mirror of
https://github.com/KhronosGroup/SPIRV-Cross.git
synced 2024-11-15 08:20:07 +00:00
721 lines
16 KiB
C++
721 lines
16 KiB
C++
/*
|
|
* Copyright 2019 Hans-Kristian Arntzen
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef SPIRV_CROSS_CONTAINERS_HPP
|
|
#define SPIRV_CROSS_CONTAINERS_HPP
|
|
|
|
#include "spirv_cross_error_handling.hpp"
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <stack>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE
|
|
#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE
|
|
#else
|
|
#define SPIRV_CROSS_NAMESPACE spirv_cross
|
|
#endif
|
|
|
|
namespace SPIRV_CROSS_NAMESPACE
|
|
{
|
|
#ifndef SPIRV_CROSS_FORCE_STL_TYPES
|
|
// std::aligned_storage does not support size == 0, so roll our own.
|
|
template <typename T, size_t N>
|
|
class AlignedBuffer
|
|
{
|
|
public:
|
|
T *data()
|
|
{
|
|
#if defined(_MSC_VER) && _MSC_VER < 1900
|
|
// MSVC 2013 workarounds, sigh ...
|
|
// Only use this workaround on MSVC 2013 due to some confusion around default initialized unions.
|
|
// Spec seems to suggest the memory will be zero-initialized, which is *not* what we want.
|
|
return reinterpret_cast<T *>(u.aligned_char);
|
|
#else
|
|
return reinterpret_cast<T *>(aligned_char);
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
#if defined(_MSC_VER) && _MSC_VER < 1900
|
|
// MSVC 2013 workarounds, sigh ...
|
|
union {
|
|
char aligned_char[sizeof(T) * N];
|
|
double dummy_aligner;
|
|
} u;
|
|
#else
|
|
alignas(T) char aligned_char[sizeof(T) * N];
|
|
#endif
|
|
};
|
|
|
|
template <typename T>
|
|
class AlignedBuffer<T, 0>
|
|
{
|
|
public:
|
|
T *data()
|
|
{
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
// An immutable version of SmallVector which erases type information about storage.
|
|
template <typename T>
|
|
class VectorView
|
|
{
|
|
public:
|
|
T &operator[](size_t i)
|
|
{
|
|
return ptr[i];
|
|
}
|
|
|
|
const T &operator[](size_t i) const
|
|
{
|
|
return ptr[i];
|
|
}
|
|
|
|
bool empty() const
|
|
{
|
|
return buffer_size == 0;
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return buffer_size;
|
|
}
|
|
|
|
T *data()
|
|
{
|
|
return ptr;
|
|
}
|
|
|
|
const T *data() const
|
|
{
|
|
return ptr;
|
|
}
|
|
|
|
T *begin()
|
|
{
|
|
return ptr;
|
|
}
|
|
|
|
T *end()
|
|
{
|
|
return ptr + buffer_size;
|
|
}
|
|
|
|
const T *begin() const
|
|
{
|
|
return ptr;
|
|
}
|
|
|
|
const T *end() const
|
|
{
|
|
return ptr + buffer_size;
|
|
}
|
|
|
|
T &front()
|
|
{
|
|
return ptr[0];
|
|
}
|
|
|
|
const T &front() const
|
|
{
|
|
return ptr[0];
|
|
}
|
|
|
|
T &back()
|
|
{
|
|
return ptr[buffer_size - 1];
|
|
}
|
|
|
|
const T &back() const
|
|
{
|
|
return ptr[buffer_size - 1];
|
|
}
|
|
|
|
// Makes it easier to consume SmallVector.
|
|
#if defined(_MSC_VER) && _MSC_VER < 1900
|
|
explicit operator std::vector<T>() const
|
|
{
|
|
// Another MSVC 2013 workaround. It does not understand lvalue/rvalue qualified operations.
|
|
return std::vector<T>(ptr, ptr + buffer_size);
|
|
}
|
|
#else
|
|
// Makes it easier to consume SmallVector.
|
|
explicit operator std::vector<T>() const &
|
|
{
|
|
return std::vector<T>(ptr, ptr + buffer_size);
|
|
}
|
|
|
|
// If we are converting as an r-value, we can pilfer our elements.
|
|
explicit operator std::vector<T>() &&
|
|
{
|
|
return std::vector<T>(std::make_move_iterator(ptr), std::make_move_iterator(ptr + buffer_size));
|
|
}
|
|
#endif
|
|
|
|
// Avoid sliced copies. Base class should only be read as a reference.
|
|
VectorView(const VectorView &) = delete;
|
|
void operator=(const VectorView &) = delete;
|
|
|
|
protected:
|
|
VectorView() = default;
|
|
T *ptr = nullptr;
|
|
size_t buffer_size = 0;
|
|
};
|
|
|
|
// Simple vector which supports up to N elements inline, without malloc/free.
|
|
// We use a lot of throwaway vectors all over the place which triggers allocations.
|
|
// This class only implements the subset of std::vector we need in SPIRV-Cross.
|
|
// It is *NOT* a drop-in replacement in general projects.
|
|
template <typename T, size_t N = 8>
|
|
class SmallVector : public VectorView<T>
|
|
{
|
|
public:
|
|
SmallVector()
|
|
{
|
|
this->ptr = stack_storage.data();
|
|
buffer_capacity = N;
|
|
}
|
|
|
|
SmallVector(const T *arg_list_begin, const T *arg_list_end)
|
|
: SmallVector()
|
|
{
|
|
auto count = size_t(arg_list_end - arg_list_begin);
|
|
reserve(count);
|
|
for (size_t i = 0; i < count; i++, arg_list_begin++)
|
|
new (&this->ptr[i]) T(*arg_list_begin);
|
|
this->buffer_size = count;
|
|
}
|
|
|
|
SmallVector(SmallVector &&other) SPIRV_CROSS_NOEXCEPT : SmallVector()
|
|
{
|
|
*this = std::move(other);
|
|
}
|
|
|
|
SmallVector &operator=(SmallVector &&other) SPIRV_CROSS_NOEXCEPT
|
|
{
|
|
clear();
|
|
if (other.ptr != other.stack_storage.data())
|
|
{
|
|
// Pilfer allocated pointer.
|
|
if (this->ptr != stack_storage.data())
|
|
free(this->ptr);
|
|
this->ptr = other.ptr;
|
|
this->buffer_size = other.buffer_size;
|
|
buffer_capacity = other.buffer_capacity;
|
|
other.ptr = nullptr;
|
|
other.buffer_size = 0;
|
|
other.buffer_capacity = 0;
|
|
}
|
|
else
|
|
{
|
|
// Need to move the stack contents individually.
|
|
reserve(other.buffer_size);
|
|
for (size_t i = 0; i < other.buffer_size; i++)
|
|
{
|
|
new (&this->ptr[i]) T(std::move(other.ptr[i]));
|
|
other.ptr[i].~T();
|
|
}
|
|
this->buffer_size = other.buffer_size;
|
|
other.buffer_size = 0;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
SmallVector(const SmallVector &other)
|
|
: SmallVector()
|
|
{
|
|
*this = other;
|
|
}
|
|
|
|
SmallVector &operator=(const SmallVector &other)
|
|
{
|
|
clear();
|
|
reserve(other.buffer_size);
|
|
for (size_t i = 0; i < other.buffer_size; i++)
|
|
new (&this->ptr[i]) T(other.ptr[i]);
|
|
this->buffer_size = other.buffer_size;
|
|
return *this;
|
|
}
|
|
|
|
explicit SmallVector(size_t count)
|
|
: SmallVector()
|
|
{
|
|
resize(count);
|
|
}
|
|
|
|
~SmallVector()
|
|
{
|
|
clear();
|
|
if (this->ptr != stack_storage.data())
|
|
free(this->ptr);
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
for (size_t i = 0; i < this->buffer_size; i++)
|
|
this->ptr[i].~T();
|
|
this->buffer_size = 0;
|
|
}
|
|
|
|
void push_back(const T &t)
|
|
{
|
|
reserve(this->buffer_size + 1);
|
|
new (&this->ptr[this->buffer_size]) T(t);
|
|
this->buffer_size++;
|
|
}
|
|
|
|
void push_back(T &&t)
|
|
{
|
|
reserve(this->buffer_size + 1);
|
|
new (&this->ptr[this->buffer_size]) T(std::move(t));
|
|
this->buffer_size++;
|
|
}
|
|
|
|
void pop_back()
|
|
{
|
|
// Work around false positive warning on GCC 8.3.
|
|
// Calling pop_back on empty vector is undefined.
|
|
if (!this->empty())
|
|
resize(this->buffer_size - 1);
|
|
}
|
|
|
|
template <typename... Ts>
|
|
void emplace_back(Ts &&... ts)
|
|
{
|
|
reserve(this->buffer_size + 1);
|
|
new (&this->ptr[this->buffer_size]) T(std::forward<Ts>(ts)...);
|
|
this->buffer_size++;
|
|
}
|
|
|
|
void reserve(size_t count)
|
|
{
|
|
if (count > buffer_capacity)
|
|
{
|
|
size_t target_capacity = buffer_capacity;
|
|
if (target_capacity == 0)
|
|
target_capacity = 1;
|
|
if (target_capacity < N)
|
|
target_capacity = N;
|
|
|
|
while (target_capacity < count)
|
|
target_capacity <<= 1u;
|
|
|
|
T *new_buffer =
|
|
target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();
|
|
|
|
if (!new_buffer)
|
|
SPIRV_CROSS_THROW("Out of memory.");
|
|
|
|
// In case for some reason two allocations both come from same stack.
|
|
if (new_buffer != this->ptr)
|
|
{
|
|
// We don't deal with types which can throw in move constructor.
|
|
for (size_t i = 0; i < this->buffer_size; i++)
|
|
{
|
|
new (&new_buffer[i]) T(std::move(this->ptr[i]));
|
|
this->ptr[i].~T();
|
|
}
|
|
}
|
|
|
|
if (this->ptr != stack_storage.data())
|
|
free(this->ptr);
|
|
this->ptr = new_buffer;
|
|
buffer_capacity = target_capacity;
|
|
}
|
|
}
|
|
|
|
void insert(T *itr, const T *insert_begin, const T *insert_end)
|
|
{
|
|
auto count = size_t(insert_end - insert_begin);
|
|
if (itr == this->end())
|
|
{
|
|
reserve(this->buffer_size + count);
|
|
for (size_t i = 0; i < count; i++, insert_begin++)
|
|
new (&this->ptr[this->buffer_size + i]) T(*insert_begin);
|
|
this->buffer_size += count;
|
|
}
|
|
else
|
|
{
|
|
if (this->buffer_size + count > buffer_capacity)
|
|
{
|
|
auto target_capacity = this->buffer_size + count;
|
|
if (target_capacity == 0)
|
|
target_capacity = 1;
|
|
if (target_capacity < N)
|
|
target_capacity = N;
|
|
|
|
while (target_capacity < count)
|
|
target_capacity <<= 1u;
|
|
|
|
// Need to allocate new buffer. Move everything to a new buffer.
|
|
T *new_buffer =
|
|
target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();
|
|
if (!new_buffer)
|
|
SPIRV_CROSS_THROW("Out of memory.");
|
|
|
|
// First, move elements from source buffer to new buffer.
|
|
// We don't deal with types which can throw in move constructor.
|
|
auto *target_itr = new_buffer;
|
|
auto *original_source_itr = this->begin();
|
|
|
|
if (new_buffer != this->ptr)
|
|
{
|
|
while (original_source_itr != itr)
|
|
{
|
|
new (target_itr) T(std::move(*original_source_itr));
|
|
original_source_itr->~T();
|
|
++original_source_itr;
|
|
++target_itr;
|
|
}
|
|
}
|
|
|
|
// Copy-construct new elements.
|
|
for (auto *source_itr = insert_begin; source_itr != insert_end; ++source_itr, ++target_itr)
|
|
new (target_itr) T(*source_itr);
|
|
|
|
// Move over the other half.
|
|
if (new_buffer != this->ptr || insert_begin != insert_end)
|
|
{
|
|
while (original_source_itr != this->end())
|
|
{
|
|
new (target_itr) T(std::move(*original_source_itr));
|
|
original_source_itr->~T();
|
|
++original_source_itr;
|
|
++target_itr;
|
|
}
|
|
}
|
|
|
|
if (this->ptr != stack_storage.data())
|
|
free(this->ptr);
|
|
this->ptr = new_buffer;
|
|
buffer_capacity = target_capacity;
|
|
}
|
|
else
|
|
{
|
|
// Move in place, need to be a bit careful about which elements are constructed and which are not.
|
|
// Move the end and construct the new elements.
|
|
auto *target_itr = this->end() + count;
|
|
auto *source_itr = this->end();
|
|
while (target_itr != this->end() && source_itr != itr)
|
|
{
|
|
--target_itr;
|
|
--source_itr;
|
|
new (target_itr) T(std::move(*source_itr));
|
|
}
|
|
|
|
// For already constructed elements we can move-assign.
|
|
std::move_backward(itr, source_itr, target_itr);
|
|
|
|
// For the inserts which go to already constructed elements, we can do a plain copy.
|
|
while (itr != this->end() && insert_begin != insert_end)
|
|
*itr++ = *insert_begin++;
|
|
|
|
// For inserts into newly allocated memory, we must copy-construct instead.
|
|
while (insert_begin != insert_end)
|
|
{
|
|
new (itr) T(*insert_begin);
|
|
++itr;
|
|
++insert_begin;
|
|
}
|
|
}
|
|
|
|
this->buffer_size += count;
|
|
}
|
|
}
|
|
|
|
void insert(T *itr, const T &value)
|
|
{
|
|
insert(itr, &value, &value + 1);
|
|
}
|
|
|
|
T *erase(T *itr)
|
|
{
|
|
std::move(itr + 1, this->end(), itr);
|
|
this->ptr[--this->buffer_size].~T();
|
|
return itr;
|
|
}
|
|
|
|
void erase(T *start_erase, T *end_erase)
|
|
{
|
|
if (end_erase == this->end())
|
|
{
|
|
resize(size_t(start_erase - this->begin()));
|
|
}
|
|
else
|
|
{
|
|
auto new_size = this->buffer_size - (end_erase - start_erase);
|
|
std::move(end_erase, this->end(), start_erase);
|
|
resize(new_size);
|
|
}
|
|
}
|
|
|
|
void resize(size_t new_size)
|
|
{
|
|
if (new_size < this->buffer_size)
|
|
{
|
|
for (size_t i = new_size; i < this->buffer_size; i++)
|
|
this->ptr[i].~T();
|
|
}
|
|
else if (new_size > this->buffer_size)
|
|
{
|
|
reserve(new_size);
|
|
for (size_t i = this->buffer_size; i < new_size; i++)
|
|
new (&this->ptr[i]) T();
|
|
}
|
|
|
|
this->buffer_size = new_size;
|
|
}
|
|
|
|
private:
|
|
size_t buffer_capacity = 0;
|
|
AlignedBuffer<T, N> stack_storage;
|
|
};
|
|
|
|
// A vector without stack storage.
|
|
// Could also be a typedef-ed to std::vector,
|
|
// but might as well use the one we have.
|
|
template <typename T>
|
|
using Vector = SmallVector<T, 0>;
|
|
|
|
#else // SPIRV_CROSS_FORCE_STL_TYPES
|
|
|
|
template <typename T, size_t N = 8>
|
|
using SmallVector = std::vector<T>;
|
|
template <typename T>
|
|
using Vector = std::vector<T>;
|
|
template <typename T>
|
|
using VectorView = std::vector<T>;
|
|
|
|
#endif // SPIRV_CROSS_FORCE_STL_TYPES
|
|
|
|
// An object pool which we use for allocating IVariant-derived objects.
|
|
// We know we are going to allocate a bunch of objects of each type,
|
|
// so amortize the mallocs.
|
|
class ObjectPoolBase
|
|
{
|
|
public:
|
|
virtual ~ObjectPoolBase() = default;
|
|
virtual void free_opaque(void *ptr) = 0;
|
|
};
|
|
|
|
template <typename T>
|
|
class ObjectPool : public ObjectPoolBase
|
|
{
|
|
public:
|
|
explicit ObjectPool(unsigned start_object_count_ = 16)
|
|
: start_object_count(start_object_count_)
|
|
{
|
|
}
|
|
|
|
template <typename... P>
|
|
T *allocate(P &&... p)
|
|
{
|
|
if (vacants.empty())
|
|
{
|
|
unsigned num_objects = start_object_count << memory.size();
|
|
T *ptr = static_cast<T *>(malloc(num_objects * sizeof(T)));
|
|
if (!ptr)
|
|
return nullptr;
|
|
|
|
for (unsigned i = 0; i < num_objects; i++)
|
|
vacants.push_back(&ptr[i]);
|
|
|
|
memory.emplace_back(ptr);
|
|
}
|
|
|
|
T *ptr = vacants.back();
|
|
vacants.pop_back();
|
|
new (ptr) T(std::forward<P>(p)...);
|
|
return ptr;
|
|
}
|
|
|
|
void free(T *ptr)
|
|
{
|
|
ptr->~T();
|
|
vacants.push_back(ptr);
|
|
}
|
|
|
|
void free_opaque(void *ptr) override
|
|
{
|
|
free(static_cast<T *>(ptr));
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
vacants.clear();
|
|
memory.clear();
|
|
}
|
|
|
|
protected:
|
|
Vector<T *> vacants;
|
|
|
|
struct MallocDeleter
|
|
{
|
|
void operator()(T *ptr)
|
|
{
|
|
::free(ptr);
|
|
}
|
|
};
|
|
|
|
SmallVector<std::unique_ptr<T, MallocDeleter>> memory;
|
|
unsigned start_object_count;
|
|
};
|
|
|
|
template <size_t StackSize = 4096, size_t BlockSize = 4096>
|
|
class StringStream
|
|
{
|
|
public:
|
|
StringStream()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
~StringStream()
|
|
{
|
|
reset();
|
|
}
|
|
|
|
// Disable copies and moves. Makes it easier to implement, and we don't need it.
|
|
StringStream(const StringStream &) = delete;
|
|
void operator=(const StringStream &) = delete;
|
|
|
|
template <typename T, typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
|
|
StringStream &operator<<(const T &t)
|
|
{
|
|
auto s = std::to_string(t);
|
|
append(s.data(), s.size());
|
|
return *this;
|
|
}
|
|
|
|
// Only overload this to make float/double conversions ambiguous.
|
|
StringStream &operator<<(uint32_t v)
|
|
{
|
|
auto s = std::to_string(v);
|
|
append(s.data(), s.size());
|
|
return *this;
|
|
}
|
|
|
|
StringStream &operator<<(char c)
|
|
{
|
|
append(&c, 1);
|
|
return *this;
|
|
}
|
|
|
|
StringStream &operator<<(const std::string &s)
|
|
{
|
|
append(s.data(), s.size());
|
|
return *this;
|
|
}
|
|
|
|
StringStream &operator<<(const char *s)
|
|
{
|
|
append(s, strlen(s));
|
|
return *this;
|
|
}
|
|
|
|
template <size_t N>
|
|
StringStream &operator<<(const char (&s)[N])
|
|
{
|
|
append(s, strlen(s));
|
|
return *this;
|
|
}
|
|
|
|
std::string str() const
|
|
{
|
|
std::string ret;
|
|
size_t target_size = 0;
|
|
for (auto &saved : saved_buffers)
|
|
target_size += saved.offset;
|
|
target_size += current_buffer.offset;
|
|
ret.reserve(target_size);
|
|
|
|
for (auto &saved : saved_buffers)
|
|
ret.insert(ret.end(), saved.buffer, saved.buffer + saved.offset);
|
|
ret.insert(ret.end(), current_buffer.buffer, current_buffer.buffer + current_buffer.offset);
|
|
return ret;
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
for (auto &saved : saved_buffers)
|
|
if (saved.buffer != stack_buffer)
|
|
free(saved.buffer);
|
|
if (current_buffer.buffer != stack_buffer)
|
|
free(current_buffer.buffer);
|
|
|
|
saved_buffers.clear();
|
|
current_buffer.buffer = stack_buffer;
|
|
current_buffer.offset = 0;
|
|
current_buffer.size = sizeof(stack_buffer);
|
|
}
|
|
|
|
private:
|
|
struct Buffer
|
|
{
|
|
char *buffer = nullptr;
|
|
size_t offset = 0;
|
|
size_t size = 0;
|
|
};
|
|
Buffer current_buffer;
|
|
char stack_buffer[StackSize];
|
|
SmallVector<Buffer> saved_buffers;
|
|
|
|
void append(const char *s, size_t len)
|
|
{
|
|
size_t avail = current_buffer.size - current_buffer.offset;
|
|
if (avail < len)
|
|
{
|
|
if (avail > 0)
|
|
{
|
|
memcpy(current_buffer.buffer + current_buffer.offset, s, avail);
|
|
s += avail;
|
|
len -= avail;
|
|
current_buffer.offset += avail;
|
|
}
|
|
|
|
saved_buffers.push_back(current_buffer);
|
|
size_t target_size = len > BlockSize ? len : BlockSize;
|
|
current_buffer.buffer = static_cast<char *>(malloc(target_size));
|
|
if (!current_buffer.buffer)
|
|
SPIRV_CROSS_THROW("Out of memory.");
|
|
|
|
memcpy(current_buffer.buffer, s, len);
|
|
current_buffer.offset = len;
|
|
current_buffer.size = target_size;
|
|
}
|
|
else
|
|
{
|
|
memcpy(current_buffer.buffer + current_buffer.offset, s, len);
|
|
current_buffer.offset += len;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace SPIRV_CROSS_NAMESPACE
|
|
|
|
#endif
|