SPIRV-Cross-Vulnerable/spirv_hlsl.cpp
Hans-Kristian Arntzen 45a36ad034 Run format_all.sh.
2019-05-14 09:54:35 +02:00

4754 lines
137 KiB
C++

/*
* Copyright 2016-2019 Robert Konrad
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "spirv_hlsl.hpp"
#include "GLSL.std.450.h"
#include <algorithm>
#include <assert.h>
using namespace spv;
using namespace SPIRV_CROSS_NAMESPACE;
using namespace std;
static unsigned image_format_to_components(ImageFormat fmt)
{
switch (fmt)
{
case ImageFormatR8:
case ImageFormatR16:
case ImageFormatR8Snorm:
case ImageFormatR16Snorm:
case ImageFormatR16f:
case ImageFormatR32f:
case ImageFormatR8i:
case ImageFormatR16i:
case ImageFormatR32i:
case ImageFormatR8ui:
case ImageFormatR16ui:
case ImageFormatR32ui:
return 1;
case ImageFormatRg8:
case ImageFormatRg16:
case ImageFormatRg8Snorm:
case ImageFormatRg16Snorm:
case ImageFormatRg16f:
case ImageFormatRg32f:
case ImageFormatRg8i:
case ImageFormatRg16i:
case ImageFormatRg32i:
case ImageFormatRg8ui:
case ImageFormatRg16ui:
case ImageFormatRg32ui:
return 2;
case ImageFormatR11fG11fB10f:
return 3;
case ImageFormatRgba8:
case ImageFormatRgba16:
case ImageFormatRgb10A2:
case ImageFormatRgba8Snorm:
case ImageFormatRgba16Snorm:
case ImageFormatRgba16f:
case ImageFormatRgba32f:
case ImageFormatRgba8i:
case ImageFormatRgba16i:
case ImageFormatRgba32i:
case ImageFormatRgba8ui:
case ImageFormatRgba16ui:
case ImageFormatRgba32ui:
case ImageFormatRgb10a2ui:
return 4;
case ImageFormatUnknown:
return 4; // Assume 4.
default:
SPIRV_CROSS_THROW("Unrecognized typed image format.");
}
}
static string image_format_to_type(ImageFormat fmt, SPIRType::BaseType basetype)
{
switch (fmt)
{
case ImageFormatR8:
case ImageFormatR16:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "unorm float";
case ImageFormatRg8:
case ImageFormatRg16:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "unorm float2";
case ImageFormatRgba8:
case ImageFormatRgba16:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "unorm float4";
case ImageFormatRgb10A2:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "unorm float4";
case ImageFormatR8Snorm:
case ImageFormatR16Snorm:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "snorm float";
case ImageFormatRg8Snorm:
case ImageFormatRg16Snorm:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "snorm float2";
case ImageFormatRgba8Snorm:
case ImageFormatRgba16Snorm:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "snorm float4";
case ImageFormatR16f:
case ImageFormatR32f:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "float";
case ImageFormatRg16f:
case ImageFormatRg32f:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "float2";
case ImageFormatRgba16f:
case ImageFormatRgba32f:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "float4";
case ImageFormatR11fG11fB10f:
if (basetype != SPIRType::Float)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "float3";
case ImageFormatR8i:
case ImageFormatR16i:
case ImageFormatR32i:
if (basetype != SPIRType::Int)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "int";
case ImageFormatRg8i:
case ImageFormatRg16i:
case ImageFormatRg32i:
if (basetype != SPIRType::Int)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "int2";
case ImageFormatRgba8i:
case ImageFormatRgba16i:
case ImageFormatRgba32i:
if (basetype != SPIRType::Int)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "int4";
case ImageFormatR8ui:
case ImageFormatR16ui:
case ImageFormatR32ui:
if (basetype != SPIRType::UInt)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "uint";
case ImageFormatRg8ui:
case ImageFormatRg16ui:
case ImageFormatRg32ui:
if (basetype != SPIRType::UInt)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "uint2";
case ImageFormatRgba8ui:
case ImageFormatRgba16ui:
case ImageFormatRgba32ui:
if (basetype != SPIRType::UInt)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "uint4";
case ImageFormatRgb10a2ui:
if (basetype != SPIRType::UInt)
SPIRV_CROSS_THROW("Mismatch in image type and base type of image.");
return "uint4";
case ImageFormatUnknown:
switch (basetype)
{
case SPIRType::Float:
return "float4";
case SPIRType::Int:
return "int4";
case SPIRType::UInt:
return "uint4";
default:
SPIRV_CROSS_THROW("Unsupported base type for image.");
}
default:
SPIRV_CROSS_THROW("Unrecognized typed image format.");
}
}
string CompilerHLSL::image_type_hlsl_modern(const SPIRType &type, uint32_t)
{
auto &imagetype = get<SPIRType>(type.image.type);
const char *dim = nullptr;
bool typed_load = false;
uint32_t components = 4;
switch (type.image.dim)
{
case Dim1D:
typed_load = type.image.sampled == 2;
dim = "1D";
break;
case Dim2D:
typed_load = type.image.sampled == 2;
dim = "2D";
break;
case Dim3D:
typed_load = type.image.sampled == 2;
dim = "3D";
break;
case DimCube:
if (type.image.sampled == 2)
SPIRV_CROSS_THROW("RWTextureCube does not exist in HLSL.");
dim = "Cube";
break;
case DimRect:
SPIRV_CROSS_THROW("Rectangle texture support is not yet implemented for HLSL."); // TODO
case DimBuffer:
if (type.image.sampled == 1)
return join("Buffer<", type_to_glsl(imagetype), components, ">");
else if (type.image.sampled == 2)
return join("RWBuffer<", image_format_to_type(type.image.format, imagetype.basetype), ">");
else
SPIRV_CROSS_THROW("Sampler buffers must be either sampled or unsampled. Cannot deduce in runtime.");
case DimSubpassData:
dim = "2D";
typed_load = false;
break;
default:
SPIRV_CROSS_THROW("Invalid dimension.");
}
const char *arrayed = type.image.arrayed ? "Array" : "";
const char *ms = type.image.ms ? "MS" : "";
const char *rw = typed_load ? "RW" : "";
return join(rw, "Texture", dim, ms, arrayed, "<",
typed_load ? image_format_to_type(type.image.format, imagetype.basetype) :
join(type_to_glsl(imagetype), components),
">");
}
string CompilerHLSL::image_type_hlsl_legacy(const SPIRType &type, uint32_t id)
{
auto &imagetype = get<SPIRType>(type.image.type);
string res;
switch (imagetype.basetype)
{
case SPIRType::Int:
res = "i";
break;
case SPIRType::UInt:
res = "u";
break;
default:
break;
}
if (type.basetype == SPIRType::Image && type.image.dim == DimSubpassData)
return res + "subpassInput" + (type.image.ms ? "MS" : "");
// If we're emulating subpassInput with samplers, force sampler2D
// so we don't have to specify format.
if (type.basetype == SPIRType::Image && type.image.dim != DimSubpassData)
{
// Sampler buffers are always declared as samplerBuffer even though they might be separate images in the SPIR-V.
if (type.image.dim == DimBuffer && type.image.sampled == 1)
res += "sampler";
else
res += type.image.sampled == 2 ? "image" : "texture";
}
else
res += "sampler";
switch (type.image.dim)
{
case Dim1D:
res += "1D";
break;
case Dim2D:
res += "2D";
break;
case Dim3D:
res += "3D";
break;
case DimCube:
res += "CUBE";
break;
case DimBuffer:
res += "Buffer";
break;
case DimSubpassData:
res += "2D";
break;
default:
SPIRV_CROSS_THROW("Only 1D, 2D, 3D, Buffer, InputTarget and Cube textures supported.");
}
if (type.image.ms)
res += "MS";
if (type.image.arrayed)
res += "Array";
if (image_is_comparison(type, id))
res += "Shadow";
return res;
}
string CompilerHLSL::image_type_hlsl(const SPIRType &type, uint32_t id)
{
if (hlsl_options.shader_model <= 30)
return image_type_hlsl_legacy(type, id);
else
return image_type_hlsl_modern(type, id);
}
// The optional id parameter indicates the object whose type we are trying
// to find the description for. It is optional. Most type descriptions do not
// depend on a specific object's use of that type.
string CompilerHLSL::type_to_glsl(const SPIRType &type, uint32_t id)
{
// Ignore the pointer type since GLSL doesn't have pointers.
switch (type.basetype)
{
case SPIRType::Struct:
// Need OpName lookup here to get a "sensible" name for a struct.
if (backend.explicit_struct_type)
return join("struct ", to_name(type.self));
else
return to_name(type.self);
case SPIRType::Image:
case SPIRType::SampledImage:
return image_type_hlsl(type, id);
case SPIRType::Sampler:
return comparison_ids.count(id) ? "SamplerComparisonState" : "SamplerState";
case SPIRType::Void:
return "void";
default:
break;
}
if (type.vecsize == 1 && type.columns == 1) // Scalar builtin
{
switch (type.basetype)
{
case SPIRType::Boolean:
return "bool";
case SPIRType::Int:
return backend.basic_int_type;
case SPIRType::UInt:
return backend.basic_uint_type;
case SPIRType::AtomicCounter:
return "atomic_uint";
case SPIRType::Half:
return "min16float";
case SPIRType::Float:
return "float";
case SPIRType::Double:
return "double";
case SPIRType::Int64:
return "int64_t";
case SPIRType::UInt64:
return "uint64_t";
default:
return "???";
}
}
else if (type.vecsize > 1 && type.columns == 1) // Vector builtin
{
switch (type.basetype)
{
case SPIRType::Boolean:
return join("bool", type.vecsize);
case SPIRType::Int:
return join("int", type.vecsize);
case SPIRType::UInt:
return join("uint", type.vecsize);
case SPIRType::Half:
return join("min16float", type.vecsize);
case SPIRType::Float:
return join("float", type.vecsize);
case SPIRType::Double:
return join("double", type.vecsize);
case SPIRType::Int64:
return join("i64vec", type.vecsize);
case SPIRType::UInt64:
return join("u64vec", type.vecsize);
default:
return "???";
}
}
else
{
switch (type.basetype)
{
case SPIRType::Boolean:
return join("bool", type.columns, "x", type.vecsize);
case SPIRType::Int:
return join("int", type.columns, "x", type.vecsize);
case SPIRType::UInt:
return join("uint", type.columns, "x", type.vecsize);
case SPIRType::Half:
return join("min16float", type.columns, "x", type.vecsize);
case SPIRType::Float:
return join("float", type.columns, "x", type.vecsize);
case SPIRType::Double:
return join("double", type.columns, "x", type.vecsize);
// Matrix types not supported for int64/uint64.
default:
return "???";
}
}
}
void CompilerHLSL::emit_header()
{
for (auto &header : header_lines)
statement(header);
if (header_lines.size() > 0)
{
statement("");
}
}
void CompilerHLSL::emit_interface_block_globally(const SPIRVariable &var)
{
add_resource_name(var.self);
// The global copies of I/O variables should not contain interpolation qualifiers.
// These are emitted inside the interface structs.
auto &flags = ir.meta[var.self].decoration.decoration_flags;
auto old_flags = flags;
flags.reset();
statement("static ", variable_decl(var), ";");
flags = old_flags;
}
const char *CompilerHLSL::to_storage_qualifiers_glsl(const SPIRVariable &var)
{
// Input and output variables are handled specially in HLSL backend.
// The variables are declared as global, private variables, and do not need any qualifiers.
if (var.storage == StorageClassUniformConstant || var.storage == StorageClassUniform ||
var.storage == StorageClassPushConstant)
{
return "uniform ";
}
return "";
}
void CompilerHLSL::emit_builtin_outputs_in_struct()
{
auto &execution = get_entry_point();
bool legacy = hlsl_options.shader_model <= 30;
active_output_builtins.for_each_bit([&](uint32_t i) {
const char *type = nullptr;
const char *semantic = nullptr;
auto builtin = static_cast<BuiltIn>(i);
switch (builtin)
{
case BuiltInPosition:
type = "float4";
semantic = legacy ? "POSITION" : "SV_Position";
break;
case BuiltInFragDepth:
type = "float";
if (legacy)
{
semantic = "DEPTH";
}
else
{
if (hlsl_options.shader_model >= 50 && execution.flags.get(ExecutionModeDepthGreater))
semantic = "SV_DepthGreaterEqual";
else if (hlsl_options.shader_model >= 50 && execution.flags.get(ExecutionModeDepthLess))
semantic = "SV_DepthLessEqual";
else
semantic = "SV_Depth";
}
break;
case BuiltInClipDistance:
// HLSL is a bit weird here, use SV_ClipDistance0, SV_ClipDistance1 and so on with vectors.
for (uint32_t clip = 0; clip < clip_distance_count; clip += 4)
{
uint32_t to_declare = clip_distance_count - clip;
if (to_declare > 4)
to_declare = 4;
uint32_t semantic_index = clip / 4;
static const char *types[] = { "float", "float2", "float3", "float4" };
statement(types[to_declare - 1], " ", builtin_to_glsl(builtin, StorageClassOutput), semantic_index,
" : SV_ClipDistance", semantic_index, ";");
}
break;
case BuiltInCullDistance:
// HLSL is a bit weird here, use SV_CullDistance0, SV_CullDistance1 and so on with vectors.
for (uint32_t cull = 0; cull < cull_distance_count; cull += 4)
{
uint32_t to_declare = cull_distance_count - cull;
if (to_declare > 4)
to_declare = 4;
uint32_t semantic_index = cull / 4;
static const char *types[] = { "float", "float2", "float3", "float4" };
statement(types[to_declare - 1], " ", builtin_to_glsl(builtin, StorageClassOutput), semantic_index,
" : SV_CullDistance", semantic_index, ";");
}
break;
case BuiltInPointSize:
// If point_size_compat is enabled, just ignore PointSize.
// PointSize does not exist in HLSL, but some code bases might want to be able to use these shaders,
// even if it means working around the missing feature.
if (hlsl_options.point_size_compat)
break;
else
SPIRV_CROSS_THROW("Unsupported builtin in HLSL.");
default:
SPIRV_CROSS_THROW("Unsupported builtin in HLSL.");
break;
}
if (type && semantic)
statement(type, " ", builtin_to_glsl(builtin, StorageClassOutput), " : ", semantic, ";");
});
}
void CompilerHLSL::emit_builtin_inputs_in_struct()
{
bool legacy = hlsl_options.shader_model <= 30;
active_input_builtins.for_each_bit([&](uint32_t i) {
const char *type = nullptr;
const char *semantic = nullptr;
auto builtin = static_cast<BuiltIn>(i);
switch (builtin)
{
case BuiltInFragCoord:
type = "float4";
semantic = legacy ? "VPOS" : "SV_Position";
break;
case BuiltInVertexId:
case BuiltInVertexIndex:
if (legacy)
SPIRV_CROSS_THROW("Vertex index not supported in SM 3.0 or lower.");
type = "uint";
semantic = "SV_VertexID";
break;
case BuiltInInstanceId:
case BuiltInInstanceIndex:
if (legacy)
SPIRV_CROSS_THROW("Instance index not supported in SM 3.0 or lower.");
type = "uint";
semantic = "SV_InstanceID";
break;
case BuiltInSampleId:
if (legacy)
SPIRV_CROSS_THROW("Sample ID not supported in SM 3.0 or lower.");
type = "uint";
semantic = "SV_SampleIndex";
break;
case BuiltInGlobalInvocationId:
type = "uint3";
semantic = "SV_DispatchThreadID";
break;
case BuiltInLocalInvocationId:
type = "uint3";
semantic = "SV_GroupThreadID";
break;
case BuiltInLocalInvocationIndex:
type = "uint";
semantic = "SV_GroupIndex";
break;
case BuiltInWorkgroupId:
type = "uint3";
semantic = "SV_GroupID";
break;
case BuiltInFrontFacing:
type = "bool";
semantic = "SV_IsFrontFace";
break;
case BuiltInNumWorkgroups:
case BuiltInSubgroupSize:
case BuiltInSubgroupLocalInvocationId:
case BuiltInSubgroupEqMask:
case BuiltInSubgroupLtMask:
case BuiltInSubgroupLeMask:
case BuiltInSubgroupGtMask:
case BuiltInSubgroupGeMask:
// Handled specially.
break;
case BuiltInClipDistance:
// HLSL is a bit weird here, use SV_ClipDistance0, SV_ClipDistance1 and so on with vectors.
for (uint32_t clip = 0; clip < clip_distance_count; clip += 4)
{
uint32_t to_declare = clip_distance_count - clip;
if (to_declare > 4)
to_declare = 4;
uint32_t semantic_index = clip / 4;
static const char *types[] = { "float", "float2", "float3", "float4" };
statement(types[to_declare - 1], " ", builtin_to_glsl(builtin, StorageClassInput), semantic_index,
" : SV_ClipDistance", semantic_index, ";");
}
break;
case BuiltInCullDistance:
// HLSL is a bit weird here, use SV_CullDistance0, SV_CullDistance1 and so on with vectors.
for (uint32_t cull = 0; cull < cull_distance_count; cull += 4)
{
uint32_t to_declare = cull_distance_count - cull;
if (to_declare > 4)
to_declare = 4;
uint32_t semantic_index = cull / 4;
static const char *types[] = { "float", "float2", "float3", "float4" };
statement(types[to_declare - 1], " ", builtin_to_glsl(builtin, StorageClassInput), semantic_index,
" : SV_CullDistance", semantic_index, ";");
}
break;
case BuiltInPointCoord:
// PointCoord is not supported, but provide a way to just ignore that, similar to PointSize.
if (hlsl_options.point_coord_compat)
break;
else
SPIRV_CROSS_THROW("Unsupported builtin in HLSL.");
default:
SPIRV_CROSS_THROW("Unsupported builtin in HLSL.");
break;
}
if (type && semantic)
statement(type, " ", builtin_to_glsl(builtin, StorageClassInput), " : ", semantic, ";");
});
}
uint32_t CompilerHLSL::type_to_consumed_locations(const SPIRType &type) const
{
// TODO: Need to verify correctness.
uint32_t elements = 0;
if (type.basetype == SPIRType::Struct)
{
for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
elements += type_to_consumed_locations(get<SPIRType>(type.member_types[i]));
}
else
{
uint32_t array_multiplier = 1;
for (uint32_t i = 0; i < uint32_t(type.array.size()); i++)
{
if (type.array_size_literal[i])
array_multiplier *= type.array[i];
else
array_multiplier *= get<SPIRConstant>(type.array[i]).scalar();
}
elements += array_multiplier * type.columns;
}
return elements;
}
string CompilerHLSL::to_interpolation_qualifiers(const Bitset &flags)
{
string res;
//if (flags & (1ull << DecorationSmooth))
// res += "linear ";
if (flags.get(DecorationFlat))
res += "nointerpolation ";
if (flags.get(DecorationNoPerspective))
res += "noperspective ";
if (flags.get(DecorationCentroid))
res += "centroid ";
if (flags.get(DecorationPatch))
res += "patch "; // Seems to be different in actual HLSL.
if (flags.get(DecorationSample))
res += "sample ";
if (flags.get(DecorationInvariant))
res += "invariant "; // Not supported?
return res;
}
std::string CompilerHLSL::to_semantic(uint32_t location, ExecutionModel em, StorageClass sc)
{
if (em == ExecutionModelVertex && sc == StorageClassInput)
{
// We have a vertex attribute - we should look at remapping it if the user provided
// vertex attribute hints.
for (auto &attribute : remap_vertex_attributes)
if (attribute.location == location)
return attribute.semantic;
}
// Not a vertex attribute, or no remap_vertex_attributes entry.
return join("TEXCOORD", location);
}
void CompilerHLSL::emit_io_block(const SPIRVariable &var)
{
auto &execution = get_entry_point();
auto &type = get<SPIRType>(var.basetype);
add_resource_name(type.self);
statement("struct ", to_name(type.self));
begin_scope();
type.member_name_cache.clear();
uint32_t base_location = get_decoration(var.self, DecorationLocation);
for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
{
string semantic;
if (has_member_decoration(type.self, i, DecorationLocation))
{
uint32_t location = get_member_decoration(type.self, i, DecorationLocation);
semantic = join(" : ", to_semantic(location, execution.model, var.storage));
}
else
{
// If the block itself has a location, but not its members, use the implicit location.
// There could be a conflict if the block members partially specialize the locations.
// It is unclear how SPIR-V deals with this. Assume this does not happen for now.
uint32_t location = base_location + i;
semantic = join(" : ", to_semantic(location, execution.model, var.storage));
}
add_member_name(type, i);
auto &membertype = get<SPIRType>(type.member_types[i]);
statement(to_interpolation_qualifiers(get_member_decoration_bitset(type.self, i)),
variable_decl(membertype, to_member_name(type, i)), semantic, ";");
}
end_scope_decl();
statement("");
statement("static ", variable_decl(var), ";");
statement("");
}
void CompilerHLSL::emit_interface_block_in_struct(const SPIRVariable &var, unordered_set<uint32_t> &active_locations)
{
auto &execution = get_entry_point();
auto type = get<SPIRType>(var.basetype);
string binding;
bool use_location_number = true;
bool legacy = hlsl_options.shader_model <= 30;
if (execution.model == ExecutionModelFragment && var.storage == StorageClassOutput)
{
// Dual-source blending is achieved in HLSL by emitting to SV_Target0 and 1.
uint32_t index = get_decoration(var.self, DecorationIndex);
uint32_t location = get_decoration(var.self, DecorationLocation);
if (index != 0 && location != 0)
SPIRV_CROSS_THROW("Dual-source blending is only supported on MRT #0 in HLSL.");
binding = join(legacy ? "COLOR" : "SV_Target", location + index);
use_location_number = false;
if (legacy) // COLOR must be a four-component vector on legacy shader model targets (HLSL ERR_COLOR_4COMP)
type.vecsize = 4;
}
const auto get_vacant_location = [&]() -> uint32_t {
for (uint32_t i = 0; i < 64; i++)
if (!active_locations.count(i))
return i;
SPIRV_CROSS_THROW("All locations from 0 to 63 are exhausted.");
};
bool need_matrix_unroll = var.storage == StorageClassInput && execution.model == ExecutionModelVertex;
auto &m = ir.meta[var.self].decoration;
auto name = to_name(var.self);
if (use_location_number)
{
uint32_t location_number;
// If an explicit location exists, use it with TEXCOORD[N] semantic.
// Otherwise, pick a vacant location.
if (m.decoration_flags.get(DecorationLocation))
location_number = m.location;
else
location_number = get_vacant_location();
// Allow semantic remap if specified.
auto semantic = to_semantic(location_number, execution.model, var.storage);
if (need_matrix_unroll && type.columns > 1)
{
if (!type.array.empty())
SPIRV_CROSS_THROW("Arrays of matrices used as input/output. This is not supported.");
// Unroll matrices.
for (uint32_t i = 0; i < type.columns; i++)
{
SPIRType newtype = type;
newtype.columns = 1;
statement(to_interpolation_qualifiers(get_decoration_bitset(var.self)),
variable_decl(newtype, join(name, "_", i)), " : ", semantic, "_", i, ";");
active_locations.insert(location_number++);
}
}
else
{
statement(to_interpolation_qualifiers(get_decoration_bitset(var.self)), variable_decl(type, name), " : ",
semantic, ";");
// Structs and arrays should consume more locations.
uint32_t consumed_locations = type_to_consumed_locations(type);
for (uint32_t i = 0; i < consumed_locations; i++)
active_locations.insert(location_number + i);
}
}
else
statement(variable_decl(type, name), " : ", binding, ";");
}
std::string CompilerHLSL::builtin_to_glsl(spv::BuiltIn builtin, spv::StorageClass storage)
{
switch (builtin)
{
case BuiltInVertexId:
return "gl_VertexID";
case BuiltInInstanceId:
return "gl_InstanceID";
case BuiltInNumWorkgroups:
{
if (!num_workgroups_builtin)
SPIRV_CROSS_THROW("NumWorkgroups builtin is used, but remap_num_workgroups_builtin() was not called. "
"Cannot emit code for this builtin.");
auto &var = get<SPIRVariable>(num_workgroups_builtin);
auto &type = get<SPIRType>(var.basetype);
return sanitize_underscores(join(to_name(num_workgroups_builtin), "_", get_member_name(type.self, 0)));
}
case BuiltInPointCoord:
// Crude hack, but there is no real alternative. This path is only enabled if point_coord_compat is set.
return "float2(0.5f, 0.5f)";
case BuiltInSubgroupLocalInvocationId:
return "WaveGetLaneIndex()";
case BuiltInSubgroupSize:
return "WaveGetLaneCount()";
default:
return CompilerGLSL::builtin_to_glsl(builtin, storage);
}
}
void CompilerHLSL::emit_builtin_variables()
{
Bitset builtins = active_input_builtins;
builtins.merge_or(active_output_builtins);
bool need_base_vertex_info = false;
// Emit global variables for the interface variables which are statically used by the shader.
builtins.for_each_bit([&](uint32_t i) {
const char *type = nullptr;
auto builtin = static_cast<BuiltIn>(i);
uint32_t array_size = 0;
switch (builtin)
{
case BuiltInFragCoord:
case BuiltInPosition:
type = "float4";
break;
case BuiltInFragDepth:
type = "float";
break;
case BuiltInVertexId:
case BuiltInVertexIndex:
case BuiltInInstanceIndex:
type = "int";
if (hlsl_options.support_nonzero_base_vertex_base_instance)
need_base_vertex_info = true;
break;
case BuiltInInstanceId:
case BuiltInSampleId:
type = "int";
break;
case BuiltInPointSize:
if (hlsl_options.point_size_compat)
{
// Just emit the global variable, it will be ignored.
type = "float";
break;
}
else
SPIRV_CROSS_THROW(join("Unsupported builtin in HLSL: ", unsigned(builtin)));
case BuiltInGlobalInvocationId:
case BuiltInLocalInvocationId:
case BuiltInWorkgroupId:
type = "uint3";
break;
case BuiltInLocalInvocationIndex:
type = "uint";
break;
case BuiltInFrontFacing:
type = "bool";
break;
case BuiltInNumWorkgroups:
case BuiltInPointCoord:
// Handled specially.
break;
case BuiltInSubgroupLocalInvocationId:
case BuiltInSubgroupSize:
if (hlsl_options.shader_model < 60)
SPIRV_CROSS_THROW("Need SM 6.0 for Wave ops.");
break;
case BuiltInSubgroupEqMask:
case BuiltInSubgroupLtMask:
case BuiltInSubgroupLeMask:
case BuiltInSubgroupGtMask:
case BuiltInSubgroupGeMask:
if (hlsl_options.shader_model < 60)
SPIRV_CROSS_THROW("Need SM 6.0 for Wave ops.");
type = "uint4";
break;
case BuiltInClipDistance:
array_size = clip_distance_count;
type = "float";
break;
case BuiltInCullDistance:
array_size = cull_distance_count;
type = "float";
break;
default:
SPIRV_CROSS_THROW(join("Unsupported builtin in HLSL: ", unsigned(builtin)));
}
StorageClass storage = active_input_builtins.get(i) ? StorageClassInput : StorageClassOutput;
// FIXME: SampleMask can be both in and out with sample builtin,
// need to distinguish that when we add support for that.
if (type)
{
if (array_size)
statement("static ", type, " ", builtin_to_glsl(builtin, storage), "[", array_size, "];");
else
statement("static ", type, " ", builtin_to_glsl(builtin, storage), ";");
}
});
if (need_base_vertex_info)
{
statement("cbuffer SPIRV_Cross_VertexInfo");
begin_scope();
statement("int SPIRV_Cross_BaseVertex;");
statement("int SPIRV_Cross_BaseInstance;");
end_scope_decl();
statement("");
}
}
void CompilerHLSL::emit_composite_constants()
{
// HLSL cannot declare structs or arrays inline, so we must move them out to
// global constants directly.
bool emitted = false;
ir.for_each_typed_id<SPIRConstant>([&](uint32_t, SPIRConstant &c) {
if (c.specialization)
return;
auto &type = this->get<SPIRType>(c.constant_type);
if (type.basetype == SPIRType::Struct || !type.array.empty())
{
auto name = to_name(c.self);
statement("static const ", variable_decl(type, name), " = ", constant_expression(c), ";");
emitted = true;
}
});
if (emitted)
statement("");
}
void CompilerHLSL::emit_specialization_constants_and_structs()
{
bool emitted = false;
SpecializationConstant wg_x, wg_y, wg_z;
uint32_t workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
for (auto &id_ : ir.ids_for_constant_or_type)
{
auto &id = ir.ids[id_];
if (id.get_type() == TypeConstant)
{
auto &c = id.get<SPIRConstant>();
if (c.self == workgroup_size_id)
{
statement("static const uint3 gl_WorkGroupSize = ",
constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
emitted = true;
}
else if (c.specialization)
{
auto &type = get<SPIRType>(c.constant_type);
auto name = to_name(c.self);
// HLSL does not support specialization constants, so fallback to macros.
c.specialization_constant_macro_name =
constant_value_macro_name(get_decoration(c.self, DecorationSpecId));
statement("#ifndef ", c.specialization_constant_macro_name);
statement("#define ", c.specialization_constant_macro_name, " ", constant_expression(c));
statement("#endif");
statement("static const ", variable_decl(type, name), " = ", c.specialization_constant_macro_name, ";");
emitted = true;
}
}
else if (id.get_type() == TypeConstantOp)
{
auto &c = id.get<SPIRConstantOp>();
auto &type = get<SPIRType>(c.basetype);
auto name = to_name(c.self);
statement("static const ", variable_decl(type, name), " = ", constant_op_expression(c), ";");
emitted = true;
}
else if (id.get_type() == TypeType)
{
auto &type = id.get<SPIRType>();
if (type.basetype == SPIRType::Struct && type.array.empty() && !type.pointer &&
(!ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock) &&
!ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock)))
{
if (emitted)
statement("");
emitted = false;
emit_struct(type);
}
}
}
if (emitted)
statement("");
}
void CompilerHLSL::replace_illegal_names()
{
static const unordered_set<string> keywords = {
// Additional HLSL specific keywords.
"line", "linear", "matrix", "point", "row_major", "sampler",
};
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
if (!is_hidden_variable(var))
{
auto &m = ir.meta[var.self].decoration;
if (keywords.find(m.alias) != end(keywords))
m.alias = join("_", m.alias);
}
});
CompilerGLSL::replace_illegal_names();
}
void CompilerHLSL::emit_resources()
{
auto &execution = get_entry_point();
replace_illegal_names();
emit_specialization_constants_and_structs();
emit_composite_constants();
bool emitted = false;
// Output UBOs and SSBOs
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
bool is_block_storage = type.storage == StorageClassStorageBuffer || type.storage == StorageClassUniform;
bool has_block_flags = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock) ||
ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
if (var.storage != StorageClassFunction && type.pointer && is_block_storage && !is_hidden_variable(var) &&
has_block_flags)
{
emit_buffer_block(var);
emitted = true;
}
});
// Output push constant blocks
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
if (var.storage != StorageClassFunction && type.pointer && type.storage == StorageClassPushConstant &&
!is_hidden_variable(var))
{
emit_push_constant_block(var);
emitted = true;
}
});
if (execution.model == ExecutionModelVertex && hlsl_options.shader_model <= 30)
{
statement("uniform float4 gl_HalfPixel;");
emitted = true;
}
bool skip_separate_image_sampler = !combined_image_samplers.empty() || hlsl_options.shader_model <= 30;
// Output Uniform Constants (values, samplers, images, etc).
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
// If we're remapping separate samplers and images, only emit the combined samplers.
if (skip_separate_image_sampler)
{
// Sampler buffers are always used without a sampler, and they will also work in regular D3D.
bool sampler_buffer = type.basetype == SPIRType::Image && type.image.dim == DimBuffer;
bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1;
bool separate_sampler = type.basetype == SPIRType::Sampler;
if (!sampler_buffer && (separate_image || separate_sampler))
return;
}
if (var.storage != StorageClassFunction && !is_builtin_variable(var) && !var.remapped_variable &&
type.pointer && (type.storage == StorageClassUniformConstant || type.storage == StorageClassAtomicCounter))
{
emit_uniform(var);
emitted = true;
}
});
if (emitted)
statement("");
emitted = false;
// Emit builtin input and output variables here.
emit_builtin_variables();
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
// Do not emit I/O blocks here.
// I/O blocks can be arrayed, so we must deal with them separately to support geometry shaders
// and tessellation down the line.
if (!block && var.storage != StorageClassFunction && !var.remapped_variable && type.pointer &&
(var.storage == StorageClassInput || var.storage == StorageClassOutput) && !is_builtin_variable(var) &&
interface_variable_exists_in_entry_point(var.self))
{
// Only emit non-builtins which are not blocks here. Builtin variables are handled separately.
emit_interface_block_globally(var);
emitted = true;
}
});
if (emitted)
statement("");
emitted = false;
require_input = false;
require_output = false;
unordered_set<uint32_t> active_inputs;
unordered_set<uint32_t> active_outputs;
SmallVector<SPIRVariable *> input_variables;
SmallVector<SPIRVariable *> output_variables;
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
return;
// Do not emit I/O blocks here.
// I/O blocks can be arrayed, so we must deal with them separately to support geometry shaders
// and tessellation down the line.
if (!block && !var.remapped_variable && type.pointer && !is_builtin_variable(var) &&
interface_variable_exists_in_entry_point(var.self))
{
if (var.storage == StorageClassInput)
input_variables.push_back(&var);
else
output_variables.push_back(&var);
}
// Reserve input and output locations for block variables as necessary.
if (block && !is_builtin_variable(var) && interface_variable_exists_in_entry_point(var.self))
{
auto &active = var.storage == StorageClassInput ? active_inputs : active_outputs;
for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++)
{
if (has_member_decoration(type.self, i, DecorationLocation))
{
uint32_t location = get_member_decoration(type.self, i, DecorationLocation);
active.insert(location);
}
}
// Emit the block struct and a global variable here.
emit_io_block(var);
}
});
const auto variable_compare = [&](const SPIRVariable *a, const SPIRVariable *b) -> bool {
// Sort input and output variables based on, from more robust to less robust:
// - Location
// - Variable has a location
// - Name comparison
// - Variable has a name
// - Fallback: ID
bool has_location_a = has_decoration(a->self, DecorationLocation);
bool has_location_b = has_decoration(b->self, DecorationLocation);
if (has_location_a && has_location_b)
{
return get_decoration(a->self, DecorationLocation) < get_decoration(b->self, DecorationLocation);
}
else if (has_location_a && !has_location_b)
return true;
else if (!has_location_a && has_location_b)
return false;
const auto &name1 = to_name(a->self);
const auto &name2 = to_name(b->self);
if (name1.empty() && name2.empty())
return a->self < b->self;
else if (name1.empty())
return true;
else if (name2.empty())
return false;
return name1.compare(name2) < 0;
};
auto input_builtins = active_input_builtins;
input_builtins.clear(BuiltInNumWorkgroups);
input_builtins.clear(BuiltInPointCoord);
input_builtins.clear(BuiltInSubgroupSize);
input_builtins.clear(BuiltInSubgroupLocalInvocationId);
input_builtins.clear(BuiltInSubgroupEqMask);
input_builtins.clear(BuiltInSubgroupLtMask);
input_builtins.clear(BuiltInSubgroupLeMask);
input_builtins.clear(BuiltInSubgroupGtMask);
input_builtins.clear(BuiltInSubgroupGeMask);
if (!input_variables.empty() || !input_builtins.empty())
{
require_input = true;
statement("struct SPIRV_Cross_Input");
begin_scope();
sort(input_variables.begin(), input_variables.end(), variable_compare);
for (auto var : input_variables)
emit_interface_block_in_struct(*var, active_inputs);
emit_builtin_inputs_in_struct();
end_scope_decl();
statement("");
}
if (!output_variables.empty() || !active_output_builtins.empty())
{
require_output = true;
statement("struct SPIRV_Cross_Output");
begin_scope();
// FIXME: Use locations properly if they exist.
sort(output_variables.begin(), output_variables.end(), variable_compare);
for (auto var : output_variables)
emit_interface_block_in_struct(*var, active_outputs);
emit_builtin_outputs_in_struct();
end_scope_decl();
statement("");
}
// Global variables.
for (auto global : global_variables)
{
auto &var = get<SPIRVariable>(global);
if (var.storage != StorageClassOutput)
{
if (!variable_is_lut(var))
{
add_resource_name(var.self);
const char *storage = nullptr;
switch (var.storage)
{
case StorageClassWorkgroup:
storage = "groupshared";
break;
default:
storage = "static";
break;
}
statement(storage, " ", variable_decl(var), ";");
emitted = true;
}
}
}
if (emitted)
statement("");
declare_undefined_values();
if (requires_op_fmod)
{
static const char *types[] = {
"float",
"float2",
"float3",
"float4",
};
for (auto &type : types)
{
statement(type, " mod(", type, " x, ", type, " y)");
begin_scope();
statement("return x - y * floor(x / y);");
end_scope();
statement("");
}
}
if (required_textureSizeVariants != 0)
{
static const char *types[QueryTypeCount] = { "float4", "int4", "uint4" };
static const char *dims[QueryDimCount] = { "Texture1D", "Texture1DArray", "Texture2D", "Texture2DArray",
"Texture3D", "Buffer", "TextureCube", "TextureCubeArray",
"Texture2DMS", "Texture2DMSArray" };
static const bool has_lod[QueryDimCount] = { true, true, true, true, true, false, true, true, false, false };
static const char *ret_types[QueryDimCount] = {
"uint", "uint2", "uint2", "uint3", "uint3", "uint", "uint2", "uint3", "uint2", "uint3",
};
static const uint32_t return_arguments[QueryDimCount] = {
1, 2, 2, 3, 3, 1, 2, 3, 2, 3,
};
for (uint32_t index = 0; index < QueryDimCount; index++)
{
for (uint32_t type_index = 0; type_index < QueryTypeCount; type_index++)
{
uint32_t bit = 16 * type_index + index;
uint64_t mask = 1ull << bit;
if ((required_textureSizeVariants & mask) == 0)
continue;
statement(ret_types[index], " SPIRV_Cross_textureSize(", dims[index], "<", types[type_index],
"> Tex, uint Level, out uint Param)");
begin_scope();
statement(ret_types[index], " ret;");
switch (return_arguments[index])
{
case 1:
if (has_lod[index])
statement("Tex.GetDimensions(Level, ret.x, Param);");
else
{
statement("Tex.GetDimensions(ret.x);");
statement("Param = 0u;");
}
break;
case 2:
if (has_lod[index])
statement("Tex.GetDimensions(Level, ret.x, ret.y, Param);");
else
statement("Tex.GetDimensions(ret.x, ret.y, Param);");
break;
case 3:
if (has_lod[index])
statement("Tex.GetDimensions(Level, ret.x, ret.y, ret.z, Param);");
else
statement("Tex.GetDimensions(ret.x, ret.y, ret.z, Param);");
break;
}
statement("return ret;");
end_scope();
statement("");
}
}
}
if (requires_fp16_packing)
{
// HLSL does not pack into a single word sadly :(
statement("uint SPIRV_Cross_packHalf2x16(float2 value)");
begin_scope();
statement("uint2 Packed = f32tof16(value);");
statement("return Packed.x | (Packed.y << 16);");
end_scope();
statement("");
statement("float2 SPIRV_Cross_unpackHalf2x16(uint value)");
begin_scope();
statement("return f16tof32(uint2(value & 0xffff, value >> 16));");
end_scope();
statement("");
}
if (requires_explicit_fp16_packing)
{
// HLSL does not pack into a single word sadly :(
statement("uint SPIRV_Cross_packFloat2x16(min16float2 value)");
begin_scope();
statement("uint2 Packed = f32tof16(value);");
statement("return Packed.x | (Packed.y << 16);");
end_scope();
statement("");
statement("min16float2 SPIRV_Cross_unpackFloat2x16(uint value)");
begin_scope();
statement("return min16float2(f16tof32(uint2(value & 0xffff, value >> 16)));");
end_scope();
statement("");
}
// HLSL does not seem to have builtins for these operation, so roll them by hand ...
if (requires_unorm8_packing)
{
statement("uint SPIRV_Cross_packUnorm4x8(float4 value)");
begin_scope();
statement("uint4 Packed = uint4(round(saturate(value) * 255.0));");
statement("return Packed.x | (Packed.y << 8) | (Packed.z << 16) | (Packed.w << 24);");
end_scope();
statement("");
statement("float4 SPIRV_Cross_unpackUnorm4x8(uint value)");
begin_scope();
statement("uint4 Packed = uint4(value & 0xff, (value >> 8) & 0xff, (value >> 16) & 0xff, value >> 24);");
statement("return float4(Packed) / 255.0;");
end_scope();
statement("");
}
if (requires_snorm8_packing)
{
statement("uint SPIRV_Cross_packSnorm4x8(float4 value)");
begin_scope();
statement("int4 Packed = int4(round(clamp(value, -1.0, 1.0) * 127.0)) & 0xff;");
statement("return uint(Packed.x | (Packed.y << 8) | (Packed.z << 16) | (Packed.w << 24));");
end_scope();
statement("");
statement("float4 SPIRV_Cross_unpackSnorm4x8(uint value)");
begin_scope();
statement("int SignedValue = int(value);");
statement("int4 Packed = int4(SignedValue << 24, SignedValue << 16, SignedValue << 8, SignedValue) >> 24;");
statement("return clamp(float4(Packed) / 127.0, -1.0, 1.0);");
end_scope();
statement("");
}
if (requires_unorm16_packing)
{
statement("uint SPIRV_Cross_packUnorm2x16(float2 value)");
begin_scope();
statement("uint2 Packed = uint2(round(saturate(value) * 65535.0));");
statement("return Packed.x | (Packed.y << 16);");
end_scope();
statement("");
statement("float2 SPIRV_Cross_unpackUnorm2x16(uint value)");
begin_scope();
statement("uint2 Packed = uint2(value & 0xffff, value >> 16);");
statement("return float2(Packed) / 65535.0;");
end_scope();
statement("");
}
if (requires_snorm16_packing)
{
statement("uint SPIRV_Cross_packSnorm2x16(float2 value)");
begin_scope();
statement("int2 Packed = int2(round(clamp(value, -1.0, 1.0) * 32767.0)) & 0xffff;");
statement("return uint(Packed.x | (Packed.y << 16));");
end_scope();
statement("");
statement("float2 SPIRV_Cross_unpackSnorm2x16(uint value)");
begin_scope();
statement("int SignedValue = int(value);");
statement("int2 Packed = int2(SignedValue << 16, SignedValue) >> 16;");
statement("return clamp(float2(Packed) / 32767.0, -1.0, 1.0);");
end_scope();
statement("");
}
if (requires_bitfield_insert)
{
static const char *types[] = { "uint", "uint2", "uint3", "uint4" };
for (auto &type : types)
{
statement(type, " SPIRV_Cross_bitfieldInsert(", type, " Base, ", type, " Insert, uint Offset, uint Count)");
begin_scope();
statement("uint Mask = Count == 32 ? 0xffffffff : (((1u << Count) - 1) << (Offset & 31));");
statement("return (Base & ~Mask) | ((Insert << Offset) & Mask);");
end_scope();
statement("");
}
}
if (requires_bitfield_extract)
{
static const char *unsigned_types[] = { "uint", "uint2", "uint3", "uint4" };
for (auto &type : unsigned_types)
{
statement(type, " SPIRV_Cross_bitfieldUExtract(", type, " Base, uint Offset, uint Count)");
begin_scope();
statement("uint Mask = Count == 32 ? 0xffffffff : ((1 << Count) - 1);");
statement("return (Base >> Offset) & Mask;");
end_scope();
statement("");
}
// In this overload, we will have to do sign-extension, which we will emulate by shifting up and down.
static const char *signed_types[] = { "int", "int2", "int3", "int4" };
for (auto &type : signed_types)
{
statement(type, " SPIRV_Cross_bitfieldSExtract(", type, " Base, int Offset, int Count)");
begin_scope();
statement("int Mask = Count == 32 ? -1 : ((1 << Count) - 1);");
statement(type, " Masked = (Base >> Offset) & Mask;");
statement("int ExtendShift = (32 - Count) & 31;");
statement("return (Masked << ExtendShift) >> ExtendShift;");
end_scope();
statement("");
}
}
if (requires_inverse_2x2)
{
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float2x2 SPIRV_Cross_Inverse(float2x2 m)");
begin_scope();
statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = m[1][1];");
statement("adj[0][1] = -m[0][1];");
statement_no_indent("");
statement("adj[1][0] = -m[1][0];");
statement("adj[1][1] = m[0][0];");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
}
if (requires_inverse_3x3)
{
statement("// Returns the determinant of a 2x2 matrix.");
statement("float SPIRV_Cross_Det2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement_no_indent("");
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float3x3 SPIRV_Cross_Inverse(float3x3 m)");
begin_scope();
statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = SPIRV_Cross_Det2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
statement("adj[0][1] = -SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
statement("adj[0][2] = SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
statement_no_indent("");
statement("adj[1][0] = -SPIRV_Cross_Det2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
statement("adj[1][1] = SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
statement("adj[1][2] = -SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
statement_no_indent("");
statement("adj[2][0] = SPIRV_Cross_Det2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
statement("adj[2][1] = -SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
statement("adj[2][2] = SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
}
if (requires_inverse_4x4)
{
if (!requires_inverse_3x3)
{
statement("// Returns the determinant of a 2x2 matrix.");
statement("float SPIRV_Cross_Det2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement("");
}
statement("// Returns the determinant of a 3x3 matrix.");
statement("float SPIRV_Cross_Det3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
"float c2, float c3)");
begin_scope();
statement("return a1 * SPIRV_Cross_Det2x2(b2, b3, c2, c3) - b1 * SPIRV_Cross_Det2x2(a2, a3, c2, c3) + c1 * "
"SPIRV_Cross_Det2x2(a2, a3, "
"b2, b3);");
end_scope();
statement_no_indent("");
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float4x4 SPIRV_Cross_Inverse(float4x4 m)");
begin_scope();
statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement(
"adj[0][0] = SPIRV_Cross_Det3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement(
"adj[0][1] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement(
"adj[0][2] = SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
"m[3][3]);");
statement(
"adj[0][3] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement(
"adj[1][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement(
"adj[1][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement(
"adj[1][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
"m[3][3]);");
statement(
"adj[1][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement(
"adj[2][0] = SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement(
"adj[2][1] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement(
"adj[2][2] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
"m[3][3]);");
statement(
"adj[2][3] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
"m[2][3]);");
statement_no_indent("");
statement(
"adj[3][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement(
"adj[3][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement(
"adj[3][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
"m[3][2]);");
statement(
"adj[3][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
"m[2][2]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
"* m[3][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
}
}
string CompilerHLSL::layout_for_member(const SPIRType &type, uint32_t index)
{
auto &flags = get_member_decoration_bitset(type.self, index);
// HLSL can emit row_major or column_major decoration in any struct.
// Do not try to merge combined decorations for children like in GLSL.
// Flip the convention. HLSL is a bit odd in that the memory layout is column major ... but the language API is "row-major".
// The way to deal with this is to multiply everything in inverse order, and reverse the memory layout.
if (flags.get(DecorationColMajor))
return "row_major ";
else if (flags.get(DecorationRowMajor))
return "column_major ";
return "";
}
void CompilerHLSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
const string &qualifier, uint32_t base_offset)
{
auto &membertype = get<SPIRType>(member_type_id);
Bitset memberflags;
auto &memb = ir.meta[type.self].members;
if (index < memb.size())
memberflags = memb[index].decoration_flags;
string qualifiers;
bool is_block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock) ||
ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock);
if (is_block)
qualifiers = to_interpolation_qualifiers(memberflags);
string packing_offset;
bool is_push_constant = type.storage == StorageClassPushConstant;
if ((has_extended_decoration(type.self, SPIRVCrossDecorationPacked) || is_push_constant) &&
has_member_decoration(type.self, index, DecorationOffset))
{
uint32_t offset = memb[index].offset - base_offset;
if (offset & 3)
SPIRV_CROSS_THROW("Cannot pack on tighter bounds than 4 bytes in HLSL.");
static const char *packing_swizzle[] = { "", ".y", ".z", ".w" };
packing_offset = join(" : packoffset(c", offset / 16, packing_swizzle[(offset & 15) >> 2], ")");
}
statement(layout_for_member(type, index), qualifiers, qualifier,
variable_decl(membertype, to_member_name(type, index)), packing_offset, ";");
}
void CompilerHLSL::emit_buffer_block(const SPIRVariable &var)
{
auto &type = get<SPIRType>(var.basetype);
bool is_uav = var.storage == StorageClassStorageBuffer || has_decoration(type.self, DecorationBufferBlock);
if (is_uav)
{
Bitset flags = ir.get_buffer_block_flags(var);
bool is_readonly = flags.get(DecorationNonWritable);
bool is_coherent = flags.get(DecorationCoherent);
add_resource_name(var.self);
statement(is_coherent ? "globallycoherent " : "", is_readonly ? "ByteAddressBuffer " : "RWByteAddressBuffer ",
to_name(var.self), type_to_array_glsl(type), to_resource_binding(var), ";");
}
else
{
if (type.array.empty())
{
if (buffer_is_packing_standard(type, BufferPackingHLSLCbufferPackOffset))
set_extended_decoration(type.self, SPIRVCrossDecorationPacked);
else
SPIRV_CROSS_THROW("cbuffer cannot be expressed with either HLSL packing layout or packoffset.");
// Flatten the top-level struct so we can use packoffset,
// this restriction is similar to GLSL where layout(offset) is not possible on sub-structs.
flattened_structs.insert(var.self);
// Prefer the block name if possible.
auto buffer_name = to_name(type.self, false);
if (ir.meta[type.self].decoration.alias.empty() ||
resource_names.find(buffer_name) != end(resource_names) ||
block_names.find(buffer_name) != end(block_names))
{
buffer_name = get_block_fallback_name(var.self);
}
add_variable(block_names, resource_names, buffer_name);
// If for some reason buffer_name is an illegal name, make a final fallback to a workaround name.
// This cannot conflict with anything else, so we're safe now.
if (buffer_name.empty())
buffer_name = join("_", get<SPIRType>(var.basetype).self, "_", var.self);
block_names.insert(buffer_name);
// Save for post-reflection later.
declared_block_names[var.self] = buffer_name;
type.member_name_cache.clear();
// var.self can be used as a backup name for the block name,
// so we need to make sure we don't disturb the name here on a recompile.
// It will need to be reset if we have to recompile.
preserve_alias_on_reset(var.self);
add_resource_name(var.self);
statement("cbuffer ", buffer_name, to_resource_binding(var));
begin_scope();
uint32_t i = 0;
for (auto &member : type.member_types)
{
add_member_name(type, i);
auto backup_name = get_member_name(type.self, i);
auto member_name = to_member_name(type, i);
set_member_name(type.self, i, sanitize_underscores(join(to_name(var.self), "_", member_name)));
emit_struct_member(type, member, i, "");
set_member_name(type.self, i, backup_name);
i++;
}
end_scope_decl();
statement("");
}
else
{
if (hlsl_options.shader_model < 51)
SPIRV_CROSS_THROW(
"Need ConstantBuffer<T> to use arrays of UBOs, but this is only supported in SM 5.1.");
// ConstantBuffer<T> does not support packoffset, so it is unuseable unless everything aligns as we expect.
if (!buffer_is_packing_standard(type, BufferPackingHLSLCbuffer))
SPIRV_CROSS_THROW("HLSL ConstantBuffer<T> cannot be expressed with normal HLSL packing rules.");
add_resource_name(type.self);
add_resource_name(var.self);
emit_struct(get<SPIRType>(type.self));
statement("ConstantBuffer<", to_name(type.self), "> ", to_name(var.self), type_to_array_glsl(type),
to_resource_binding(var), ";");
}
}
}
void CompilerHLSL::emit_push_constant_block(const SPIRVariable &var)
{
if (root_constants_layout.empty())
{
emit_buffer_block(var);
}
else
{
for (const auto &layout : root_constants_layout)
{
auto &type = get<SPIRType>(var.basetype);
if (buffer_is_packing_standard(type, BufferPackingHLSLCbufferPackOffset, layout.start, layout.end))
set_extended_decoration(type.self, SPIRVCrossDecorationPacked);
else
SPIRV_CROSS_THROW(
"root constant cbuffer cannot be expressed with either HLSL packing layout or packoffset.");
flattened_structs.insert(var.self);
type.member_name_cache.clear();
add_resource_name(var.self);
auto &memb = ir.meta[type.self].members;
statement("cbuffer SPIRV_CROSS_RootConstant_", to_name(var.self),
to_resource_register('b', layout.binding, layout.space));
begin_scope();
// Index of the next field in the generated root constant constant buffer
auto constant_index = 0u;
// Iterate over all member of the push constant and check which of the fields
// fit into the given root constant layout.
for (auto i = 0u; i < memb.size(); i++)
{
const auto offset = memb[i].offset;
if (layout.start <= offset && offset < layout.end)
{
const auto &member = type.member_types[i];
add_member_name(type, constant_index);
auto backup_name = get_member_name(type.self, i);
auto member_name = to_member_name(type, i);
set_member_name(type.self, constant_index,
sanitize_underscores(join(to_name(var.self), "_", member_name)));
emit_struct_member(type, member, i, "", layout.start);
set_member_name(type.self, constant_index, backup_name);
constant_index++;
}
}
end_scope_decl();
}
}
}
string CompilerHLSL::to_sampler_expression(uint32_t id)
{
auto expr = join("_", to_expression(id));
auto index = expr.find_first_of('[');
if (index == string::npos)
{
return expr + "_sampler";
}
else
{
// We have an expression like _ident[array], so we cannot tack on _sampler, insert it inside the string instead.
return expr.insert(index, "_sampler");
}
}
void CompilerHLSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
{
if (hlsl_options.shader_model >= 40 && combined_image_samplers.empty())
{
set<SPIRCombinedImageSampler>(result_id, result_type, image_id, samp_id);
}
else
{
// Make sure to suppress usage tracking. It is illegal to create temporaries of opaque types.
emit_op(result_type, result_id, to_combined_image_sampler(image_id, samp_id), true, true);
}
}
string CompilerHLSL::to_func_call_arg(uint32_t id)
{
string arg_str = CompilerGLSL::to_func_call_arg(id);
if (hlsl_options.shader_model <= 30)
return arg_str;
// Manufacture automatic sampler arg if the arg is a SampledImage texture and we're in modern HLSL.
auto &type = expression_type(id);
// We don't have to consider combined image samplers here via OpSampledImage because
// those variables cannot be passed as arguments to functions.
// Only global SampledImage variables may be used as arguments.
if (type.basetype == SPIRType::SampledImage && type.image.dim != DimBuffer)
arg_str += ", " + to_sampler_expression(id);
return arg_str;
}
void CompilerHLSL::emit_function_prototype(SPIRFunction &func, const Bitset &return_flags)
{
if (func.self != ir.default_entry_point)
add_function_overload(func);
auto &execution = get_entry_point();
// Avoid shadow declarations.
local_variable_names = resource_names;
string decl;
auto &type = get<SPIRType>(func.return_type);
if (type.array.empty())
{
decl += flags_to_qualifiers_glsl(type, return_flags);
decl += type_to_glsl(type);
decl += " ";
}
else
{
// We cannot return arrays in HLSL, so "return" through an out variable.
decl = "void ";
}
if (func.self == ir.default_entry_point)
{
if (execution.model == ExecutionModelVertex)
decl += "vert_main";
else if (execution.model == ExecutionModelFragment)
decl += "frag_main";
else if (execution.model == ExecutionModelGLCompute)
decl += "comp_main";
else
SPIRV_CROSS_THROW("Unsupported execution model.");
processing_entry_point = true;
}
else
decl += to_name(func.self);
decl += "(";
SmallVector<string> arglist;
if (!type.array.empty())
{
// Fake array returns by writing to an out array instead.
string out_argument;
out_argument += "out ";
out_argument += type_to_glsl(type);
out_argument += " ";
out_argument += "SPIRV_Cross_return_value";
out_argument += type_to_array_glsl(type);
arglist.push_back(move(out_argument));
}
for (auto &arg : func.arguments)
{
// Do not pass in separate images or samplers if we're remapping
// to combined image samplers.
if (skip_argument(arg.id))
continue;
// Might change the variable name if it already exists in this function.
// SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation
// to use same name for variables.
// Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates.
add_local_variable_name(arg.id);
arglist.push_back(argument_decl(arg));
// Flatten a combined sampler to two separate arguments in modern HLSL.
auto &arg_type = get<SPIRType>(arg.type);
if (hlsl_options.shader_model > 30 && arg_type.basetype == SPIRType::SampledImage &&
arg_type.image.dim != DimBuffer)
{
// Manufacture automatic sampler arg for SampledImage texture
arglist.push_back(join(image_is_comparison(arg_type, arg.id) ? "SamplerComparisonState " : "SamplerState ",
to_sampler_expression(arg.id), type_to_array_glsl(arg_type)));
}
// Hold a pointer to the parameter so we can invalidate the readonly field if needed.
auto *var = maybe_get<SPIRVariable>(arg.id);
if (var)
var->parameter = &arg;
}
for (auto &arg : func.shadow_arguments)
{
// Might change the variable name if it already exists in this function.
// SPIRV OpName doesn't have any semantic effect, so it's valid for an implementation
// to use same name for variables.
// Since we want to make the GLSL debuggable and somewhat sane, use fallback names for variables which are duplicates.
add_local_variable_name(arg.id);
arglist.push_back(argument_decl(arg));
// Hold a pointer to the parameter so we can invalidate the readonly field if needed.
auto *var = maybe_get<SPIRVariable>(arg.id);
if (var)
var->parameter = &arg;
}
decl += merge(arglist);
decl += ")";
statement(decl);
}
void CompilerHLSL::emit_hlsl_entry_point()
{
SmallVector<string> arguments;
if (require_input)
arguments.push_back("SPIRV_Cross_Input stage_input");
// Add I/O blocks as separate arguments with appropriate storage qualifier.
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
if (var.storage != StorageClassInput && var.storage != StorageClassOutput)
return;
if (block && !is_builtin_variable(var) && interface_variable_exists_in_entry_point(var.self))
{
if (var.storage == StorageClassInput)
{
arguments.push_back(join("in ", variable_decl(type, join("stage_input", to_name(var.self)))));
}
else if (var.storage == StorageClassOutput)
{
arguments.push_back(join("out ", variable_decl(type, join("stage_output", to_name(var.self)))));
}
}
});
auto &execution = get_entry_point();
switch (execution.model)
{
case ExecutionModelGLCompute:
{
SpecializationConstant wg_x, wg_y, wg_z;
get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
uint32_t x = execution.workgroup_size.x;
uint32_t y = execution.workgroup_size.y;
uint32_t z = execution.workgroup_size.z;
auto x_expr = wg_x.id ? get<SPIRConstant>(wg_x.id).specialization_constant_macro_name : to_string(x);
auto y_expr = wg_y.id ? get<SPIRConstant>(wg_y.id).specialization_constant_macro_name : to_string(y);
auto z_expr = wg_z.id ? get<SPIRConstant>(wg_z.id).specialization_constant_macro_name : to_string(z);
statement("[numthreads(", x_expr, ", ", y_expr, ", ", z_expr, ")]");
break;
}
case ExecutionModelFragment:
if (execution.flags.get(ExecutionModeEarlyFragmentTests))
statement("[earlydepthstencil]");
break;
default:
break;
}
statement(require_output ? "SPIRV_Cross_Output " : "void ", "main(", merge(arguments), ")");
begin_scope();
bool legacy = hlsl_options.shader_model <= 30;
// Copy builtins from entry point arguments to globals.
active_input_builtins.for_each_bit([&](uint32_t i) {
auto builtin = builtin_to_glsl(static_cast<BuiltIn>(i), StorageClassInput);
switch (static_cast<BuiltIn>(i))
{
case BuiltInFragCoord:
// VPOS in D3D9 is sampled at integer locations, apply half-pixel offset to be consistent.
// TODO: Do we need an option here? Any reason why a D3D9 shader would be used
// on a D3D10+ system with a different rasterization config?
if (legacy)
statement(builtin, " = stage_input.", builtin, " + float4(0.5f, 0.5f, 0.0f, 0.0f);");
else
statement(builtin, " = stage_input.", builtin, ";");
break;
case BuiltInVertexId:
case BuiltInVertexIndex:
case BuiltInInstanceIndex:
// D3D semantics are uint, but shader wants int.
if (hlsl_options.support_nonzero_base_vertex_base_instance)
{
if (static_cast<BuiltIn>(i) == BuiltInInstanceIndex)
statement(builtin, " = int(stage_input.", builtin, ") + SPIRV_Cross_BaseInstance;");
else
statement(builtin, " = int(stage_input.", builtin, ") + SPIRV_Cross_BaseVertex;");
}
else
statement(builtin, " = int(stage_input.", builtin, ");");
break;
case BuiltInInstanceId:
// D3D semantics are uint, but shader wants int.
statement(builtin, " = int(stage_input.", builtin, ");");
break;
case BuiltInNumWorkgroups:
case BuiltInPointCoord:
case BuiltInSubgroupSize:
case BuiltInSubgroupLocalInvocationId:
break;
case BuiltInSubgroupEqMask:
// Emulate these ...
// No 64-bit in HLSL, so have to do it in 32-bit and unroll.
statement("gl_SubgroupEqMask = 1u << (WaveGetLaneIndex() - uint4(0, 32, 64, 96));");
statement("if (WaveGetLaneIndex() >= 32) gl_SubgroupEqMask.x = 0;");
statement("if (WaveGetLaneIndex() >= 64 || WaveGetLaneIndex() < 32) gl_SubgroupEqMask.y = 0;");
statement("if (WaveGetLaneIndex() >= 96 || WaveGetLaneIndex() < 64) gl_SubgroupEqMask.z = 0;");
statement("if (WaveGetLaneIndex() < 96) gl_SubgroupEqMask.w = 0;");
break;
case BuiltInSubgroupGeMask:
// Emulate these ...
// No 64-bit in HLSL, so have to do it in 32-bit and unroll.
statement("gl_SubgroupGeMask = ~((1u << (WaveGetLaneIndex() - uint4(0, 32, 64, 96))) - 1u);");
statement("if (WaveGetLaneIndex() >= 32) gl_SubgroupGeMask.x = 0u;");
statement("if (WaveGetLaneIndex() >= 64) gl_SubgroupGeMask.y = 0u;");
statement("if (WaveGetLaneIndex() >= 96) gl_SubgroupGeMask.z = 0u;");
statement("if (WaveGetLaneIndex() < 32) gl_SubgroupGeMask.y = ~0u;");
statement("if (WaveGetLaneIndex() < 64) gl_SubgroupGeMask.z = ~0u;");
statement("if (WaveGetLaneIndex() < 96) gl_SubgroupGeMask.w = ~0u;");
break;
case BuiltInSubgroupGtMask:
// Emulate these ...
// No 64-bit in HLSL, so have to do it in 32-bit and unroll.
statement("uint gt_lane_index = WaveGetLaneIndex() + 1;");
statement("gl_SubgroupGtMask = ~((1u << (gt_lane_index - uint4(0, 32, 64, 96))) - 1u);");
statement("if (gt_lane_index >= 32) gl_SubgroupGtMask.x = 0u;");
statement("if (gt_lane_index >= 64) gl_SubgroupGtMask.y = 0u;");
statement("if (gt_lane_index >= 96) gl_SubgroupGtMask.z = 0u;");
statement("if (gt_lane_index >= 128) gl_SubgroupGtMask.w = 0u;");
statement("if (gt_lane_index < 32) gl_SubgroupGtMask.y = ~0u;");
statement("if (gt_lane_index < 64) gl_SubgroupGtMask.z = ~0u;");
statement("if (gt_lane_index < 96) gl_SubgroupGtMask.w = ~0u;");
break;
case BuiltInSubgroupLeMask:
// Emulate these ...
// No 64-bit in HLSL, so have to do it in 32-bit and unroll.
statement("uint le_lane_index = WaveGetLaneIndex() + 1;");
statement("gl_SubgroupLeMask = (1u << (le_lane_index - uint4(0, 32, 64, 96))) - 1u;");
statement("if (le_lane_index >= 32) gl_SubgroupLeMask.x = ~0u;");
statement("if (le_lane_index >= 64) gl_SubgroupLeMask.y = ~0u;");
statement("if (le_lane_index >= 96) gl_SubgroupLeMask.z = ~0u;");
statement("if (le_lane_index >= 128) gl_SubgroupLeMask.w = ~0u;");
statement("if (le_lane_index < 32) gl_SubgroupLeMask.y = 0u;");
statement("if (le_lane_index < 64) gl_SubgroupLeMask.z = 0u;");
statement("if (le_lane_index < 96) gl_SubgroupLeMask.w = 0u;");
break;
case BuiltInSubgroupLtMask:
// Emulate these ...
// No 64-bit in HLSL, so have to do it in 32-bit and unroll.
statement("gl_SubgroupLtMask = (1u << (WaveGetLaneIndex() - uint4(0, 32, 64, 96))) - 1u;");
statement("if (WaveGetLaneIndex() >= 32) gl_SubgroupLtMask.x = ~0u;");
statement("if (WaveGetLaneIndex() >= 64) gl_SubgroupLtMask.y = ~0u;");
statement("if (WaveGetLaneIndex() >= 96) gl_SubgroupLtMask.z = ~0u;");
statement("if (WaveGetLaneIndex() < 32) gl_SubgroupLtMask.y = 0u;");
statement("if (WaveGetLaneIndex() < 64) gl_SubgroupLtMask.z = 0u;");
statement("if (WaveGetLaneIndex() < 96) gl_SubgroupLtMask.w = 0u;");
break;
case BuiltInClipDistance:
for (uint32_t clip = 0; clip < clip_distance_count; clip++)
statement("gl_ClipDistance[", clip, "] = stage_input.gl_ClipDistance", clip / 4, ".", "xyzw"[clip & 3],
";");
break;
case BuiltInCullDistance:
for (uint32_t cull = 0; cull < cull_distance_count; cull++)
statement("gl_CullDistance[", cull, "] = stage_input.gl_CullDistance", cull / 4, ".", "xyzw"[cull & 3],
";");
break;
default:
statement(builtin, " = stage_input.", builtin, ";");
break;
}
});
// Copy from stage input struct to globals.
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
if (var.storage != StorageClassInput)
return;
bool need_matrix_unroll = var.storage == StorageClassInput && execution.model == ExecutionModelVertex;
if (!block && !var.remapped_variable && type.pointer && !is_builtin_variable(var) &&
interface_variable_exists_in_entry_point(var.self))
{
auto name = to_name(var.self);
auto &mtype = this->get<SPIRType>(var.basetype);
if (need_matrix_unroll && mtype.columns > 1)
{
// Unroll matrices.
for (uint32_t col = 0; col < mtype.columns; col++)
statement(name, "[", col, "] = stage_input.", name, "_", col, ";");
}
else
{
statement(name, " = stage_input.", name, ";");
}
}
// I/O blocks don't use the common stage input/output struct, but separate outputs.
if (block && !is_builtin_variable(var) && interface_variable_exists_in_entry_point(var.self))
{
auto name = to_name(var.self);
statement(name, " = stage_input", name, ";");
}
});
// Run the shader.
if (execution.model == ExecutionModelVertex)
statement("vert_main();");
else if (execution.model == ExecutionModelFragment)
statement("frag_main();");
else if (execution.model == ExecutionModelGLCompute)
statement("comp_main();");
else
SPIRV_CROSS_THROW("Unsupported shader stage.");
// Copy block outputs.
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
if (var.storage != StorageClassOutput)
return;
// I/O blocks don't use the common stage input/output struct, but separate outputs.
if (block && !is_builtin_variable(var) && interface_variable_exists_in_entry_point(var.self))
{
auto name = to_name(var.self);
statement("stage_output", name, " = ", name, ";");
}
});
// Copy stage outputs.
if (require_output)
{
statement("SPIRV_Cross_Output stage_output;");
// Copy builtins from globals to return struct.
active_output_builtins.for_each_bit([&](uint32_t i) {
// PointSize doesn't exist in HLSL.
if (i == BuiltInPointSize)
return;
switch (static_cast<BuiltIn>(i))
{
case BuiltInClipDistance:
for (uint32_t clip = 0; clip < clip_distance_count; clip++)
statement("stage_output.gl_ClipDistance", clip / 4, ".", "xyzw"[clip & 3], " = gl_ClipDistance[",
clip, "];");
break;
case BuiltInCullDistance:
for (uint32_t cull = 0; cull < cull_distance_count; cull++)
statement("stage_output.gl_CullDistance", cull / 4, ".", "xyzw"[cull & 3], " = gl_CullDistance[",
cull, "];");
break;
default:
{
auto builtin_expr = builtin_to_glsl(static_cast<BuiltIn>(i), StorageClassOutput);
statement("stage_output.", builtin_expr, " = ", builtin_expr, ";");
break;
}
}
});
ir.for_each_typed_id<SPIRVariable>([&](uint32_t, SPIRVariable &var) {
auto &type = this->get<SPIRType>(var.basetype);
bool block = ir.meta[type.self].decoration.decoration_flags.get(DecorationBlock);
if (var.storage != StorageClassOutput)
return;
if (!block && var.storage != StorageClassFunction && !var.remapped_variable && type.pointer &&
!is_builtin_variable(var) && interface_variable_exists_in_entry_point(var.self))
{
auto name = to_name(var.self);
if (legacy && execution.model == ExecutionModelFragment)
{
string output_filler;
for (uint32_t size = type.vecsize; size < 4; ++size)
output_filler += ", 0.0";
statement("stage_output.", name, " = float4(", name, output_filler, ");");
}
else
{
statement("stage_output.", name, " = ", name, ";");
}
}
});
statement("return stage_output;");
}
end_scope();
}
void CompilerHLSL::emit_fixup()
{
if (get_entry_point().model == ExecutionModelVertex)
{
// Do various mangling on the gl_Position.
if (hlsl_options.shader_model <= 30)
{
statement("gl_Position.x = gl_Position.x - gl_HalfPixel.x * "
"gl_Position.w;");
statement("gl_Position.y = gl_Position.y + gl_HalfPixel.y * "
"gl_Position.w;");
}
if (options.vertex.flip_vert_y)
statement("gl_Position.y = -gl_Position.y;");
if (options.vertex.fixup_clipspace)
statement("gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;");
}
}
void CompilerHLSL::emit_texture_op(const Instruction &i)
{
auto *ops = stream(i);
auto op = static_cast<Op>(i.op);
uint32_t length = i.length;
SmallVector<uint32_t> inherited_expressions;
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t img = ops[2];
uint32_t coord = ops[3];
uint32_t dref = 0;
uint32_t comp = 0;
bool gather = false;
bool proj = false;
const uint32_t *opt = nullptr;
auto *combined_image = maybe_get<SPIRCombinedImageSampler>(img);
auto img_expr = to_expression(combined_image ? combined_image->image : img);
inherited_expressions.push_back(coord);
switch (op)
{
case OpImageSampleDrefImplicitLod:
case OpImageSampleDrefExplicitLod:
dref = ops[4];
opt = &ops[5];
length -= 5;
break;
case OpImageSampleProjDrefImplicitLod:
case OpImageSampleProjDrefExplicitLod:
dref = ops[4];
proj = true;
opt = &ops[5];
length -= 5;
break;
case OpImageDrefGather:
dref = ops[4];
opt = &ops[5];
gather = true;
length -= 5;
break;
case OpImageGather:
comp = ops[4];
opt = &ops[5];
gather = true;
length -= 5;
break;
case OpImageSampleProjImplicitLod:
case OpImageSampleProjExplicitLod:
opt = &ops[4];
length -= 4;
proj = true;
break;
case OpImageQueryLod:
opt = &ops[4];
length -= 4;
break;
default:
opt = &ops[4];
length -= 4;
break;
}
auto &imgtype = expression_type(img);
uint32_t coord_components = 0;
switch (imgtype.image.dim)
{
case spv::Dim1D:
coord_components = 1;
break;
case spv::Dim2D:
coord_components = 2;
break;
case spv::Dim3D:
coord_components = 3;
break;
case spv::DimCube:
coord_components = 3;
break;
case spv::DimBuffer:
coord_components = 1;
break;
default:
coord_components = 2;
break;
}
if (dref)
inherited_expressions.push_back(dref);
if (imgtype.image.arrayed)
coord_components++;
uint32_t bias = 0;
uint32_t lod = 0;
uint32_t grad_x = 0;
uint32_t grad_y = 0;
uint32_t coffset = 0;
uint32_t offset = 0;
uint32_t coffsets = 0;
uint32_t sample = 0;
uint32_t flags = 0;
if (length)
{
flags = opt[0];
opt++;
length--;
}
auto test = [&](uint32_t &v, uint32_t flag) {
if (length && (flags & flag))
{
v = *opt++;
inherited_expressions.push_back(v);
length--;
}
};
test(bias, ImageOperandsBiasMask);
test(lod, ImageOperandsLodMask);
test(grad_x, ImageOperandsGradMask);
test(grad_y, ImageOperandsGradMask);
test(coffset, ImageOperandsConstOffsetMask);
test(offset, ImageOperandsOffsetMask);
test(coffsets, ImageOperandsConstOffsetsMask);
test(sample, ImageOperandsSampleMask);
string expr;
string texop;
if (op == OpImageFetch)
{
if (hlsl_options.shader_model < 40)
{
SPIRV_CROSS_THROW("texelFetch is not supported in HLSL shader model 2/3.");
}
texop += img_expr;
texop += ".Load";
}
else if (op == OpImageQueryLod)
{
texop += img_expr;
texop += ".CalculateLevelOfDetail";
}
else
{
auto &imgformat = get<SPIRType>(imgtype.image.type);
if (imgformat.basetype != SPIRType::Float)
{
SPIRV_CROSS_THROW("Sampling non-float textures is not supported in HLSL.");
}
if (hlsl_options.shader_model >= 40)
{
texop += img_expr;
if (image_is_comparison(imgtype, img))
{
if (gather)
{
SPIRV_CROSS_THROW("GatherCmp does not exist in HLSL.");
}
else if (lod || grad_x || grad_y)
{
// Assume we want a fixed level, and the only thing we can get in HLSL is SampleCmpLevelZero.
texop += ".SampleCmpLevelZero";
}
else
texop += ".SampleCmp";
}
else if (gather)
{
uint32_t comp_num = get<SPIRConstant>(comp).scalar();
if (hlsl_options.shader_model >= 50)
{
switch (comp_num)
{
case 0:
texop += ".GatherRed";
break;
case 1:
texop += ".GatherGreen";
break;
case 2:
texop += ".GatherBlue";
break;
case 3:
texop += ".GatherAlpha";
break;
default:
SPIRV_CROSS_THROW("Invalid component.");
}
}
else
{
if (comp_num == 0)
texop += ".Gather";
else
SPIRV_CROSS_THROW("HLSL shader model 4 can only gather from the red component.");
}
}
else if (bias)
texop += ".SampleBias";
else if (grad_x || grad_y)
texop += ".SampleGrad";
else if (lod)
texop += ".SampleLevel";
else
texop += ".Sample";
}
else
{
switch (imgtype.image.dim)
{
case Dim1D:
texop += "tex1D";
break;
case Dim2D:
texop += "tex2D";
break;
case Dim3D:
texop += "tex3D";
break;
case DimCube:
texop += "texCUBE";
break;
case DimRect:
case DimBuffer:
case DimSubpassData:
SPIRV_CROSS_THROW("Buffer texture support is not yet implemented for HLSL"); // TODO
default:
SPIRV_CROSS_THROW("Invalid dimension.");
}
if (gather)
SPIRV_CROSS_THROW("textureGather is not supported in HLSL shader model 2/3.");
if (offset || coffset)
SPIRV_CROSS_THROW("textureOffset is not supported in HLSL shader model 2/3.");
if (proj)
texop += "proj";
if (grad_x || grad_y)
texop += "grad";
if (lod)
texop += "lod";
if (bias)
texop += "bias";
}
}
expr += texop;
expr += "(";
if (hlsl_options.shader_model < 40)
{
if (combined_image)
SPIRV_CROSS_THROW("Separate images/samplers are not supported in HLSL shader model 2/3.");
expr += to_expression(img);
}
else if (op != OpImageFetch)
{
string sampler_expr;
if (combined_image)
sampler_expr = to_expression(combined_image->sampler);
else
sampler_expr = to_sampler_expression(img);
expr += sampler_expr;
}
auto swizzle = [](uint32_t comps, uint32_t in_comps) -> const char * {
if (comps == in_comps)
return "";
switch (comps)
{
case 1:
return ".x";
case 2:
return ".xy";
case 3:
return ".xyz";
default:
return "";
}
};
bool forward = should_forward(coord);
// The IR can give us more components than we need, so chop them off as needed.
string coord_expr;
auto &coord_type = expression_type(coord);
if (coord_components != coord_type.vecsize)
coord_expr = to_enclosed_expression(coord) + swizzle(coord_components, expression_type(coord).vecsize);
else
coord_expr = to_expression(coord);
if (proj && hlsl_options.shader_model >= 40) // Legacy HLSL has "proj" operations which do this for us.
coord_expr = coord_expr + " / " + to_extract_component_expression(coord, coord_components);
if (hlsl_options.shader_model < 40 && lod)
{
string coord_filler;
for (uint32_t size = coord_components; size < 3; ++size)
{
coord_filler += ", 0.0";
}
coord_expr = "float4(" + coord_expr + coord_filler + ", " + to_expression(lod) + ")";
}
if (hlsl_options.shader_model < 40 && bias)
{
string coord_filler;
for (uint32_t size = coord_components; size < 3; ++size)
{
coord_filler += ", 0.0";
}
coord_expr = "float4(" + coord_expr + coord_filler + ", " + to_expression(bias) + ")";
}
if (op == OpImageFetch)
{
if (imgtype.image.dim != DimBuffer && !imgtype.image.ms)
coord_expr =
join("int", coord_components + 1, "(", coord_expr, ", ", lod ? to_expression(lod) : string("0"), ")");
}
else
expr += ", ";
expr += coord_expr;
if (dref)
{
if (hlsl_options.shader_model < 40)
SPIRV_CROSS_THROW("Legacy HLSL does not support comparison sampling.");
forward = forward && should_forward(dref);
expr += ", ";
if (proj)
expr += to_enclosed_expression(dref) + " / " + to_extract_component_expression(coord, coord_components);
else
expr += to_expression(dref);
}
if (!dref && (grad_x || grad_y))
{
forward = forward && should_forward(grad_x);
forward = forward && should_forward(grad_y);
expr += ", ";
expr += to_expression(grad_x);
expr += ", ";
expr += to_expression(grad_y);
}
if (!dref && lod && hlsl_options.shader_model >= 40 && op != OpImageFetch)
{
forward = forward && should_forward(lod);
expr += ", ";
expr += to_expression(lod);
}
if (!dref && bias && hlsl_options.shader_model >= 40)
{
forward = forward && should_forward(bias);
expr += ", ";
expr += to_expression(bias);
}
if (coffset)
{
forward = forward && should_forward(coffset);
expr += ", ";
expr += to_expression(coffset);
}
else if (offset)
{
forward = forward && should_forward(offset);
expr += ", ";
expr += to_expression(offset);
}
if (sample)
{
expr += ", ";
expr += to_expression(sample);
}
expr += ")";
if (op == OpImageQueryLod)
{
// This is rather awkward.
// textureQueryLod returns two values, the "accessed level",
// as well as the actual LOD lambda.
// As far as I can tell, there is no way to get the .x component
// according to GLSL spec, and it depends on the sampler itself.
// Just assume X == Y, so we will need to splat the result to a float2.
statement("float _", id, "_tmp = ", expr, ";");
emit_op(result_type, id, join("float2(_", id, "_tmp, _", id, "_tmp)"), true, true);
}
else
{
emit_op(result_type, id, expr, forward, false);
}
for (auto &inherit : inherited_expressions)
inherit_expression_dependencies(id, inherit);
switch (op)
{
case OpImageSampleDrefImplicitLod:
case OpImageSampleImplicitLod:
case OpImageSampleProjImplicitLod:
case OpImageSampleProjDrefImplicitLod:
case OpImageQueryLod:
register_control_dependent_expression(id);
break;
default:
break;
}
}
string CompilerHLSL::to_resource_binding(const SPIRVariable &var)
{
// TODO: Basic implementation, might need special consideration for RW/RO structured buffers,
// RW/RO images, and so on.
if (!has_decoration(var.self, DecorationBinding))
return "";
const auto &type = get<SPIRType>(var.basetype);
char space = '\0';
switch (type.basetype)
{
case SPIRType::SampledImage:
space = 't'; // SRV
break;
case SPIRType::Image:
if (type.image.sampled == 2 && type.image.dim != DimSubpassData)
space = 'u'; // UAV
else
space = 't'; // SRV
break;
case SPIRType::Sampler:
space = 's';
break;
case SPIRType::Struct:
{
auto storage = type.storage;
if (storage == StorageClassUniform)
{
if (has_decoration(type.self, DecorationBufferBlock))
{
Bitset flags = ir.get_buffer_block_flags(var);
bool is_readonly = flags.get(DecorationNonWritable);
space = is_readonly ? 't' : 'u'; // UAV
}
else if (has_decoration(type.self, DecorationBlock))
space = 'b'; // Constant buffers
}
else if (storage == StorageClassPushConstant)
space = 'b'; // Constant buffers
else if (storage == StorageClassStorageBuffer)
{
// UAV or SRV depending on readonly flag.
Bitset flags = ir.get_buffer_block_flags(var);
bool is_readonly = flags.get(DecorationNonWritable);
space = is_readonly ? 't' : 'u';
}
break;
}
default:
break;
}
if (!space)
return "";
return to_resource_register(space, get_decoration(var.self, DecorationBinding),
get_decoration(var.self, DecorationDescriptorSet));
}
string CompilerHLSL::to_resource_binding_sampler(const SPIRVariable &var)
{
// For combined image samplers.
if (!has_decoration(var.self, DecorationBinding))
return "";
return to_resource_register('s', get_decoration(var.self, DecorationBinding),
get_decoration(var.self, DecorationDescriptorSet));
}
string CompilerHLSL::to_resource_register(char space, uint32_t binding, uint32_t space_set)
{
if (hlsl_options.shader_model >= 51)
return join(" : register(", space, binding, ", space", space_set, ")");
else
return join(" : register(", space, binding, ")");
}
void CompilerHLSL::emit_modern_uniform(const SPIRVariable &var)
{
auto &type = get<SPIRType>(var.basetype);
switch (type.basetype)
{
case SPIRType::SampledImage:
case SPIRType::Image:
{
bool is_coherent = false;
if (type.basetype == SPIRType::Image && type.image.sampled == 2)
is_coherent = has_decoration(var.self, DecorationCoherent);
statement(is_coherent ? "globallycoherent " : "", image_type_hlsl_modern(type, var.self), " ",
to_name(var.self), type_to_array_glsl(type), to_resource_binding(var), ";");
if (type.basetype == SPIRType::SampledImage && type.image.dim != DimBuffer)
{
// For combined image samplers, also emit a combined image sampler.
if (image_is_comparison(type, var.self))
statement("SamplerComparisonState ", to_sampler_expression(var.self), type_to_array_glsl(type),
to_resource_binding_sampler(var), ";");
else
statement("SamplerState ", to_sampler_expression(var.self), type_to_array_glsl(type),
to_resource_binding_sampler(var), ";");
}
break;
}
case SPIRType::Sampler:
if (comparison_ids.count(var.self))
statement("SamplerComparisonState ", to_name(var.self), type_to_array_glsl(type), to_resource_binding(var),
";");
else
statement("SamplerState ", to_name(var.self), type_to_array_glsl(type), to_resource_binding(var), ";");
break;
default:
statement(variable_decl(var), to_resource_binding(var), ";");
break;
}
}
void CompilerHLSL::emit_legacy_uniform(const SPIRVariable &var)
{
auto &type = get<SPIRType>(var.basetype);
switch (type.basetype)
{
case SPIRType::Sampler:
case SPIRType::Image:
SPIRV_CROSS_THROW("Separate image and samplers not supported in legacy HLSL.");
default:
statement(variable_decl(var), ";");
break;
}
}
void CompilerHLSL::emit_uniform(const SPIRVariable &var)
{
add_resource_name(var.self);
if (hlsl_options.shader_model >= 40)
emit_modern_uniform(var);
else
emit_legacy_uniform(var);
}
string CompilerHLSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
{
if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Int)
return type_to_glsl(out_type);
else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Int64)
return type_to_glsl(out_type);
else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Float)
return "asuint";
else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::UInt)
return type_to_glsl(out_type);
else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::UInt64)
return type_to_glsl(out_type);
else if (out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::Float)
return "asint";
else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::UInt)
return "asfloat";
else if (out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::Int)
return "asfloat";
else if (out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::Double)
SPIRV_CROSS_THROW("Double to Int64 is not supported in HLSL.");
else if (out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Double)
SPIRV_CROSS_THROW("Double to UInt64 is not supported in HLSL.");
else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::Int64)
return "asdouble";
else if (out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::UInt64)
return "asdouble";
else if (out_type.basetype == SPIRType::Half && in_type.basetype == SPIRType::UInt && in_type.vecsize == 1)
{
if (!requires_explicit_fp16_packing)
{
requires_explicit_fp16_packing = true;
force_recompile();
}
return "SPIRV_Cross_unpackFloat2x16";
}
else if (out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Half && in_type.vecsize == 2)
{
if (!requires_explicit_fp16_packing)
{
requires_explicit_fp16_packing = true;
force_recompile();
}
return "SPIRV_Cross_packFloat2x16";
}
else
return "";
}
void CompilerHLSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
{
auto op = static_cast<GLSLstd450>(eop);
// If we need to do implicit bitcasts, make sure we do it with the correct type.
uint32_t integer_width = get_integer_width_for_glsl_instruction(op, args, count);
auto int_type = to_signed_basetype(integer_width);
auto uint_type = to_unsigned_basetype(integer_width);
switch (op)
{
case GLSLstd450InverseSqrt:
emit_unary_func_op(result_type, id, args[0], "rsqrt");
break;
case GLSLstd450Fract:
emit_unary_func_op(result_type, id, args[0], "frac");
break;
case GLSLstd450RoundEven:
SPIRV_CROSS_THROW("roundEven is not supported on HLSL.");
case GLSLstd450Acosh:
case GLSLstd450Asinh:
case GLSLstd450Atanh:
SPIRV_CROSS_THROW("Inverse hyperbolics are not supported on HLSL.");
case GLSLstd450FMix:
case GLSLstd450IMix:
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "lerp");
break;
case GLSLstd450Atan2:
emit_binary_func_op(result_type, id, args[0], args[1], "atan2");
break;
case GLSLstd450Fma:
emit_trinary_func_op(result_type, id, args[0], args[1], args[2], "mad");
break;
case GLSLstd450InterpolateAtCentroid:
emit_unary_func_op(result_type, id, args[0], "EvaluateAttributeAtCentroid");
break;
case GLSLstd450InterpolateAtSample:
emit_binary_func_op(result_type, id, args[0], args[1], "EvaluateAttributeAtSample");
break;
case GLSLstd450InterpolateAtOffset:
emit_binary_func_op(result_type, id, args[0], args[1], "EvaluateAttributeSnapped");
break;
case GLSLstd450PackHalf2x16:
if (!requires_fp16_packing)
{
requires_fp16_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_packHalf2x16");
break;
case GLSLstd450UnpackHalf2x16:
if (!requires_fp16_packing)
{
requires_fp16_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_unpackHalf2x16");
break;
case GLSLstd450PackSnorm4x8:
if (!requires_snorm8_packing)
{
requires_snorm8_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_packSnorm4x8");
break;
case GLSLstd450UnpackSnorm4x8:
if (!requires_snorm8_packing)
{
requires_snorm8_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_unpackSnorm4x8");
break;
case GLSLstd450PackUnorm4x8:
if (!requires_unorm8_packing)
{
requires_unorm8_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_packUnorm4x8");
break;
case GLSLstd450UnpackUnorm4x8:
if (!requires_unorm8_packing)
{
requires_unorm8_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_unpackUnorm4x8");
break;
case GLSLstd450PackSnorm2x16:
if (!requires_snorm16_packing)
{
requires_snorm16_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_packSnorm2x16");
break;
case GLSLstd450UnpackSnorm2x16:
if (!requires_snorm16_packing)
{
requires_snorm16_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_unpackSnorm2x16");
break;
case GLSLstd450PackUnorm2x16:
if (!requires_unorm16_packing)
{
requires_unorm16_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_packUnorm2x16");
break;
case GLSLstd450UnpackUnorm2x16:
if (!requires_unorm16_packing)
{
requires_unorm16_packing = true;
force_recompile();
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_unpackUnorm2x16");
break;
case GLSLstd450PackDouble2x32:
case GLSLstd450UnpackDouble2x32:
SPIRV_CROSS_THROW("packDouble2x32/unpackDouble2x32 not supported in HLSL.");
case GLSLstd450FindILsb:
emit_unary_func_op(result_type, id, args[0], "firstbitlow");
break;
case GLSLstd450FindSMsb:
emit_unary_func_op_cast(result_type, id, args[0], "firstbithigh", int_type, int_type);
break;
case GLSLstd450FindUMsb:
emit_unary_func_op_cast(result_type, id, args[0], "firstbithigh", uint_type, uint_type);
break;
case GLSLstd450MatrixInverse:
{
auto &type = get<SPIRType>(result_type);
if (type.vecsize == 2 && type.columns == 2)
{
if (!requires_inverse_2x2)
{
requires_inverse_2x2 = true;
force_recompile();
}
}
else if (type.vecsize == 3 && type.columns == 3)
{
if (!requires_inverse_3x3)
{
requires_inverse_3x3 = true;
force_recompile();
}
}
else if (type.vecsize == 4 && type.columns == 4)
{
if (!requires_inverse_4x4)
{
requires_inverse_4x4 = true;
force_recompile();
}
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_Inverse");
break;
}
default:
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break;
}
}
string CompilerHLSL::read_access_chain(const SPIRAccessChain &chain)
{
auto &type = get<SPIRType>(chain.basetype);
SPIRType target_type;
target_type.basetype = SPIRType::UInt;
target_type.vecsize = type.vecsize;
target_type.columns = type.columns;
if (type.basetype == SPIRType::Struct)
SPIRV_CROSS_THROW("Reading structs from ByteAddressBuffer not yet supported.");
if (type.width != 32)
SPIRV_CROSS_THROW("Reading types other than 32-bit from ByteAddressBuffer not yet supported.");
if (!type.array.empty())
SPIRV_CROSS_THROW("Reading arrays from ByteAddressBuffer not yet supported.");
string load_expr;
// Load a vector or scalar.
if (type.columns == 1 && !chain.row_major_matrix)
{
const char *load_op = nullptr;
switch (type.vecsize)
{
case 1:
load_op = "Load";
break;
case 2:
load_op = "Load2";
break;
case 3:
load_op = "Load3";
break;
case 4:
load_op = "Load4";
break;
default:
SPIRV_CROSS_THROW("Unknown vector size.");
}
load_expr = join(chain.base, ".", load_op, "(", chain.dynamic_index, chain.static_index, ")");
}
else if (type.columns == 1)
{
// Strided load since we are loading a column from a row-major matrix.
if (type.vecsize > 1)
{
load_expr = type_to_glsl(target_type);
load_expr += "(";
}
for (uint32_t r = 0; r < type.vecsize; r++)
{
load_expr +=
join(chain.base, ".Load(", chain.dynamic_index, chain.static_index + r * chain.matrix_stride, ")");
if (r + 1 < type.vecsize)
load_expr += ", ";
}
if (type.vecsize > 1)
load_expr += ")";
}
else if (!chain.row_major_matrix)
{
// Load a matrix, column-major, the easy case.
const char *load_op = nullptr;
switch (type.vecsize)
{
case 1:
load_op = "Load";
break;
case 2:
load_op = "Load2";
break;
case 3:
load_op = "Load3";
break;
case 4:
load_op = "Load4";
break;
default:
SPIRV_CROSS_THROW("Unknown vector size.");
}
// Note, this loading style in HLSL is *actually* row-major, but we always treat matrices as transposed in this backend,
// so row-major is technically column-major ...
load_expr = type_to_glsl(target_type);
load_expr += "(";
for (uint32_t c = 0; c < type.columns; c++)
{
load_expr += join(chain.base, ".", load_op, "(", chain.dynamic_index,
chain.static_index + c * chain.matrix_stride, ")");
if (c + 1 < type.columns)
load_expr += ", ";
}
load_expr += ")";
}
else
{
// Pick out elements one by one ... Hopefully compilers are smart enough to recognize this pattern
// considering HLSL is "row-major decl", but "column-major" memory layout (basically implicit transpose model, ugh) ...
load_expr = type_to_glsl(target_type);
load_expr += "(";
for (uint32_t c = 0; c < type.columns; c++)
{
for (uint32_t r = 0; r < type.vecsize; r++)
{
load_expr += join(chain.base, ".Load(", chain.dynamic_index,
chain.static_index + c * (type.width / 8) + r * chain.matrix_stride, ")");
if ((r + 1 < type.vecsize) || (c + 1 < type.columns))
load_expr += ", ";
}
}
load_expr += ")";
}
auto bitcast_op = bitcast_glsl_op(type, target_type);
if (!bitcast_op.empty())
load_expr = join(bitcast_op, "(", load_expr, ")");
return load_expr;
}
void CompilerHLSL::emit_load(const Instruction &instruction)
{
auto ops = stream(instruction);
auto *chain = maybe_get<SPIRAccessChain>(ops[2]);
if (chain)
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
uint32_t ptr = ops[2];
auto load_expr = read_access_chain(*chain);
bool forward = should_forward(ptr) && forced_temporaries.find(id) == end(forced_temporaries);
// If we are forwarding this load,
// don't register the read to access chain here, defer that to when we actually use the expression,
// using the add_implied_read_expression mechanism.
if (!forward)
track_expression_read(chain->self);
// Do not forward complex load sequences like matrices, structs and arrays.
auto &type = get<SPIRType>(result_type);
if (type.columns > 1 || !type.array.empty() || type.basetype == SPIRType::Struct)
forward = false;
auto &e = emit_op(result_type, id, load_expr, forward, true);
e.need_transpose = false;
register_read(id, ptr, forward);
inherit_expression_dependencies(id, ptr);
if (forward)
add_implied_read_expression(e, chain->self);
}
else
CompilerGLSL::emit_instruction(instruction);
}
void CompilerHLSL::write_access_chain(const SPIRAccessChain &chain, uint32_t value)
{
auto &type = get<SPIRType>(chain.basetype);
// Make sure we trigger a read of the constituents in the access chain.
track_expression_read(chain.self);
SPIRType target_type;
target_type.basetype = SPIRType::UInt;
target_type.vecsize = type.vecsize;
target_type.columns = type.columns;
if (type.basetype == SPIRType::Struct)
SPIRV_CROSS_THROW("Writing structs to RWByteAddressBuffer not yet supported.");
if (type.width != 32)
SPIRV_CROSS_THROW("Writing types other than 32-bit to RWByteAddressBuffer not yet supported.");
if (!type.array.empty())
SPIRV_CROSS_THROW("Reading arrays from ByteAddressBuffer not yet supported.");
if (type.columns == 1 && !chain.row_major_matrix)
{
const char *store_op = nullptr;
switch (type.vecsize)
{
case 1:
store_op = "Store";
break;
case 2:
store_op = "Store2";
break;
case 3:
store_op = "Store3";
break;
case 4:
store_op = "Store4";
break;
default:
SPIRV_CROSS_THROW("Unknown vector size.");
}
auto store_expr = to_expression(value);
auto bitcast_op = bitcast_glsl_op(target_type, type);
if (!bitcast_op.empty())
store_expr = join(bitcast_op, "(", store_expr, ")");
statement(chain.base, ".", store_op, "(", chain.dynamic_index, chain.static_index, ", ", store_expr, ");");
}
else if (type.columns == 1)
{
// Strided store.
for (uint32_t r = 0; r < type.vecsize; r++)
{
auto store_expr = to_enclosed_expression(value);
if (type.vecsize > 1)
{
store_expr += ".";
store_expr += index_to_swizzle(r);
}
remove_duplicate_swizzle(store_expr);
auto bitcast_op = bitcast_glsl_op(target_type, type);
if (!bitcast_op.empty())
store_expr = join(bitcast_op, "(", store_expr, ")");
statement(chain.base, ".Store(", chain.dynamic_index, chain.static_index + chain.matrix_stride * r, ", ",
store_expr, ");");
}
}
else if (!chain.row_major_matrix)
{
const char *store_op = nullptr;
switch (type.vecsize)
{
case 1:
store_op = "Store";
break;
case 2:
store_op = "Store2";
break;
case 3:
store_op = "Store3";
break;
case 4:
store_op = "Store4";
break;
default:
SPIRV_CROSS_THROW("Unknown vector size.");
}
for (uint32_t c = 0; c < type.columns; c++)
{
auto store_expr = join(to_enclosed_expression(value), "[", c, "]");
auto bitcast_op = bitcast_glsl_op(target_type, type);
if (!bitcast_op.empty())
store_expr = join(bitcast_op, "(", store_expr, ")");
statement(chain.base, ".", store_op, "(", chain.dynamic_index, chain.static_index + c * chain.matrix_stride,
", ", store_expr, ");");
}
}
else
{
for (uint32_t r = 0; r < type.vecsize; r++)
{
for (uint32_t c = 0; c < type.columns; c++)
{
auto store_expr = join(to_enclosed_expression(value), "[", c, "].", index_to_swizzle(r));
remove_duplicate_swizzle(store_expr);
auto bitcast_op = bitcast_glsl_op(target_type, type);
if (!bitcast_op.empty())
store_expr = join(bitcast_op, "(", store_expr, ")");
statement(chain.base, ".Store(", chain.dynamic_index,
chain.static_index + c * (type.width / 8) + r * chain.matrix_stride, ", ", store_expr, ");");
}
}
}
register_write(chain.self);
}
void CompilerHLSL::emit_store(const Instruction &instruction)
{
auto ops = stream(instruction);
auto *chain = maybe_get<SPIRAccessChain>(ops[0]);
if (chain)
write_access_chain(*chain, ops[1]);
else
CompilerGLSL::emit_instruction(instruction);
}
void CompilerHLSL::emit_access_chain(const Instruction &instruction)
{
auto ops = stream(instruction);
uint32_t length = instruction.length;
bool need_byte_access_chain = false;
auto &type = expression_type(ops[2]);
const auto *chain = maybe_get<SPIRAccessChain>(ops[2]);
if (chain)
{
// Keep tacking on an existing access chain.
need_byte_access_chain = true;
}
else if (type.storage == StorageClassStorageBuffer || has_decoration(type.self, DecorationBufferBlock))
{
// If we are starting to poke into an SSBO, we are dealing with ByteAddressBuffers, and we need
// to emit SPIRAccessChain rather than a plain SPIRExpression.
uint32_t chain_arguments = length - 3;
if (chain_arguments > type.array.size())
need_byte_access_chain = true;
}
if (need_byte_access_chain)
{
uint32_t to_plain_buffer_length = static_cast<uint32_t>(type.array.size());
auto *backing_variable = maybe_get_backing_variable(ops[2]);
string base;
if (to_plain_buffer_length != 0)
base = access_chain(ops[2], &ops[3], to_plain_buffer_length, get<SPIRType>(ops[0]));
else if (chain)
base = chain->base;
else
base = to_expression(ops[2]);
// Start traversing type hierarchy at the proper non-pointer types.
auto *basetype = &get_pointee_type(type);
// Traverse the type hierarchy down to the actual buffer types.
for (uint32_t i = 0; i < to_plain_buffer_length; i++)
{
assert(basetype->parent_type);
basetype = &get<SPIRType>(basetype->parent_type);
}
uint32_t matrix_stride = 0;
bool row_major_matrix = false;
// Inherit matrix information.
if (chain)
{
matrix_stride = chain->matrix_stride;
row_major_matrix = chain->row_major_matrix;
}
auto offsets =
flattened_access_chain_offset(*basetype, &ops[3 + to_plain_buffer_length],
length - 3 - to_plain_buffer_length, 0, 1, &row_major_matrix, &matrix_stride);
auto &e = set<SPIRAccessChain>(ops[1], ops[0], type.storage, base, offsets.first, offsets.second);
e.row_major_matrix = row_major_matrix;
e.matrix_stride = matrix_stride;
e.immutable = should_forward(ops[2]);
e.loaded_from = backing_variable ? backing_variable->self : 0;
if (chain)
{
e.dynamic_index += chain->dynamic_index;
e.static_index += chain->static_index;
}
for (uint32_t i = 2; i < length; i++)
{
inherit_expression_dependencies(ops[1], ops[i]);
add_implied_read_expression(e, ops[i]);
}
}
else
{
CompilerGLSL::emit_instruction(instruction);
}
}
void CompilerHLSL::emit_atomic(const uint32_t *ops, uint32_t length, spv::Op op)
{
const char *atomic_op = nullptr;
string value_expr;
if (op != OpAtomicIDecrement && op != OpAtomicIIncrement)
value_expr = to_expression(ops[op == OpAtomicCompareExchange ? 6 : 5]);
switch (op)
{
case OpAtomicIIncrement:
atomic_op = "InterlockedAdd";
value_expr = "1";
break;
case OpAtomicIDecrement:
atomic_op = "InterlockedAdd";
value_expr = "-1";
break;
case OpAtomicISub:
atomic_op = "InterlockedAdd";
value_expr = join("-", enclose_expression(value_expr));
break;
case OpAtomicSMin:
case OpAtomicUMin:
atomic_op = "InterlockedMin";
break;
case OpAtomicSMax:
case OpAtomicUMax:
atomic_op = "InterlockedMax";
break;
case OpAtomicAnd:
atomic_op = "InterlockedAnd";
break;
case OpAtomicOr:
atomic_op = "InterlockedOr";
break;
case OpAtomicXor:
atomic_op = "InterlockedXor";
break;
case OpAtomicIAdd:
atomic_op = "InterlockedAdd";
break;
case OpAtomicExchange:
atomic_op = "InterlockedExchange";
break;
case OpAtomicCompareExchange:
if (length < 8)
SPIRV_CROSS_THROW("Not enough data for opcode.");
atomic_op = "InterlockedCompareExchange";
value_expr = join(to_expression(ops[7]), ", ", value_expr);
break;
default:
SPIRV_CROSS_THROW("Unknown atomic opcode.");
}
uint32_t result_type = ops[0];
uint32_t id = ops[1];
forced_temporaries.insert(ops[1]);
auto &type = get<SPIRType>(result_type);
statement(variable_decl(type, to_name(id)), ";");
auto &data_type = expression_type(ops[2]);
auto *chain = maybe_get<SPIRAccessChain>(ops[2]);
SPIRType::BaseType expr_type;
if (data_type.storage == StorageClassImage || !chain)
{
statement(atomic_op, "(", to_expression(ops[2]), ", ", value_expr, ", ", to_name(id), ");");
expr_type = data_type.basetype;
}
else
{
// RWByteAddress buffer is always uint in its underlying type.
expr_type = SPIRType::UInt;
statement(chain->base, ".", atomic_op, "(", chain->dynamic_index, chain->static_index, ", ", value_expr, ", ",
to_name(id), ");");
}
auto expr = bitcast_expression(type, expr_type, to_name(id));
set<SPIRExpression>(id, expr, result_type, true);
flush_all_atomic_capable_variables();
}
void CompilerHLSL::emit_subgroup_op(const Instruction &i)
{
if (hlsl_options.shader_model < 60)
SPIRV_CROSS_THROW("Wave ops requires SM 6.0 or higher.");
const uint32_t *ops = stream(i);
auto op = static_cast<Op>(i.op);
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto scope = static_cast<Scope>(get<SPIRConstant>(ops[2]).scalar());
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
const auto make_inclusive_Sum = [&](const string &expr) -> string {
return join(expr, " + ", to_expression(ops[4]));
};
const auto make_inclusive_Product = [&](const string &expr) -> string {
return join(expr, " * ", to_expression(ops[4]));
};
#define make_inclusive_BitAnd(expr) ""
#define make_inclusive_BitOr(expr) ""
#define make_inclusive_BitXor(expr) ""
#define make_inclusive_Min(expr) ""
#define make_inclusive_Max(expr) ""
switch (op)
{
case OpGroupNonUniformElect:
emit_op(result_type, id, "WaveIsFirstLane()", true);
break;
case OpGroupNonUniformBroadcast:
emit_binary_func_op(result_type, id, ops[3], ops[4], "WaveReadLaneAt");
break;
case OpGroupNonUniformBroadcastFirst:
emit_unary_func_op(result_type, id, ops[3], "WaveReadLaneFirst");
break;
case OpGroupNonUniformBallot:
emit_unary_func_op(result_type, id, ops[3], "WaveActiveBallot");
break;
case OpGroupNonUniformInverseBallot:
SPIRV_CROSS_THROW("Cannot trivially implement InverseBallot in HLSL.");
break;
case OpGroupNonUniformBallotBitExtract:
SPIRV_CROSS_THROW("Cannot trivially implement BallotBitExtract in HLSL.");
break;
case OpGroupNonUniformBallotFindLSB:
SPIRV_CROSS_THROW("Cannot trivially implement BallotFindLSB in HLSL.");
break;
case OpGroupNonUniformBallotFindMSB:
SPIRV_CROSS_THROW("Cannot trivially implement BallotFindMSB in HLSL.");
break;
case OpGroupNonUniformBallotBitCount:
{
auto operation = static_cast<GroupOperation>(ops[3]);
if (operation == GroupOperationReduce)
{
bool forward = should_forward(ops[4]);
auto left = join("countbits(", to_enclosed_expression(ops[4]), ".x) + countbits(",
to_enclosed_expression(ops[4]), ".y)");
auto right = join("countbits(", to_enclosed_expression(ops[4]), ".z) + countbits(",
to_enclosed_expression(ops[4]), ".w)");
emit_op(result_type, id, join(left, " + ", right), forward);
inherit_expression_dependencies(id, ops[4]);
}
else if (operation == GroupOperationInclusiveScan)
SPIRV_CROSS_THROW("Cannot trivially implement BallotBitCount Inclusive Scan in HLSL.");
else if (operation == GroupOperationExclusiveScan)
SPIRV_CROSS_THROW("Cannot trivially implement BallotBitCount Exclusive Scan in HLSL.");
else
SPIRV_CROSS_THROW("Invalid BitCount operation.");
break;
}
case OpGroupNonUniformShuffle:
SPIRV_CROSS_THROW("Cannot trivially implement Shuffle in HLSL.");
case OpGroupNonUniformShuffleXor:
SPIRV_CROSS_THROW("Cannot trivially implement ShuffleXor in HLSL.");
case OpGroupNonUniformShuffleUp:
SPIRV_CROSS_THROW("Cannot trivially implement ShuffleUp in HLSL.");
case OpGroupNonUniformShuffleDown:
SPIRV_CROSS_THROW("Cannot trivially implement ShuffleDown in HLSL.");
case OpGroupNonUniformAll:
emit_unary_func_op(result_type, id, ops[3], "WaveActiveAllTrue");
break;
case OpGroupNonUniformAny:
emit_unary_func_op(result_type, id, ops[3], "WaveActiveAnyTrue");
break;
case OpGroupNonUniformAllEqual:
{
auto &type = get<SPIRType>(result_type);
emit_unary_func_op(result_type, id, ops[3],
type.basetype == SPIRType::Boolean ? "WaveActiveAllEqualBool" : "WaveActiveAllEqual");
break;
}
// clang-format off
#define HLSL_GROUP_OP(op, hlsl_op, supports_scan) \
case OpGroupNonUniform##op: \
{ \
auto operation = static_cast<GroupOperation>(ops[3]); \
if (operation == GroupOperationReduce) \
emit_unary_func_op(result_type, id, ops[4], "WaveActive" #hlsl_op); \
else if (operation == GroupOperationInclusiveScan && supports_scan) \
{ \
bool forward = should_forward(ops[4]); \
emit_op(result_type, id, make_inclusive_##hlsl_op (join("WavePrefix" #hlsl_op, "(", to_expression(ops[4]), ")")), forward); \
inherit_expression_dependencies(id, ops[4]); \
} \
else if (operation == GroupOperationExclusiveScan && supports_scan) \
emit_unary_func_op(result_type, id, ops[4], "WavePrefix" #hlsl_op); \
else if (operation == GroupOperationClusteredReduce) \
SPIRV_CROSS_THROW("Cannot trivially implement ClusteredReduce in HLSL."); \
else \
SPIRV_CROSS_THROW("Invalid group operation."); \
break; \
}
HLSL_GROUP_OP(FAdd, Sum, true)
HLSL_GROUP_OP(FMul, Product, true)
HLSL_GROUP_OP(FMin, Min, false)
HLSL_GROUP_OP(FMax, Max, false)
HLSL_GROUP_OP(IAdd, Sum, true)
HLSL_GROUP_OP(IMul, Product, true)
HLSL_GROUP_OP(SMin, Min, false)
HLSL_GROUP_OP(SMax, Max, false)
HLSL_GROUP_OP(UMin, Min, false)
HLSL_GROUP_OP(UMax, Max, false)
HLSL_GROUP_OP(BitwiseAnd, BitAnd, false)
HLSL_GROUP_OP(BitwiseOr, BitOr, false)
HLSL_GROUP_OP(BitwiseXor, BitXor, false)
#undef HLSL_GROUP_OP
// clang-format on
case OpGroupNonUniformQuadSwap:
{
uint32_t direction = get<SPIRConstant>(ops[4]).scalar();
if (direction == 0)
emit_unary_func_op(result_type, id, ops[3], "QuadReadAcrossX");
else if (direction == 1)
emit_unary_func_op(result_type, id, ops[3], "QuadReadAcrossY");
else if (direction == 2)
emit_unary_func_op(result_type, id, ops[3], "QuadReadAcrossDiagonal");
else
SPIRV_CROSS_THROW("Invalid quad swap direction.");
break;
}
case OpGroupNonUniformQuadBroadcast:
{
emit_binary_func_op(result_type, id, ops[3], ops[4], "QuadReadLaneAt");
break;
}
default:
SPIRV_CROSS_THROW("Invalid opcode for subgroup.");
}
register_control_dependent_expression(id);
}
void CompilerHLSL::emit_instruction(const Instruction &instruction)
{
auto ops = stream(instruction);
auto opcode = static_cast<Op>(instruction.op);
#define HLSL_BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
#define HLSL_BOP_CAST(op, type) \
emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define HLSL_UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
#define HLSL_QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
#define HLSL_TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
#define HLSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define HLSL_BFOP_CAST(op, type) \
emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
#define HLSL_BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
#define HLSL_UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
// If we need to do implicit bitcasts, make sure we do it with the correct type.
uint32_t integer_width = get_integer_width_for_instruction(instruction);
auto int_type = to_signed_basetype(integer_width);
switch (opcode)
{
case OpAccessChain:
case OpInBoundsAccessChain:
{
emit_access_chain(instruction);
break;
}
case OpStore:
{
emit_store(instruction);
break;
}
case OpLoad:
{
emit_load(instruction);
break;
}
case OpMatrixTimesVector:
{
emit_binary_func_op(ops[0], ops[1], ops[3], ops[2], "mul");
break;
}
case OpVectorTimesMatrix:
{
emit_binary_func_op(ops[0], ops[1], ops[3], ops[2], "mul");
break;
}
case OpMatrixTimesMatrix:
{
emit_binary_func_op(ops[0], ops[1], ops[3], ops[2], "mul");
break;
}
case OpFMod:
{
if (!requires_op_fmod)
{
requires_op_fmod = true;
force_recompile();
}
CompilerGLSL::emit_instruction(instruction);
break;
}
case OpFRem:
emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], "fmod");
break;
case OpImage:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto *combined = maybe_get<SPIRCombinedImageSampler>(ops[2]);
if (combined)
{
auto &e = emit_op(result_type, id, to_expression(combined->image), true, true);
auto *var = maybe_get_backing_variable(combined->image);
if (var)
e.loaded_from = var->self;
}
else
{
auto &e = emit_op(result_type, id, to_expression(ops[2]), true, true);
auto *var = maybe_get_backing_variable(ops[2]);
if (var)
e.loaded_from = var->self;
}
break;
}
case OpDPdx:
HLSL_UFOP(ddx);
register_control_dependent_expression(ops[1]);
break;
case OpDPdy:
HLSL_UFOP(ddy);
register_control_dependent_expression(ops[1]);
break;
case OpDPdxFine:
HLSL_UFOP(ddx_fine);
register_control_dependent_expression(ops[1]);
break;
case OpDPdyFine:
HLSL_UFOP(ddy_fine);
register_control_dependent_expression(ops[1]);
break;
case OpDPdxCoarse:
HLSL_UFOP(ddx_coarse);
register_control_dependent_expression(ops[1]);
break;
case OpDPdyCoarse:
HLSL_UFOP(ddy_coarse);
register_control_dependent_expression(ops[1]);
break;
case OpFwidth:
case OpFwidthCoarse:
case OpFwidthFine:
HLSL_UFOP(fwidth);
register_control_dependent_expression(ops[1]);
break;
case OpLogicalNot:
{
auto result_type = ops[0];
auto id = ops[1];
auto &type = get<SPIRType>(result_type);
if (type.vecsize > 1)
emit_unrolled_unary_op(result_type, id, ops[2], "!");
else
HLSL_UOP(!);
break;
}
case OpIEqual:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "==");
else
HLSL_BOP_CAST(==, int_type);
break;
}
case OpLogicalEqual:
case OpFOrdEqual:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "==");
else
HLSL_BOP(==);
break;
}
case OpINotEqual:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "!=");
else
HLSL_BOP_CAST(!=, int_type);
break;
}
case OpLogicalNotEqual:
case OpFOrdNotEqual:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "!=");
else
HLSL_BOP(!=);
break;
}
case OpUGreaterThan:
case OpSGreaterThan:
{
auto result_type = ops[0];
auto id = ops[1];
auto type = opcode == OpUGreaterThan ? SPIRType::UInt : SPIRType::Int;
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], ">");
else
HLSL_BOP_CAST(>, type);
break;
}
case OpFOrdGreaterThan:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], ">");
else
HLSL_BOP(>);
break;
}
case OpUGreaterThanEqual:
case OpSGreaterThanEqual:
{
auto result_type = ops[0];
auto id = ops[1];
auto type = opcode == OpUGreaterThanEqual ? SPIRType::UInt : SPIRType::Int;
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], ">=");
else
HLSL_BOP_CAST(>=, type);
break;
}
case OpFOrdGreaterThanEqual:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], ">=");
else
HLSL_BOP(>=);
break;
}
case OpULessThan:
case OpSLessThan:
{
auto result_type = ops[0];
auto id = ops[1];
auto type = opcode == OpULessThan ? SPIRType::UInt : SPIRType::Int;
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "<");
else
HLSL_BOP_CAST(<, type);
break;
}
case OpFOrdLessThan:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "<");
else
HLSL_BOP(<);
break;
}
case OpULessThanEqual:
case OpSLessThanEqual:
{
auto result_type = ops[0];
auto id = ops[1];
auto type = opcode == OpULessThanEqual ? SPIRType::UInt : SPIRType::Int;
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "<=");
else
HLSL_BOP_CAST(<=, type);
break;
}
case OpFOrdLessThanEqual:
{
auto result_type = ops[0];
auto id = ops[1];
if (expression_type(ops[2]).vecsize > 1)
emit_unrolled_binary_op(result_type, id, ops[2], ops[3], "<=");
else
HLSL_BOP(<=);
break;
}
case OpImageQueryLod:
emit_texture_op(instruction);
break;
case OpImageQuerySizeLod:
{
auto result_type = ops[0];
auto id = ops[1];
require_texture_query_variant(expression_type(ops[2]));
auto dummy_samples_levels = join(get_fallback_name(id), "_dummy_parameter");
statement("uint ", dummy_samples_levels, ";");
auto expr = join("SPIRV_Cross_textureSize(", to_expression(ops[2]), ", ",
bitcast_expression(SPIRType::UInt, ops[3]), ", ", dummy_samples_levels, ")");
auto &restype = get<SPIRType>(ops[0]);
expr = bitcast_expression(restype, SPIRType::UInt, expr);
emit_op(result_type, id, expr, true);
break;
}
case OpImageQuerySize:
{
auto result_type = ops[0];
auto id = ops[1];
require_texture_query_variant(expression_type(ops[2]));
auto dummy_samples_levels = join(get_fallback_name(id), "_dummy_parameter");
statement("uint ", dummy_samples_levels, ";");
auto expr = join("SPIRV_Cross_textureSize(", to_expression(ops[2]), ", 0u, ", dummy_samples_levels, ")");
auto &restype = get<SPIRType>(ops[0]);
expr = bitcast_expression(restype, SPIRType::UInt, expr);
emit_op(result_type, id, expr, true);
break;
}
case OpImageQuerySamples:
case OpImageQueryLevels:
{
auto result_type = ops[0];
auto id = ops[1];
require_texture_query_variant(expression_type(ops[2]));
// Keep it simple and do not emit special variants to make this look nicer ...
// This stuff is barely, if ever, used.
forced_temporaries.insert(id);
auto &type = get<SPIRType>(result_type);
statement(variable_decl(type, to_name(id)), ";");
statement("SPIRV_Cross_textureSize(", to_expression(ops[2]), ", 0u, ", to_name(id), ");");
auto &restype = get<SPIRType>(ops[0]);
auto expr = bitcast_expression(restype, SPIRType::UInt, to_name(id));
set<SPIRExpression>(id, expr, result_type, true);
break;
}
case OpImageRead:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto *var = maybe_get_backing_variable(ops[2]);
auto &type = expression_type(ops[2]);
bool subpass_data = type.image.dim == DimSubpassData;
bool pure = false;
string imgexpr;
if (subpass_data)
{
if (hlsl_options.shader_model < 40)
SPIRV_CROSS_THROW("Subpass loads are not supported in HLSL shader model 2/3.");
// Similar to GLSL, implement subpass loads using texelFetch.
if (type.image.ms)
{
uint32_t operands = ops[4];
if (operands != ImageOperandsSampleMask || instruction.length != 6)
SPIRV_CROSS_THROW("Multisampled image used in OpImageRead, but unexpected operand mask was used.");
uint32_t sample = ops[5];
imgexpr = join(to_expression(ops[2]), ".Load(int2(gl_FragCoord.xy), ", to_expression(sample), ")");
}
else
imgexpr = join(to_expression(ops[2]), ".Load(int3(int2(gl_FragCoord.xy), 0))");
pure = true;
}
else
{
imgexpr = join(to_expression(ops[2]), "[", to_expression(ops[3]), "]");
// The underlying image type in HLSL depends on the image format, unlike GLSL, where all images are "vec4",
// except that the underlying type changes how the data is interpreted.
if (var && !subpass_data)
imgexpr = remap_swizzle(get<SPIRType>(result_type),
image_format_to_components(get<SPIRType>(var->basetype).image.format), imgexpr);
}
if (var && var->forwardable)
{
bool forward = forced_temporaries.find(id) == end(forced_temporaries);
auto &e = emit_op(result_type, id, imgexpr, forward);
if (!pure)
{
e.loaded_from = var->self;
if (forward)
var->dependees.push_back(id);
}
}
else
emit_op(result_type, id, imgexpr, false);
inherit_expression_dependencies(id, ops[2]);
if (type.image.ms)
inherit_expression_dependencies(id, ops[5]);
break;
}
case OpImageWrite:
{
auto *var = maybe_get_backing_variable(ops[0]);
// The underlying image type in HLSL depends on the image format, unlike GLSL, where all images are "vec4",
// except that the underlying type changes how the data is interpreted.
auto value_expr = to_expression(ops[2]);
if (var)
{
auto &type = get<SPIRType>(var->basetype);
auto narrowed_type = get<SPIRType>(type.image.type);
narrowed_type.vecsize = image_format_to_components(type.image.format);
value_expr = remap_swizzle(narrowed_type, expression_type(ops[2]).vecsize, value_expr);
}
statement(to_expression(ops[0]), "[", to_expression(ops[1]), "] = ", value_expr, ";");
if (var && variable_storage_is_aliased(*var))
flush_all_aliased_variables();
break;
}
case OpImageTexelPointer:
{
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto &e =
set<SPIRExpression>(id, join(to_expression(ops[2]), "[", to_expression(ops[3]), "]"), result_type, true);
// When using the pointer, we need to know which variable it is actually loaded from.
auto *var = maybe_get_backing_variable(ops[2]);
e.loaded_from = var ? var->self : 0;
break;
}
case OpAtomicCompareExchange:
case OpAtomicExchange:
case OpAtomicISub:
case OpAtomicSMin:
case OpAtomicUMin:
case OpAtomicSMax:
case OpAtomicUMax:
case OpAtomicAnd:
case OpAtomicOr:
case OpAtomicXor:
case OpAtomicIAdd:
case OpAtomicIIncrement:
case OpAtomicIDecrement:
{
emit_atomic(ops, instruction.length, opcode);
break;
}
case OpControlBarrier:
case OpMemoryBarrier:
{
uint32_t memory;
uint32_t semantics;
if (opcode == OpMemoryBarrier)
{
memory = get<SPIRConstant>(ops[0]).scalar();
semantics = get<SPIRConstant>(ops[1]).scalar();
}
else
{
memory = get<SPIRConstant>(ops[1]).scalar();
semantics = get<SPIRConstant>(ops[2]).scalar();
}
if (memory == ScopeSubgroup)
{
// No Wave-barriers in HLSL.
break;
}
// We only care about these flags, acquire/release and friends are not relevant to GLSL.
semantics = mask_relevant_memory_semantics(semantics);
if (opcode == OpMemoryBarrier)
{
// If we are a memory barrier, and the next instruction is a control barrier, check if that memory barrier
// does what we need, so we avoid redundant barriers.
const Instruction *next = get_next_instruction_in_block(instruction);
if (next && next->op == OpControlBarrier)
{
auto *next_ops = stream(*next);
uint32_t next_memory = get<SPIRConstant>(next_ops[1]).scalar();
uint32_t next_semantics = get<SPIRConstant>(next_ops[2]).scalar();
next_semantics = mask_relevant_memory_semantics(next_semantics);
// There is no "just execution barrier" in HLSL.
// If there are no memory semantics for next instruction, we will imply group shared memory is synced.
if (next_semantics == 0)
next_semantics = MemorySemanticsWorkgroupMemoryMask;
bool memory_scope_covered = false;
if (next_memory == memory)
memory_scope_covered = true;
else if (next_semantics == MemorySemanticsWorkgroupMemoryMask)
{
// If we only care about workgroup memory, either Device or Workgroup scope is fine,
// scope does not have to match.
if ((next_memory == ScopeDevice || next_memory == ScopeWorkgroup) &&
(memory == ScopeDevice || memory == ScopeWorkgroup))
{
memory_scope_covered = true;
}
}
else if (memory == ScopeWorkgroup && next_memory == ScopeDevice)
{
// The control barrier has device scope, but the memory barrier just has workgroup scope.
memory_scope_covered = true;
}
// If we have the same memory scope, and all memory types are covered, we're good.
if (memory_scope_covered && (semantics & next_semantics) == semantics)
break;
}
}
// We are synchronizing some memory or syncing execution,
// so we cannot forward any loads beyond the memory barrier.
if (semantics || opcode == OpControlBarrier)
{
assert(current_emitting_block);
flush_control_dependent_expressions(current_emitting_block->self);
flush_all_active_variables();
}
if (opcode == OpControlBarrier)
{
// We cannot emit just execution barrier, for no memory semantics pick the cheapest option.
if (semantics == MemorySemanticsWorkgroupMemoryMask || semantics == 0)
statement("GroupMemoryBarrierWithGroupSync();");
else if (semantics != 0 && (semantics & MemorySemanticsWorkgroupMemoryMask) == 0)
statement("DeviceMemoryBarrierWithGroupSync();");
else
statement("AllMemoryBarrierWithGroupSync();");
}
else
{
if (semantics == MemorySemanticsWorkgroupMemoryMask)
statement("GroupMemoryBarrier();");
else if (semantics != 0 && (semantics & MemorySemanticsWorkgroupMemoryMask) == 0)
statement("DeviceMemoryBarrier();");
else
statement("AllMemoryBarrier();");
}
break;
}
case OpBitFieldInsert:
{
if (!requires_bitfield_insert)
{
requires_bitfield_insert = true;
force_recompile();
}
auto expr = join("SPIRV_Cross_bitfieldInsert(", to_expression(ops[2]), ", ", to_expression(ops[3]), ", ",
to_expression(ops[4]), ", ", to_expression(ops[5]), ")");
bool forward =
should_forward(ops[2]) && should_forward(ops[3]) && should_forward(ops[4]) && should_forward(ops[5]);
auto &restype = get<SPIRType>(ops[0]);
expr = bitcast_expression(restype, SPIRType::UInt, expr);
emit_op(ops[0], ops[1], expr, forward);
break;
}
case OpBitFieldSExtract:
case OpBitFieldUExtract:
{
if (!requires_bitfield_extract)
{
requires_bitfield_extract = true;
force_recompile();
}
if (opcode == OpBitFieldSExtract)
HLSL_TFOP(SPIRV_Cross_bitfieldSExtract);
else
HLSL_TFOP(SPIRV_Cross_bitfieldUExtract);
break;
}
case OpBitCount:
HLSL_UFOP(countbits);
break;
case OpBitReverse:
HLSL_UFOP(reversebits);
break;
case OpArrayLength:
{
auto *var = maybe_get<SPIRVariable>(ops[2]);
if (!var)
SPIRV_CROSS_THROW("Array length must point directly to an SSBO block.");
auto &type = get<SPIRType>(var->basetype);
if (!has_decoration(type.self, DecorationBlock) && !has_decoration(type.self, DecorationBufferBlock))
SPIRV_CROSS_THROW("Array length expression must point to a block type.");
// This must be 32-bit uint, so we're good to go.
emit_uninitialized_temporary_expression(ops[0], ops[1]);
statement(to_expression(ops[2]), ".GetDimensions(", to_expression(ops[1]), ");");
uint32_t offset = type_struct_member_offset(type, ops[3]);
uint32_t stride = type_struct_member_array_stride(type, ops[3]);
statement(to_expression(ops[1]), " = (", to_expression(ops[1]), " - ", offset, ") / ", stride, ";");
break;
}
default:
CompilerGLSL::emit_instruction(instruction);
break;
}
}
void CompilerHLSL::require_texture_query_variant(const SPIRType &type)
{
uint32_t bit = 0;
switch (type.image.dim)
{
case Dim1D:
bit = type.image.arrayed ? Query1DArray : Query1D;
break;
case Dim2D:
if (type.image.ms)
bit = type.image.arrayed ? Query2DMSArray : Query2DMS;
else
bit = type.image.arrayed ? Query2DArray : Query2D;
break;
case Dim3D:
bit = Query3D;
break;
case DimCube:
bit = type.image.arrayed ? QueryCubeArray : QueryCube;
break;
case DimBuffer:
bit = QueryBuffer;
break;
default:
SPIRV_CROSS_THROW("Unsupported query type.");
}
switch (get<SPIRType>(type.image.type).basetype)
{
case SPIRType::Float:
bit += QueryTypeFloat;
break;
case SPIRType::Int:
bit += QueryTypeInt;
break;
case SPIRType::UInt:
bit += QueryTypeUInt;
break;
default:
SPIRV_CROSS_THROW("Unsupported query type.");
}
uint64_t mask = 1ull << bit;
if ((required_textureSizeVariants & mask) == 0)
{
force_recompile();
required_textureSizeVariants |= mask;
}
}
void CompilerHLSL::set_root_constant_layouts(std::vector<RootConstants> layout)
{
root_constants_layout = move(layout);
}
void CompilerHLSL::add_vertex_attribute_remap(const HLSLVertexAttributeRemap &vertex_attributes)
{
remap_vertex_attributes.push_back(vertex_attributes);
}
uint32_t CompilerHLSL::remap_num_workgroups_builtin()
{
update_active_builtins();
if (!active_input_builtins.get(BuiltInNumWorkgroups))
return 0;
// Create a new, fake UBO.
uint32_t offset = ir.increase_bound_by(4);
uint32_t uint_type_id = offset;
uint32_t block_type_id = offset + 1;
uint32_t block_pointer_type_id = offset + 2;
uint32_t variable_id = offset + 3;
SPIRType uint_type;
uint_type.basetype = SPIRType::UInt;
uint_type.width = 32;
uint_type.vecsize = 3;
uint_type.columns = 1;
set<SPIRType>(uint_type_id, uint_type);
SPIRType block_type;
block_type.basetype = SPIRType::Struct;
block_type.member_types.push_back(uint_type_id);
set<SPIRType>(block_type_id, block_type);
set_decoration(block_type_id, DecorationBlock);
set_member_name(block_type_id, 0, "count");
set_member_decoration(block_type_id, 0, DecorationOffset, 0);
SPIRType block_pointer_type = block_type;
block_pointer_type.pointer = true;
block_pointer_type.storage = StorageClassUniform;
block_pointer_type.parent_type = block_type_id;
auto &ptr_type = set<SPIRType>(block_pointer_type_id, block_pointer_type);
// Preserve self.
ptr_type.self = block_type_id;
set<SPIRVariable>(variable_id, block_pointer_type_id, StorageClassUniform);
ir.meta[variable_id].decoration.alias = "SPIRV_Cross_NumWorkgroups";
num_workgroups_builtin = variable_id;
return variable_id;
}
void CompilerHLSL::validate_shader_model()
{
// Check for nonuniform qualifier.
// Instead of looping over all decorations to find this, just look at capabilities.
for (auto &cap : ir.declared_capabilities)
{
switch (cap)
{
case CapabilityShaderNonUniformEXT:
case CapabilityRuntimeDescriptorArrayEXT:
if (hlsl_options.shader_model < 51)
SPIRV_CROSS_THROW(
"Shader model 5.1 or higher is required to use bindless resources or NonUniformResourceIndex.");
default:
break;
}
}
if (ir.addressing_model != AddressingModelLogical)
SPIRV_CROSS_THROW("Only Logical addressing model can be used with HLSL.");
}
string CompilerHLSL::compile()
{
// Do not deal with ES-isms like precision, older extensions and such.
options.es = false;
options.version = 450;
options.vulkan_semantics = true;
backend.float_literal_suffix = true;
backend.double_literal_suffix = false;
backend.long_long_literal_suffix = true;
backend.uint32_t_literal_suffix = true;
backend.int16_t_literal_suffix = "";
backend.uint16_t_literal_suffix = "u";
backend.basic_int_type = "int";
backend.basic_uint_type = "uint";
backend.swizzle_is_function = false;
backend.shared_is_implied = true;
backend.unsized_array_supported = true;
backend.explicit_struct_type = false;
backend.use_initializer_list = true;
backend.use_constructor_splatting = false;
backend.boolean_mix_support = false;
backend.can_swizzle_scalar = true;
backend.can_declare_struct_inline = false;
backend.can_declare_arrays_inline = false;
backend.can_return_array = false;
backend.nonuniform_qualifier = "NonUniformResourceIndex";
build_function_control_flow_graphs_and_analyze();
validate_shader_model();
update_active_builtins();
analyze_image_and_sampler_usage();
// Subpass input needs SV_Position.
if (need_subpass_input)
active_input_builtins.set(BuiltInFragCoord);
uint32_t pass_count = 0;
do
{
if (pass_count >= 3)
SPIRV_CROSS_THROW("Over 3 compilation loops detected. Must be a bug!");
reset();
// Move constructor for this type is broken on GCC 4.9 ...
buffer.reset();
emit_header();
emit_resources();
emit_function(get<SPIRFunction>(ir.default_entry_point), Bitset());
emit_hlsl_entry_point();
pass_count++;
} while (is_forcing_recompilation());
// Entry point in HLSL is always main() for the time being.
get_entry_point().name = "main";
return buffer.str();
}
void CompilerHLSL::emit_block_hints(const SPIRBlock &block)
{
switch (block.hint)
{
case SPIRBlock::HintFlatten:
statement("[flatten]");
break;
case SPIRBlock::HintDontFlatten:
statement("[branch]");
break;
case SPIRBlock::HintUnroll:
statement("[unroll]");
break;
case SPIRBlock::HintDontUnroll:
statement("[loop]");
break;
default:
break;
}
}