string convert_to_string(double t)
{
// std::to_string for floating point values is broken.
// Fallback to something more sane.
char buf[64];
sprintf(buf, SPIRV_CROSS_FLT_FMT, t);
// Ensure that the literal is float.
if (!strchr(buf, '.') && !strchr(buf, 'e'))
strcat(buf, ".0");
return buf;
}
struct Instruction
{
Instruction(const std::vector<uint32_t> &spirv, uint32_t &index);
uint16_t op;
uint16_t count;
uint32_t offset;
uint32_t length;
};
// Helper for Variant interface.
struct IVariant
{
virtual ~IVariant() = default;
uint32_t self = 0;
};
enum Types
{
TypeNone,
TypeType,
TypeVariable,
TypeConstant,
TypeFunction,
TypeFunctionPrototype,
TypePointer,
TypeBlock,
TypeExtension,
TypeExpression,
TypeConstantOp,
TypeUndef
};
struct SPIRUndef : IVariant
{
enum
{
type = TypeUndef
};
SPIRUndef(uint32_t basetype_)
: basetype(basetype_)
{
}
uint32_t basetype;
};
struct SPIRConstantOp : IVariant
{
enum
{
type = TypeConstantOp
};
SPIRConstantOp(uint32_t result_type, spv::Op op, const uint32_t *args, uint32_t length)
: opcode(op)
, arguments(args, args + length)
, basetype(result_type)
{
}
spv::Op opcode;
std::vector<uint32_t> arguments;
uint32_t basetype;
};
struct SPIRType : IVariant
{
enum
{
type = TypeType
};
enum BaseType
{
Unknown,
Void,
Boolean,
Char,
Int,
UInt,
Int64,
UInt64,
AtomicCounter,
Float,
Double,
Struct,
Image,
SampledImage,
Sampler
};
// Scalar/vector/matrix support.
BaseType basetype = Unknown;
uint32_t width = 0;
uint32_t vecsize = 1;
uint32_t columns = 1;
// Arrays, support array of arrays by having a vector of array sizes.
std::vector<uint32_t> array;
// Array elements can be either specialization constants or specialization ops.
// This array determines how to interpret the array size.
// If an element is true, the element is a literal,
// otherwise, it's an expression, which must be resolved on demand.
// The actual size is not really known until runtime.
std::vector<bool> array_size_literal;
// Pointers
bool pointer = false;
spv::StorageClass storage = spv::StorageClassGeneric;
std::vector<uint32_t> member_types;
bool is_packed = false; // Tightly packed in memory (no alignment padding)
struct Image
{
uint32_t type;
spv::Dim dim;
bool depth;
bool arrayed;
bool ms;
uint32_t sampled;
spv::ImageFormat format;
} image;
// Structs can be declared multiple times if they are used as part of interface blocks.
// We want to detect this so that we only emit the struct definition once.
// Since we cannot rely on OpName to be equal, we need to figure out aliases.
uint32_t type_alias = 0;
// Used in backends to avoid emitting members with conflicting names.
std::unordered_set<std::string> member_name_cache;
};
struct SPIRExtension : IVariant
{
enum
{
type = TypeExtension
};
enum Extension
{
GLSL
};
SPIRExtension(Extension ext_)
: ext(ext_)
{
}
Extension ext;
};
// SPIREntryPoint is not a variant since its IDs are used to decorate OpFunction,
// so in order to avoid conflicts, we can't stick them in the ids array.
struct SPIREntryPoint
{
SPIREntryPoint(uint32_t self_, spv::ExecutionModel execution_model, std::string entry_name)
: self(self_)
, name(std::move(entry_name))
, model(execution_model)
{
}
SPIREntryPoint() = default;
uint32_t self = 0;
std::string name;
std::vector<uint32_t> interface_variables;
uint64_t flags = 0;
struct
{
uint32_t x = 0, y = 0, z = 0;
} workgroup_size;
uint32_t invocations = 0;
uint32_t output_vertices = 0;
spv::ExecutionModel model;
};
struct SPIRExpression : IVariant
{
enum
{
type = TypeExpression
};
// Only created by the backend target to avoid creating tons of temporaries.
SPIRExpression(std::string expr, uint32_t expression_type_, bool immutable_)
: expression(move(expr))
, expression_type(expression_type_)
, immutable(immutable_)
{
}
// If non-zero, prepend expression with to_expression(base_expression).
// Used in amortizing multiple calls to to_expression()
// where in certain cases that would quickly force a temporary when not needed.
uint32_t base_expression = 0;
std::string expression;
uint32_t expression_type = 0;
// If this expression is a forwarded load,
// allow us to reference the original variable.
uint32_t loaded_from = 0;
// If this expression will never change, we can avoid lots of temporaries
// in high level source.
// An expression being immutable can be speculative,
// it is assumed that this is true almost always.
bool immutable = false;
// If this expression has been used while invalidated.
bool used_while_invalidated = false;
// A list of expressions which this expression depends on.
std::vector<uint32_t> expression_dependencies;
};
struct SPIRFunctionPrototype : IVariant
{
enum
{
type = TypeFunctionPrototype
};
SPIRFunctionPrototype(uint32_t return_type_)
: return_type(return_type_)
{
}
uint32_t return_type;
std::vector<uint32_t> parameter_types;
};
struct SPIRBlock : IVariant
{
enum
{
type = TypeBlock
};
enum Terminator
{
Unknown,
Direct, // Emit next block directly without a particular condition.
Select, // Block ends with an if/else block.
MultiSelect, // Block ends with switch statement.
Loop, // Block ends with a loop.
Return, // Block ends with return.
Unreachable, // Noop
Kill // Discard
};
enum Merge
{
MergeNone,
MergeLoop,
MergeSelection
};
enum Method
{
MergeToSelectForLoop,
MergeToDirectForLoop
};
enum ContinueBlockType
{
ContinueNone,
// Continue block is branchless and has at least one instruction.
ForLoop,
// Noop continue block.
WhileLoop,
// Continue block is conditional.
DoWhileLoop,
// Highly unlikely that anything will use this,
// since it is really awkward/impossible to express in GLSL.
ComplexLoop
};
enum
{
NoDominator = 0xffffffffu
};
Terminator terminator = Unknown;
Merge merge = MergeNone;
uint32_t next_block = 0;
uint32_t merge_block = 0;
uint32_t continue_block = 0;
uint32_t return_value = 0; // If 0, return nothing (void).
uint32_t condition = 0;
uint32_t true_block = 0;
uint32_t false_block = 0;
uint32_t default_block = 0;
std::vector<Instruction> ops;
struct Phi
{
uint32_t local_variable; // flush local variable ...
uint32_t parent; // If we're in from_block and want to branch into this block ...
uint32_t function_variable; // to this function-global "phi" variable first.
};
// Before entering this block flush out local variables to magical "phi" variables.
std::vector<Phi> phi_variables;
// Declare these temporaries before beginning the block.
// Used for handling complex continue blocks which have side effects.
std::vector<std::pair<uint32_t, uint32_t>> declare_temporary;
struct Case
{
uint32_t value;
uint32_t block;
};
std::vector<Case> cases;
// If we have tried to optimize code for this block but failed,
// keep track of this.
bool disable_block_optimization = false;
// If the continue block is complex, fallback to "dumb" for loops.
bool complex_continue = false;
// The dominating block which this block might be within.
// Used in continue; blocks to determine if we really need to write continue.
uint32_t loop_dominator = 0;
};
struct SPIRFunction : IVariant
{
enum
{
type = TypeFunction
};
SPIRFunction(uint32_t return_type_, uint32_t function_type_)
: return_type(return_type_)
, function_type(function_type_)
{
}
struct Parameter
{
uint32_t type;
uint32_t id;
uint32_t read_count;
uint32_t write_count;
};
// When calling a function, and we're remapping separate image samplers,
// resolve these arguments into combined image samplers and pass them
// as additional arguments in this order.
// It gets more complicated as functions can pull in their own globals
// and combine them with parameters,
// so we need to distinguish if something is local parameter index
// or a global ID.
struct CombinedImageSamplerParameter
{
uint32_t id;
uint32_t image_id;
uint32_t sampler_id;
bool global_image;
bool global_sampler;
};
uint32_t return_type;
uint32_t function_type;
std::vector<Parameter> arguments;
// Can be used by backends to add magic arguments.
// Currently used by combined image/sampler implementation.
std::vector<Parameter> shadow_arguments;
std::vector<uint32_t> local_variables;
uint32_t entry_block = 0;
std::vector<uint32_t> blocks;
std::vector<CombinedImageSamplerParameter> combined_parameters;
void add_local_variable(uint32_t id)
{
local_variables.push_back(id);
}
void add_parameter(uint32_t parameter_type, uint32_t id)
{
// Arguments are read-only until proven otherwise.
arguments.push_back({ parameter_type, id, 0u, 0u });
}
bool active = false;
bool flush_undeclared = true;
bool do_combined_parameters = true;
};
struct SPIRVariable : IVariant
{
enum
{
type = TypeVariable
};
SPIRVariable() = default;
SPIRVariable(uint32_t basetype_, spv::StorageClass storage_, uint32_t initializer_ = 0)
: basetype(basetype_)
, storage(storage_)
, initializer(initializer_)
{
}
uint32_t basetype = 0;
spv::StorageClass storage = spv::StorageClassGeneric;
uint32_t decoration = 0;
uint32_t initializer = 0;
std::vector<uint32_t> dereference_chain;
bool compat_builtin = false;
// If a variable is shadowed, we only statically assign to it
// and never actually emit a statement for it.
// When we read the variable as an expression, just forward
// shadowed_id as the expression.
bool statically_assigned = false;
uint32_t static_expression = 0;
// Temporaries which can remain forwarded as long as this variable is not modified.
std::vector<uint32_t> dependees;
bool forwardable = true;
bool deferred_declaration = false;
bool phi_variable = false;
bool remapped_variable = false;
uint32_t remapped_components = 0;
SPIRFunction::Parameter *parameter = nullptr;
};
struct SPIRConstant : IVariant
{
enum
{
type = TypeConstant
};
union Constant {
uint32_t u32;
int32_t i32;
float f32;
uint64_t u64;
int64_t i64;
double f64;
};
struct ConstantVector
{
Constant r[4];
uint32_t vecsize;
};
struct ConstantMatrix
{
ConstantVector c[4];
uint32_t columns;
};
inline uint32_t scalar(uint32_t col = 0, uint32_t row = 0) const
{
return m.c[col].r[row].u32;
}
inline float scalar_f32(uint32_t col = 0, uint32_t row = 0) const
{
return m.c[col].r[row].f32;
}
inline int32_t scalar_i32(uint32_t col = 0, uint32_t row = 0) const
{
return m.c[col].r[row].i32;
}
inline double scalar_f64(uint32_t col = 0, uint32_t row = 0) const
{
return m.c[col].r[row].f64;
}
inline int64_t scalar_i64(uint32_t col = 0, uint32_t row = 0) const
{
return m.c[col].r[row].i64;
}
inline uint64_t scalar_u64(uint32_t col = 0, uint32_t row = 0) const
{
return m.c[col].r[row].u64;
}
inline const ConstantVector &vector() const
{
return m.c[0];
}
inline uint32_t vector_size() const
{
return m.c[0].vecsize;
}
inline uint32_t columns() const
{
return m.columns;
}
SPIRConstant(uint32_t constant_type_, const uint32_t *elements, uint32_t num_elements)
: constant_type(constant_type_)
{
subconstants.insert(end(subconstants), elements, elements + num_elements);
}
SPIRConstant(uint32_t constant_type_, uint32_t v0)
: constant_type(constant_type_)
{
m.c[0].r[0].u32 = v0;
m.c[0].vecsize = 1;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, uint32_t v0, uint32_t v1)
: constant_type(constant_type_)
{
m.c[0].r[0].u32 = v0;
m.c[0].r[1].u32 = v1;
m.c[0].vecsize = 2;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, uint32_t v0, uint32_t v1, uint32_t v2)
: constant_type(constant_type_)
{
m.c[0].r[0].u32 = v0;
m.c[0].r[1].u32 = v1;
m.c[0].r[2].u32 = v2;
m.c[0].vecsize = 3;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, uint32_t v0, uint32_t v1, uint32_t v2, uint32_t v3)
: constant_type(constant_type_)
{
m.c[0].r[0].u32 = v0;
m.c[0].r[1].u32 = v1;
m.c[0].r[2].u32 = v2;
m.c[0].r[3].u32 = v3;
m.c[0].vecsize = 4;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, uint64_t v0)
: constant_type(constant_type_)
{
m.c[0].r[0].u64 = v0;
m.c[0].vecsize = 1;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, uint64_t v0, uint64_t v1)
: constant_type(constant_type_)
{
m.c[0].r[0].u64 = v0;
m.c[0].r[1].u64 = v1;
m.c[0].vecsize = 2;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, uint64_t v0, uint64_t v1, uint64_t v2)
: constant_type(constant_type_)
{
m.c[0].r[0].u64 = v0;
m.c[0].r[1].u64 = v1;
m.c[0].r[2].u64 = v2;
m.c[0].vecsize = 3;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, uint64_t v0, uint64_t v1, uint64_t v2, uint64_t v3)
: constant_type(constant_type_)
{
m.c[0].r[0].u64 = v0;
m.c[0].r[1].u64 = v1;
m.c[0].r[2].u64 = v2;
m.c[0].r[3].u64 = v3;
m.c[0].vecsize = 4;
m.columns = 1;
}
SPIRConstant(uint32_t constant_type_, const ConstantVector &vec0)
: constant_type(constant_type_)
{
m.columns = 1;
m.c[0] = vec0;
}
SPIRConstant(uint32_t constant_type_, const ConstantVector &vec0, const ConstantVector &vec1)
: constant_type(constant_type_)
{
m.columns = 2;
m.c[0] = vec0;
m.c[1] = vec1;
}
SPIRConstant(uint32_t constant_type_, const ConstantVector &vec0, const ConstantVector &vec1,
const ConstantVector &vec2)
: constant_type(constant_type_)
{
m.columns = 3;
m.c[0] = vec0;
m.c[1] = vec1;
m.c[2] = vec2;
}
SPIRConstant(uint32_t constant_type_, const ConstantVector &vec0, const ConstantVector &vec1,
const ConstantVector &vec2, const ConstantVector &vec3)
: constant_type(constant_type_)
{
m.columns = 4;
m.c[0] = vec0;
m.c[1] = vec1;
m.c[2] = vec2;
m.c[3] = vec3;
}
uint32_t constant_type;
ConstantMatrix m;
bool specialization = false; // If the constant is a specialization constant.
// For composites which are constant arrays, etc.
std::vector<uint32_t> subconstants;
};
class Variant
{
public:
// MSVC 2013 workaround, we shouldn't need these constructors.
Variant() = default;
Variant(Variant &&other)
{
*this = std::move(other);
}
Variant &operator=(Variant &&other)
{
if (this != &other)
{
holder = move(other.holder);
type = other.type;
other.type = TypeNone;
}
return *this;
}
void set(std::unique_ptr<IVariant> val, uint32_t new_type)
{
holder = std::move(val);
if (type != TypeNone && type != new_type)
throw CompilerError("Overwriting a variant with new type.");
type = new_type;
}
template <typename T>
T &get()
{
if (!holder)
throw CompilerError("nullptr");
if (T::type != type)
throw CompilerError("Bad cast");
return *static_cast<T *>(holder.get());
}
template <typename T>
const T &get() const
{
if (!holder)
throw CompilerError("nullptr");
if (T::type != type)
throw CompilerError("Bad cast");
return *static_cast<const T *>(holder.get());
}
uint32_t get_type() const
{
return type;
}
bool empty() const
{
return !holder;
}
void reset()
{
holder.reset();
type = TypeNone;
}
private:
std::unique_ptr<IVariant> holder;
uint32_t type = TypeNone;
};
template <typename T>
T &variant_get(Variant &var)
{
return var.get<T>();
}
template <typename T>
const T &variant_get(const Variant &var)
{
return var.get<T>();
}
template <typename T, typename... P>
T &variant_set(Variant &var, P &&... args)
{
auto uptr = std::unique_ptr<T>(new T(std::forward<P>(args)...));
auto ptr = uptr.get();
var.set(std::move(uptr), T::type);
return *ptr;
}
struct Meta
{
struct Decoration
{
std::string alias;
uint64_t decoration_flags = 0;
spv::BuiltIn builtin_type;
uint32_t location = 0;
uint32_t set = 0;
uint32_t binding = 0;
uint32_t offset = 0;
uint32_t array_stride = 0;
uint32_t input_attachment = 0;
uint32_t spec_id = 0;
bool builtin = false;
bool per_instance = false;
};
Decoration decoration;
std::vector<Decoration> members;
uint32_t sampler = 0;
};
// A user callback that remaps the type of any variable.
// var_name is the declared name of the variable.
// name_of_type is the textual name of the type which will be used in the code unless written to by the callback.
using VariableTypeRemapCallback =
std::function<void(const SPIRType &type, const std::string &var_name, std::string &name_of_type)>;
}
#endif