mirror of
https://github.com/KhronosGroup/SPIRV-Cross.git
synced 2024-11-14 16:01:07 +00:00
3144 lines
94 KiB
C++
3144 lines
94 KiB
C++
/*
|
|
* Copyright 2016-2017 The Brenwill Workshop Ltd.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "spirv_msl.hpp"
|
|
#include "GLSL.std.450.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <numeric>
|
|
|
|
using namespace spv;
|
|
using namespace spirv_cross;
|
|
using namespace std;
|
|
|
|
static const uint32_t k_unknown_location = ~0;
|
|
|
|
CompilerMSL::CompilerMSL(vector<uint32_t> spirv_, vector<MSLVertexAttr> *p_vtx_attrs,
|
|
vector<MSLResourceBinding> *p_res_bindings)
|
|
: CompilerGLSL(move(spirv_))
|
|
{
|
|
populate_func_name_overrides();
|
|
populate_var_name_overrides();
|
|
|
|
if (p_vtx_attrs)
|
|
for (auto &va : *p_vtx_attrs)
|
|
vtx_attrs_by_location[va.location] = &va;
|
|
|
|
if (p_res_bindings)
|
|
for (auto &rb : *p_res_bindings)
|
|
resource_bindings.push_back(&rb);
|
|
}
|
|
|
|
CompilerMSL::CompilerMSL(const uint32_t *ir, size_t word_count, MSLVertexAttr *p_vtx_attrs, size_t vtx_attrs_count,
|
|
MSLResourceBinding *p_res_bindings, size_t res_bindings_count)
|
|
: CompilerGLSL(ir, word_count)
|
|
{
|
|
populate_func_name_overrides();
|
|
populate_var_name_overrides();
|
|
|
|
if (p_vtx_attrs)
|
|
for (size_t i = 0; i < vtx_attrs_count; i++)
|
|
vtx_attrs_by_location[p_vtx_attrs[i].location] = &p_vtx_attrs[i];
|
|
|
|
if (p_res_bindings)
|
|
for (size_t i = 0; i < res_bindings_count; i++)
|
|
resource_bindings.push_back(&p_res_bindings[i]);
|
|
}
|
|
|
|
// Populate the collection of function names that need to be overridden
|
|
void CompilerMSL::populate_func_name_overrides()
|
|
{
|
|
func_name_overrides["main"] = "main0";
|
|
func_name_overrides["saturate"] = "saturate0";
|
|
}
|
|
|
|
void CompilerMSL::populate_var_name_overrides()
|
|
{
|
|
var_name_overrides["kernel"] = "kernel0";
|
|
var_name_overrides["bias"] = "bias0";
|
|
}
|
|
|
|
string CompilerMSL::compile()
|
|
{
|
|
// Force a classic "C" locale, reverts when function returns
|
|
ClassicLocale classic_locale;
|
|
|
|
// Set main function name if it was explicitly set
|
|
if (!options.entry_point_name.empty())
|
|
set_name(entry_point, options.entry_point_name);
|
|
|
|
non_stage_in_input_var_ids.clear();
|
|
struct_member_padding.clear();
|
|
|
|
update_active_builtins();
|
|
fixup_image_load_store_access();
|
|
|
|
set_enabled_interface_variables(get_active_interface_variables());
|
|
|
|
// Preprocess OpCodes to extract the need to output additional header content
|
|
preprocess_op_codes();
|
|
|
|
// Create structs to hold input, output and uniform variables
|
|
qual_pos_var_name = "";
|
|
stage_in_var_id = add_interface_block(StorageClassInput);
|
|
stage_out_var_id = add_interface_block(StorageClassOutput);
|
|
stage_uniforms_var_id = add_interface_block(StorageClassUniformConstant);
|
|
|
|
// Convert the use of global variables to recursively-passed function parameters
|
|
localize_global_variables();
|
|
extract_global_variables_from_functions();
|
|
|
|
// Do not deal with GLES-isms like precision, older extensions and such.
|
|
CompilerGLSL::options.vulkan_semantics = true;
|
|
CompilerGLSL::options.es = false;
|
|
CompilerGLSL::options.version = 120;
|
|
backend.float_literal_suffix = false;
|
|
backend.uint32_t_literal_suffix = true;
|
|
backend.basic_int_type = "int";
|
|
backend.basic_uint_type = "uint";
|
|
backend.discard_literal = "discard_fragment()";
|
|
backend.swizzle_is_function = false;
|
|
backend.shared_is_implied = false;
|
|
backend.native_row_major_matrix = false;
|
|
|
|
uint32_t pass_count = 0;
|
|
do
|
|
{
|
|
if (pass_count >= 3)
|
|
SPIRV_CROSS_THROW("Over 3 compilation loops detected. Must be a bug!");
|
|
|
|
reset();
|
|
|
|
next_metal_resource_index = MSLResourceBinding(); // Start bindings at zero
|
|
|
|
// Move constructor for this type is broken on GCC 4.9 ...
|
|
buffer = unique_ptr<ostringstream>(new ostringstream());
|
|
|
|
emit_header();
|
|
emit_specialization_constants();
|
|
emit_resources();
|
|
emit_custom_functions();
|
|
emit_function(get<SPIRFunction>(entry_point), 0);
|
|
|
|
pass_count++;
|
|
} while (force_recompile);
|
|
|
|
return buffer->str();
|
|
}
|
|
|
|
string CompilerMSL::compile(vector<MSLVertexAttr> *p_vtx_attrs, vector<MSLResourceBinding> *p_res_bindings)
|
|
{
|
|
if (p_vtx_attrs)
|
|
{
|
|
vtx_attrs_by_location.clear();
|
|
for (auto &va : *p_vtx_attrs)
|
|
vtx_attrs_by_location[va.location] = &va;
|
|
}
|
|
|
|
if (p_res_bindings)
|
|
{
|
|
resource_bindings.clear();
|
|
for (auto &rb : *p_res_bindings)
|
|
resource_bindings.push_back(&rb);
|
|
}
|
|
|
|
return compile();
|
|
}
|
|
|
|
string CompilerMSL::compile(MSLConfiguration &msl_cfg, vector<MSLVertexAttr> *p_vtx_attrs,
|
|
vector<MSLResourceBinding> *p_res_bindings)
|
|
{
|
|
options = msl_cfg;
|
|
return compile(p_vtx_attrs, p_res_bindings);
|
|
}
|
|
|
|
// Register the need to output any custom functions.
|
|
void CompilerMSL::preprocess_op_codes()
|
|
{
|
|
spv_function_implementations.clear();
|
|
|
|
OpCodePreprocessor preproc(*this);
|
|
traverse_all_reachable_opcodes(get<SPIRFunction>(entry_point), preproc);
|
|
|
|
if (preproc.suppress_missing_prototypes)
|
|
add_pragma_line("#pragma clang diagnostic ignored \"-Wmissing-prototypes\"");
|
|
|
|
if (preproc.uses_atomics)
|
|
{
|
|
add_header_line("#include <metal_atomic>");
|
|
add_pragma_line("#pragma clang diagnostic ignored \"-Wunused-variable\"");
|
|
}
|
|
}
|
|
|
|
// Move the Private global variables to the entry function.
|
|
// Non-constant variables cannot have global scope in Metal.
|
|
void CompilerMSL::localize_global_variables()
|
|
{
|
|
auto &entry_func = get<SPIRFunction>(entry_point);
|
|
auto iter = global_variables.begin();
|
|
while (iter != global_variables.end())
|
|
{
|
|
uint32_t gv_id = *iter;
|
|
auto &gbl_var = get<SPIRVariable>(gv_id);
|
|
if (gbl_var.storage == StorageClassPrivate)
|
|
{
|
|
entry_func.add_local_variable(gv_id);
|
|
iter = global_variables.erase(iter);
|
|
}
|
|
else
|
|
iter++;
|
|
}
|
|
}
|
|
|
|
// For any global variable accessed directly by a function,
|
|
// extract that variable and add it as an argument to that function.
|
|
void CompilerMSL::extract_global_variables_from_functions()
|
|
{
|
|
|
|
// Uniforms
|
|
unordered_set<uint32_t> global_var_ids;
|
|
for (auto &id : ids)
|
|
{
|
|
if (id.get_type() == TypeVariable)
|
|
{
|
|
auto &var = id.get<SPIRVariable>();
|
|
if (var.storage == StorageClassInput || var.storage == StorageClassUniform ||
|
|
var.storage == StorageClassUniformConstant || var.storage == StorageClassPushConstant ||
|
|
var.storage == StorageClassStorageBuffer)
|
|
{
|
|
global_var_ids.insert(var.self);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Local vars that are declared in the main function and accessed directy by a function
|
|
auto &entry_func = get<SPIRFunction>(entry_point);
|
|
for (auto &var : entry_func.local_variables)
|
|
global_var_ids.insert(var);
|
|
|
|
std::set<uint32_t> added_arg_ids;
|
|
unordered_set<uint32_t> processed_func_ids;
|
|
extract_global_variables_from_function(entry_point, added_arg_ids, global_var_ids, processed_func_ids);
|
|
}
|
|
|
|
// MSL does not support the use of global variables for shader input content.
|
|
// For any global variable accessed directly by the specified function, extract that variable,
|
|
// add it as an argument to that function, and the arg to the added_arg_ids collection.
|
|
void CompilerMSL::extract_global_variables_from_function(uint32_t func_id, std::set<uint32_t> &added_arg_ids,
|
|
unordered_set<uint32_t> &global_var_ids,
|
|
unordered_set<uint32_t> &processed_func_ids)
|
|
{
|
|
// Avoid processing a function more than once
|
|
if (processed_func_ids.find(func_id) != processed_func_ids.end())
|
|
{
|
|
// Return function global variables
|
|
added_arg_ids = function_global_vars[func_id];
|
|
return;
|
|
}
|
|
|
|
processed_func_ids.insert(func_id);
|
|
|
|
auto &func = get<SPIRFunction>(func_id);
|
|
|
|
// Recursively establish global args added to functions on which we depend.
|
|
for (auto block : func.blocks)
|
|
{
|
|
auto &b = get<SPIRBlock>(block);
|
|
for (auto &i : b.ops)
|
|
{
|
|
auto ops = stream(i);
|
|
auto op = static_cast<Op>(i.op);
|
|
|
|
switch (op)
|
|
{
|
|
case OpLoad:
|
|
case OpAccessChain:
|
|
{
|
|
uint32_t base_id = ops[2];
|
|
if (global_var_ids.find(base_id) != global_var_ids.end())
|
|
added_arg_ids.insert(base_id);
|
|
|
|
break;
|
|
}
|
|
case OpFunctionCall:
|
|
{
|
|
uint32_t inner_func_id = ops[2];
|
|
std::set<uint32_t> inner_func_args;
|
|
extract_global_variables_from_function(inner_func_id, inner_func_args, global_var_ids,
|
|
processed_func_ids);
|
|
added_arg_ids.insert(inner_func_args.begin(), inner_func_args.end());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
function_global_vars[func_id] = added_arg_ids;
|
|
|
|
// Add the global variables as arguments to the function
|
|
if (func_id != entry_point)
|
|
{
|
|
uint32_t next_id = increase_bound_by(uint32_t(added_arg_ids.size()));
|
|
for (uint32_t arg_id : added_arg_ids)
|
|
{
|
|
uint32_t type_id = get<SPIRVariable>(arg_id).basetype;
|
|
func.add_parameter(type_id, next_id, true);
|
|
set<SPIRVariable>(next_id, type_id, StorageClassFunction);
|
|
|
|
// Ensure both the existing and new variables have the same name, and the name is valid
|
|
string vld_name = ensure_valid_name(to_name(arg_id), "v");
|
|
set_name(arg_id, vld_name);
|
|
set_name(next_id, vld_name);
|
|
|
|
meta[next_id].decoration.qualified_alias = meta[arg_id].decoration.qualified_alias;
|
|
next_id++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If a vertex attribute exists at the location, it is marked as being used by this shader
|
|
void CompilerMSL::mark_location_as_used_by_shader(uint32_t location, StorageClass storage)
|
|
{
|
|
MSLVertexAttr *p_va;
|
|
auto &execution = get_entry_point();
|
|
if ((execution.model == ExecutionModelVertex) && (storage == StorageClassInput) &&
|
|
(p_va = vtx_attrs_by_location[location]))
|
|
p_va->used_by_shader = true;
|
|
}
|
|
|
|
// Add an interface structure for the type of storage, which is either StorageClassInput or StorageClassOutput.
|
|
// Returns the ID of the newly added variable, or zero if no variable was added.
|
|
uint32_t CompilerMSL::add_interface_block(StorageClass storage)
|
|
{
|
|
// Accumulate the variables that should appear in the interface struct
|
|
vector<SPIRVariable *> vars;
|
|
bool incl_builtins = (storage == StorageClassOutput);
|
|
for (auto &id : ids)
|
|
{
|
|
if (id.get_type() == TypeVariable)
|
|
{
|
|
auto &var = id.get<SPIRVariable>();
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
if (var.storage == storage && interface_variable_exists_in_entry_point(var.self) &&
|
|
!is_hidden_variable(var, incl_builtins) && type.pointer)
|
|
{
|
|
vars.push_back(&var);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If no variables qualify, leave
|
|
if (vars.empty())
|
|
return 0;
|
|
|
|
// Add a new typed variable for this interface structure.
|
|
// The initializer expression is allocated here, but populated when the function
|
|
// declaraion is emitted, because it is cleared after each compilation pass.
|
|
uint32_t next_id = increase_bound_by(3);
|
|
uint32_t ib_type_id = next_id++;
|
|
auto &ib_type = set<SPIRType>(ib_type_id);
|
|
ib_type.basetype = SPIRType::Struct;
|
|
ib_type.storage = storage;
|
|
set_decoration(ib_type_id, DecorationBlock);
|
|
|
|
uint32_t ib_var_id = next_id++;
|
|
auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, storage, 0);
|
|
var.initializer = next_id++;
|
|
|
|
string ib_var_ref;
|
|
switch (storage)
|
|
{
|
|
case StorageClassInput:
|
|
ib_var_ref = stage_in_var_name;
|
|
break;
|
|
|
|
case StorageClassOutput:
|
|
{
|
|
ib_var_ref = stage_out_var_name;
|
|
|
|
// Add the output interface struct as a local variable to the entry function,
|
|
// and force the entry function to return the output interface struct from
|
|
// any blocks that perform a function return.
|
|
auto &entry_func = get<SPIRFunction>(entry_point);
|
|
entry_func.add_local_variable(ib_var_id);
|
|
for (auto &blk_id : entry_func.blocks)
|
|
{
|
|
auto &blk = get<SPIRBlock>(blk_id);
|
|
if (blk.terminator == SPIRBlock::Return)
|
|
blk.return_value = ib_var_id;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case StorageClassUniformConstant:
|
|
{
|
|
ib_var_ref = stage_uniform_var_name;
|
|
active_interface_variables.insert(ib_var_id); // Ensure will be emitted
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
set_name(ib_type_id, get_entry_point_name() + "_" + ib_var_ref);
|
|
set_name(ib_var_id, ib_var_ref);
|
|
|
|
for (auto p_var : vars)
|
|
{
|
|
uint32_t type_id = p_var->basetype;
|
|
auto &type = get<SPIRType>(type_id);
|
|
if (type.basetype == SPIRType::Struct)
|
|
{
|
|
// Flatten the struct members into the interface struct
|
|
uint32_t mbr_idx = 0;
|
|
for (auto &mbr_type_id : type.member_types)
|
|
{
|
|
BuiltIn builtin;
|
|
bool is_builtin = is_member_builtin(type, mbr_idx, &builtin);
|
|
|
|
auto &mbr_type = get<SPIRType>(mbr_type_id);
|
|
if (should_move_to_input_buffer(mbr_type, is_builtin, storage))
|
|
move_member_to_input_buffer(type, mbr_idx);
|
|
|
|
else if (!is_builtin || has_active_builtin(builtin, storage))
|
|
{
|
|
// Add a reference to the member to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
ib_type.member_types.push_back(mbr_type_id); // membertype.self is different for array types
|
|
|
|
// Give the member a name
|
|
string mbr_name = ensure_valid_name(to_qualified_member_name(type, mbr_idx), "m");
|
|
set_member_name(ib_type_id, ib_mbr_idx, mbr_name);
|
|
|
|
// Update the original variable reference to include the structure reference
|
|
string qual_var_name = ib_var_ref + "." + mbr_name;
|
|
set_member_qualified_name(type_id, mbr_idx, qual_var_name);
|
|
|
|
// Copy the variable location from the original variable to the member
|
|
if (has_member_decoration(type_id, mbr_idx, DecorationLocation))
|
|
{
|
|
uint32_t locn = get_member_decoration(type_id, mbr_idx, DecorationLocation);
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
else if (has_decoration(p_var->self, DecorationLocation))
|
|
{
|
|
// The block itself might have a location and in this case, all members of the block
|
|
// receive incrementing locations.
|
|
uint32_t locn = get_decoration(p_var->self, DecorationLocation) + mbr_idx;
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
|
|
// Mark the member as builtin if needed
|
|
if (is_builtin)
|
|
{
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationBuiltIn, builtin);
|
|
if (builtin == BuiltInPosition)
|
|
qual_pos_var_name = qual_var_name;
|
|
}
|
|
}
|
|
mbr_idx++;
|
|
}
|
|
}
|
|
else if (type.basetype == SPIRType::Boolean || type.basetype == SPIRType::Char ||
|
|
type.basetype == SPIRType::Int || type.basetype == SPIRType::UInt ||
|
|
type.basetype == SPIRType::Int64 || type.basetype == SPIRType::UInt64 ||
|
|
type.basetype == SPIRType::Float || type.basetype == SPIRType::Double ||
|
|
type.basetype == SPIRType::Boolean)
|
|
{
|
|
bool is_builtin = is_builtin_variable(*p_var);
|
|
BuiltIn builtin = BuiltIn(get_decoration(p_var->self, DecorationBuiltIn));
|
|
|
|
if (should_move_to_input_buffer(type, is_builtin, storage))
|
|
move_to_input_buffer(*p_var);
|
|
|
|
else if (!is_builtin || has_active_builtin(builtin, storage))
|
|
{
|
|
// Add a reference to the variable type to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
ib_type.member_types.push_back(type_id);
|
|
|
|
// Give the member a name
|
|
string mbr_name = ensure_valid_name(to_expression(p_var->self), "m");
|
|
set_member_name(ib_type_id, ib_mbr_idx, mbr_name);
|
|
|
|
// Update the original variable reference to include the structure reference
|
|
string qual_var_name = ib_var_ref + "." + mbr_name;
|
|
meta[p_var->self].decoration.qualified_alias = qual_var_name;
|
|
|
|
// Copy the variable location from the original variable to the member
|
|
if (get_decoration_mask(p_var->self) & (1ull << DecorationLocation))
|
|
{
|
|
uint32_t locn = get_decoration(p_var->self, DecorationLocation);
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationLocation, locn);
|
|
mark_location_as_used_by_shader(locn, storage);
|
|
}
|
|
|
|
// Mark the member as builtin if needed
|
|
if (is_builtin)
|
|
{
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationBuiltIn, builtin);
|
|
if (builtin == BuiltInPosition)
|
|
qual_pos_var_name = qual_var_name;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort the members of the structure by their locations.
|
|
// Oddly, Metal handles inputs better if they are sorted in reverse order.
|
|
MemberSorter::SortAspect sort_aspect =
|
|
(storage == StorageClassInput) ? MemberSorter::LocationReverse : MemberSorter::Location;
|
|
MemberSorter member_sorter(ib_type, meta[ib_type_id], sort_aspect);
|
|
member_sorter.sort();
|
|
|
|
return ib_var_id;
|
|
}
|
|
|
|
// Returns whether a variable of type and storage class should be moved from an interface
|
|
// block to a secondary input buffer block.
|
|
// This is the case for matrixes and arrays that appear in the stage_in interface block
|
|
// of a vertex function, and true is returned.
|
|
// Other types do not need to move, and false is returned.
|
|
// Matrices and arrays are not permitted in the output of a vertex function or the input
|
|
// or output of a fragment function, and in those cases, an exception is thrown.
|
|
bool CompilerMSL::should_move_to_input_buffer(SPIRType &type, bool is_builtin, StorageClass storage)
|
|
{
|
|
if ((is_matrix(type) || is_array(type)) && !is_builtin)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
|
|
if (execution.model == ExecutionModelVertex)
|
|
{
|
|
if (storage == StorageClassInput)
|
|
return true;
|
|
|
|
if (storage == StorageClassOutput)
|
|
SPIRV_CROSS_THROW("The vertex function output structure may not include a matrix or array.");
|
|
}
|
|
else if (execution.model == ExecutionModelFragment)
|
|
{
|
|
if (storage == StorageClassInput)
|
|
SPIRV_CROSS_THROW("The fragment function stage_in structure may not include a matrix or array.");
|
|
|
|
if (storage == StorageClassOutput)
|
|
SPIRV_CROSS_THROW("The fragment function output structure may not include a matrix or array.");
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Excludes the specified variable from an interface block structure.
|
|
// Instead, for the variable is added to a block variable corresponding to a secondary MSL buffer.
|
|
// The use case for this is when a vertex stage_in variable contains a matrix or array.
|
|
void CompilerMSL::move_to_input_buffer(SPIRVariable &var)
|
|
{
|
|
uint32_t var_id = var.self;
|
|
|
|
if (!has_decoration(var_id, DecorationLocation))
|
|
return;
|
|
|
|
uint32_t mbr_type_id = var.basetype;
|
|
string mbr_name = ensure_valid_name(to_expression(var_id), "m");
|
|
uint32_t mbr_locn = get_decoration(var_id, DecorationLocation);
|
|
meta[var_id].decoration.qualified_alias = add_input_buffer_block_member(mbr_type_id, mbr_name, mbr_locn);
|
|
}
|
|
|
|
// Excludes the specified type member from the stage_in block structure.
|
|
// Instead, for the variable is added to a block variable corresponding to a secondary MSL buffer.
|
|
// The use case for this is when a vertex stage_in variable contains a matrix or array.
|
|
void CompilerMSL::move_member_to_input_buffer(const SPIRType &type, uint32_t index)
|
|
{
|
|
uint32_t type_id = type.self;
|
|
|
|
if (!has_member_decoration(type_id, index, DecorationLocation))
|
|
return;
|
|
|
|
uint32_t mbr_type_id = type.member_types[index];
|
|
string mbr_name = ensure_valid_name(to_qualified_member_name(type, index), "m");
|
|
uint32_t mbr_locn = get_member_decoration(type_id, index, DecorationLocation);
|
|
string qual_name = add_input_buffer_block_member(mbr_type_id, mbr_name, mbr_locn);
|
|
set_member_qualified_name(type_id, index, qual_name);
|
|
}
|
|
|
|
// Adds a member to the input buffer block that corresponds to the MTLBuffer used by an attribute location
|
|
string CompilerMSL::add_input_buffer_block_member(uint32_t mbr_type_id, string mbr_name, uint32_t mbr_locn)
|
|
{
|
|
mark_location_as_used_by_shader(mbr_locn, StorageClassInput);
|
|
|
|
MSLVertexAttr *p_va = vtx_attrs_by_location[mbr_locn];
|
|
if (!p_va)
|
|
return "";
|
|
|
|
if (p_va->per_instance)
|
|
needs_instance_idx_arg = true;
|
|
else
|
|
needs_vertex_idx_arg = true;
|
|
|
|
// The variable that is the block struct.
|
|
// Record the stride of this struct in its offset decoration.
|
|
uint32_t ib_var_id = get_input_buffer_block_var_id(p_va->msl_buffer);
|
|
auto &ib_var = get<SPIRVariable>(ib_var_id);
|
|
uint32_t ib_type_id = ib_var.basetype;
|
|
auto &ib_type = get<SPIRType>(ib_type_id);
|
|
set_decoration(ib_type_id, DecorationOffset, p_va->msl_stride);
|
|
|
|
// Add a reference to the variable type to the interface struct.
|
|
uint32_t ib_mbr_idx = uint32_t(ib_type.member_types.size());
|
|
ib_type.member_types.push_back(mbr_type_id);
|
|
|
|
// Give the member a name
|
|
set_member_name(ib_type_id, ib_mbr_idx, mbr_name);
|
|
|
|
// Set MSL buffer and offset decorations, and indicate no valid attribute location
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationBinding, p_va->msl_buffer);
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationOffset, p_va->msl_offset);
|
|
set_member_decoration(ib_type_id, ib_mbr_idx, DecorationLocation, k_unknown_location);
|
|
|
|
// Update the original variable reference to include the structure and index reference
|
|
string idx_var_name =
|
|
builtin_to_glsl(p_va->per_instance ? BuiltInInstanceIndex : BuiltInVertexIndex, StorageClassInput);
|
|
return get_name(ib_var_id) + "[" + idx_var_name + "]." + mbr_name;
|
|
}
|
|
|
|
// Returns the ID of the input block that will use the specified MSL buffer index,
|
|
// lazily creating an input block variable and type if needed.
|
|
//
|
|
// The use of this block applies only to input variables that have been excluded from the stage_in
|
|
// block, which typically only occurs if an attempt to pass a matrix in the stage_in block.
|
|
uint32_t CompilerMSL::get_input_buffer_block_var_id(uint32_t msl_buffer)
|
|
{
|
|
uint32_t ib_var_id = non_stage_in_input_var_ids[msl_buffer];
|
|
if (!ib_var_id)
|
|
{
|
|
// No interface block exists yet. Create a new typed variable for this interface block.
|
|
// The initializer expression is allocated here, but populated when the function
|
|
// declaraion is emitted, because it is cleared after each compilation pass.
|
|
uint32_t next_id = increase_bound_by(3);
|
|
uint32_t ib_type_id = next_id++;
|
|
auto &ib_type = set<SPIRType>(ib_type_id);
|
|
ib_type.basetype = SPIRType::Struct;
|
|
ib_type.storage = StorageClassInput;
|
|
set_decoration(ib_type_id, DecorationBlock);
|
|
|
|
ib_var_id = next_id++;
|
|
auto &var = set<SPIRVariable>(ib_var_id, ib_type_id, StorageClassInput, 0);
|
|
var.initializer = next_id++;
|
|
|
|
string ib_var_name = stage_in_var_name + convert_to_string(msl_buffer);
|
|
set_name(ib_var_id, ib_var_name);
|
|
set_name(ib_type_id, get_entry_point_name() + "_" + ib_var_name);
|
|
|
|
// Add the variable to the map of buffer blocks, accessed by the Metal buffer index.
|
|
non_stage_in_input_var_ids[msl_buffer] = ib_var_id;
|
|
}
|
|
return ib_var_id;
|
|
}
|
|
|
|
// Sort the members of the struct type by offset, and pack and then pad members where needed
|
|
// to align MSL members with SPIR-V offsets. The struct members are iterated twice. Packing
|
|
// occurs first, followed by padding, because packing a member reduces both its size and its
|
|
// natural alignment, possibly requiring a padding member to be added ahead of it.
|
|
void CompilerMSL::align_struct(SPIRType &ib_type)
|
|
{
|
|
uint32_t &ib_type_id = ib_type.self;
|
|
|
|
// Sort the members of the interface structure by their offset.
|
|
// They should already be sorted per SPIR-V spec anyway.
|
|
MemberSorter member_sorter(ib_type, meta[ib_type_id], MemberSorter::Offset);
|
|
member_sorter.sort();
|
|
|
|
uint32_t curr_offset = 0;
|
|
uint32_t mbr_cnt = uint32_t(ib_type.member_types.size());
|
|
|
|
// Test the alignment of each member, and if a member should be closer to the previous
|
|
// member than the default spacing expects, it is likely that the previous member is in
|
|
// a packed format. If so, and the previous member is packable, pack it.
|
|
// For example...this applies to any 3-element vector that is followed by a scalar.
|
|
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
|
|
{
|
|
// Align current offset to the current member's default alignment.
|
|
size_t align_mask = get_declared_struct_member_alignment(ib_type, mbr_idx) - 1;
|
|
curr_offset = uint32_t((curr_offset + align_mask) & ~align_mask);
|
|
|
|
// Fetch the member offset as declared in the SPIRV.
|
|
uint32_t mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
|
|
if (curr_offset > mbr_offset)
|
|
{
|
|
uint32_t prev_mbr_idx = mbr_idx - 1;
|
|
if (is_member_packable(ib_type, prev_mbr_idx))
|
|
set_member_decoration(ib_type_id, prev_mbr_idx, DecorationCPacked);
|
|
}
|
|
|
|
// Increment the current offset to be positioned immediately after the current member.
|
|
curr_offset = mbr_offset + uint32_t(get_declared_struct_member_size(ib_type, mbr_idx));
|
|
}
|
|
|
|
// Test the alignment of each member, and if a member is positioned farther than its
|
|
// alignment and the end of the previous member, add a dummy padding member that will
|
|
// be added before the current member when the delaration of this struct is emitted.
|
|
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
|
|
{
|
|
// Align current offset to the current member's default alignment.
|
|
size_t align_mask = get_declared_struct_member_alignment(ib_type, mbr_idx) - 1;
|
|
curr_offset = uint32_t((curr_offset + align_mask) & ~align_mask);
|
|
|
|
// Fetch the member offset as declared in the SPIRV.
|
|
uint32_t mbr_offset = get_member_decoration(ib_type_id, mbr_idx, DecorationOffset);
|
|
if (mbr_offset > curr_offset)
|
|
{
|
|
// Since MSL and SPIR-V have slightly different struct member alignment and
|
|
// size rules, we'll pad to standard C-packing rules. If the member is farther
|
|
// away than C-packing, expects, add an inert padding member before the the member.
|
|
MSLStructMemberKey key = get_struct_member_key(ib_type_id, mbr_idx);
|
|
struct_member_padding[key] = mbr_offset - curr_offset;
|
|
}
|
|
|
|
// Increment the current offset to be positioned immediately after the current member.
|
|
curr_offset = mbr_offset + uint32_t(get_declared_struct_member_size(ib_type, mbr_idx));
|
|
}
|
|
}
|
|
|
|
// Returns whether the specified struct member supports a packable type
|
|
// variation that is smaller than the unpacked variation of that type.
|
|
bool CompilerMSL::is_member_packable(SPIRType &ib_type, uint32_t index)
|
|
{
|
|
uint32_t mbr_type_id = ib_type.member_types[index];
|
|
auto &mbr_type = get<SPIRType>(mbr_type_id);
|
|
|
|
// 3-element vectors (char3, uchar3, short3, ushort3, int3, uint3, half3, float3)
|
|
if (mbr_type.vecsize == 3 && mbr_type.columns == 1)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Returns a combination of type ID and member index for use as hash key
|
|
MSLStructMemberKey CompilerMSL::get_struct_member_key(uint32_t type_id, uint32_t index)
|
|
{
|
|
MSLStructMemberKey k = type_id;
|
|
k <<= 32;
|
|
k += index;
|
|
return k;
|
|
}
|
|
|
|
// Converts the format of the current expression from packed to unpacked,
|
|
// by wrapping the expression in a constructor of the appropriate type.
|
|
string CompilerMSL::unpack_expression_type(string expr_str, const SPIRType &type)
|
|
{
|
|
return join(type_to_glsl(type), "(", expr_str, ")");
|
|
}
|
|
|
|
// Emits the file header info
|
|
void CompilerMSL::emit_header()
|
|
{
|
|
for (auto &header : pragma_lines)
|
|
statement(header);
|
|
|
|
if (!pragma_lines.empty())
|
|
statement("");
|
|
|
|
statement("#include <metal_stdlib>");
|
|
statement("#include <simd/simd.h>");
|
|
|
|
for (auto &header : header_lines)
|
|
statement(header);
|
|
|
|
statement("");
|
|
statement("using namespace metal;");
|
|
statement("");
|
|
}
|
|
|
|
void CompilerMSL::add_pragma_line(const string &line)
|
|
{
|
|
pragma_lines.push_back(line);
|
|
}
|
|
|
|
// Emits any needed custom function bodies.
|
|
void CompilerMSL::emit_custom_functions()
|
|
{
|
|
for (auto &spv_func : spv_function_implementations)
|
|
{
|
|
switch (spv_func)
|
|
{
|
|
case SPVFuncImplMod:
|
|
statement("// Implementation of the GLSL mod() function, which is slightly different than Metal fmod()");
|
|
statement("template<typename Tx, typename Ty>");
|
|
statement("Tx mod(Tx x, Ty y)");
|
|
begin_scope();
|
|
statement("return x - y * floor(x / y);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplRadians:
|
|
statement("// Implementation of the GLSL radians() function");
|
|
statement("template<typename T>");
|
|
statement("T radians(T d)");
|
|
begin_scope();
|
|
statement("return d * 0.01745329251;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplDegrees:
|
|
statement("// Implementation of the GLSL degrees() function");
|
|
statement("template<typename T>");
|
|
statement("T degrees(T r)");
|
|
begin_scope();
|
|
statement("return r * 57.2957795131;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplFindILsb:
|
|
statement("// Implementation of the GLSL findLSB() function");
|
|
statement("template<typename T>");
|
|
statement("T findLSB(T x)");
|
|
begin_scope();
|
|
statement("return select(ctz(x), -1, x == 0);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplFindUMsb:
|
|
statement("// Implementation of the unsigned GLSL findMSB() function");
|
|
statement("template<typename T>");
|
|
statement("T findUMSB(T x)");
|
|
begin_scope();
|
|
statement("return select(clz(0) - (clz(x) + 1), -1, x == 0);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplFindSMsb:
|
|
statement("// Implementation of the signed GLSL findMSB() function");
|
|
statement("template<typename T>");
|
|
statement("T findSMSB(T x)");
|
|
begin_scope();
|
|
statement("T v = select(x, -1 - x, x < 0);");
|
|
statement("return select(clz(0) - (clz(v) + 1), -1, v == 0);");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplInverse4x4:
|
|
statement("// Returns the determinant of a 2x2 matrix.");
|
|
statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
|
|
begin_scope();
|
|
statement("return a1 * b2 - b1 * a2;");
|
|
end_scope();
|
|
statement("");
|
|
statement("// Returns the determinant of a 3x3 matrix.");
|
|
statement("inline float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
|
|
"float c2, float c3)");
|
|
begin_scope();
|
|
statement("return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, "
|
|
"b2, b3);");
|
|
end_scope();
|
|
statement("");
|
|
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
|
|
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
|
|
statement("float4x4 spvInverse4x4(float4x4 m)");
|
|
begin_scope();
|
|
statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
|
|
statement("");
|
|
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
|
|
statement("adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
|
|
"m[2][3]);");
|
|
statement("");
|
|
statement("adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
|
|
"m[3][3]);");
|
|
statement("adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
|
|
"m[2][3]);");
|
|
statement("");
|
|
statement("adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
|
|
"m[3][3]);");
|
|
statement("adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
|
|
"m[3][3]);");
|
|
statement("adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
|
|
"m[3][3]);");
|
|
statement("adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
|
|
"m[2][3]);");
|
|
statement("");
|
|
statement("adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
|
|
"m[3][2]);");
|
|
statement("adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
|
|
"m[3][2]);");
|
|
statement("adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
|
|
"m[3][2]);");
|
|
statement("adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
|
|
"m[2][2]);");
|
|
statement("");
|
|
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
|
|
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
|
|
"* m[3][0]);");
|
|
statement("");
|
|
statement("// Divide the classical adjoint matrix by the determinant.");
|
|
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
|
|
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplInverse3x3:
|
|
statement("// Returns the determinant of a 2x2 matrix.");
|
|
statement("inline float spvDet2x2(float a1, float a2, float b1, float b2)");
|
|
begin_scope();
|
|
statement("return a1 * b2 - b1 * a2;");
|
|
end_scope();
|
|
statement("");
|
|
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
|
|
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
|
|
statement("float3x3 spvInverse3x3(float3x3 m)");
|
|
begin_scope();
|
|
statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
|
|
statement("");
|
|
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
|
|
statement("adj[0][0] = spvDet2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
|
|
statement("adj[0][1] = -spvDet2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
|
|
statement("adj[0][2] = spvDet2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
|
|
statement("");
|
|
statement("adj[1][0] = -spvDet2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
|
|
statement("adj[1][1] = spvDet2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
|
|
statement("adj[1][2] = -spvDet2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
|
|
statement("");
|
|
statement("adj[2][0] = spvDet2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
|
|
statement("adj[2][1] = -spvDet2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
|
|
statement("adj[2][2] = spvDet2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
|
|
statement("");
|
|
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
|
|
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
|
|
statement("");
|
|
statement("// Divide the classical adjoint matrix by the determinant.");
|
|
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
|
|
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
case SPVFuncImplInverse2x2:
|
|
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
|
|
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
|
|
statement("float2x2 spvInverse2x2(float2x2 m)");
|
|
begin_scope();
|
|
statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
|
|
statement("");
|
|
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
|
|
statement("adj[0][0] = m[1][1];");
|
|
statement("adj[0][1] = -m[0][1];");
|
|
statement("");
|
|
statement("adj[1][0] = -m[1][0];");
|
|
statement("adj[1][1] = m[0][0];");
|
|
statement("");
|
|
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
|
|
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
|
|
statement("");
|
|
statement("// Divide the classical adjoint matrix by the determinant.");
|
|
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
|
|
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
|
|
end_scope();
|
|
statement("");
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CompilerMSL::emit_resources()
|
|
{
|
|
|
|
// Output all basic struct types which are not Block or BufferBlock as these are declared inplace
|
|
// when such variables are instantiated.
|
|
for (auto &id : ids)
|
|
{
|
|
if (id.get_type() == TypeType)
|
|
{
|
|
auto &type = id.get<SPIRType>();
|
|
if (type.basetype == SPIRType::Struct && type.array.empty() && !type.pointer &&
|
|
!has_decoration(type.self, DecorationBlock) && !has_decoration(type.self, DecorationBufferBlock))
|
|
{
|
|
emit_struct(type);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Output Uniform buffers and constants
|
|
unordered_set<uint32_t> declared_interface_structs;
|
|
for (auto &id : ids)
|
|
{
|
|
if (id.get_type() == TypeVariable)
|
|
{
|
|
auto &var = id.get<SPIRVariable>();
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
|
|
if (var.storage != StorageClassFunction && type.pointer &&
|
|
(type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
|
|
type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer) &&
|
|
(has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)) &&
|
|
!is_hidden_variable(var))
|
|
{
|
|
// Avoid declaring the same struct multiple times.
|
|
if (declared_interface_structs.count(type.self) == 0)
|
|
{
|
|
align_struct(type);
|
|
emit_struct(type);
|
|
declared_interface_structs.insert(type.self);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
declare_undefined_values();
|
|
|
|
// Output interface blocks.
|
|
emit_interface_block(stage_in_var_id);
|
|
for (auto &nsi_var : non_stage_in_input_var_ids)
|
|
emit_interface_block(nsi_var.second);
|
|
|
|
emit_interface_block(stage_out_var_id);
|
|
emit_interface_block(stage_uniforms_var_id);
|
|
}
|
|
|
|
// Emit declarations for the specialization Metal function constants
|
|
void CompilerMSL::emit_specialization_constants()
|
|
{
|
|
const vector<SpecializationConstant> spec_consts = get_specialization_constants();
|
|
|
|
SpecializationConstant wg_x, wg_y, wg_z;
|
|
uint32_t workgroup_size_id = get_work_group_size_specialization_constants(wg_x, wg_y, wg_z);
|
|
|
|
for (auto &sc : spec_consts)
|
|
{
|
|
// If WorkGroupSize is a specialization constant, it will be declared explicitly below.
|
|
if (sc.id == workgroup_size_id)
|
|
continue;
|
|
|
|
auto &type = expression_type(sc.id);
|
|
string sc_type_name = type_to_glsl(type);
|
|
string sc_name = to_name(sc.id);
|
|
string sc_tmp_name = to_name(sc.id) + "_tmp";
|
|
|
|
if (type.vecsize == 1 && type.columns == 1 && type.basetype != SPIRType::Struct && type.array.empty())
|
|
{
|
|
// Only scalar, non-composite values can be function constants.
|
|
statement("constant ", sc_type_name, " ", sc_tmp_name, " [[function_constant(",
|
|
convert_to_string(sc.constant_id), ")]];");
|
|
statement("constant ", sc_type_name, " ", sc_name, " = is_function_constant_defined(", sc_tmp_name, ") ? ",
|
|
sc_tmp_name, " : ", constant_expression(get<SPIRConstant>(sc.id)), ";");
|
|
}
|
|
else
|
|
{
|
|
// Composite specialization constants must be built from other specialization constants.
|
|
statement("constant ", sc_type_name, " ", sc_name, " = ", constant_expression(get<SPIRConstant>(sc.id)),
|
|
";");
|
|
}
|
|
}
|
|
|
|
// TODO: This can be expressed as a [[threads_per_threadgroup]] input semantic, but we need to know
|
|
// the work group size at compile time in SPIR-V, and [[threads_per_threadgroup]] would need to be passed around as a global.
|
|
// The work group size may be a specialization constant.
|
|
if (workgroup_size_id)
|
|
statement("constant uint3 gl_WorkGroupSize = ", constant_expression(get<SPIRConstant>(workgroup_size_id)), ";");
|
|
|
|
if (!spec_consts.empty() || workgroup_size_id)
|
|
statement("");
|
|
}
|
|
|
|
// Override for MSL-specific syntax instructions
|
|
void CompilerMSL::emit_instruction(const Instruction &instruction)
|
|
{
|
|
|
|
#define BOP(op) emit_binary_op(ops[0], ops[1], ops[2], ops[3], #op)
|
|
#define BOP_CAST(op, type) \
|
|
emit_binary_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
|
|
#define UOP(op) emit_unary_op(ops[0], ops[1], ops[2], #op)
|
|
#define QFOP(op) emit_quaternary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], ops[5], #op)
|
|
#define TFOP(op) emit_trinary_func_op(ops[0], ops[1], ops[2], ops[3], ops[4], #op)
|
|
#define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
|
|
#define BFOP_CAST(op, type) \
|
|
emit_binary_func_op_cast(ops[0], ops[1], ops[2], ops[3], #op, type, opcode_is_sign_invariant(opcode))
|
|
#define BFOP(op) emit_binary_func_op(ops[0], ops[1], ops[2], ops[3], #op)
|
|
#define UFOP(op) emit_unary_func_op(ops[0], ops[1], ops[2], #op)
|
|
|
|
auto ops = stream(instruction);
|
|
auto opcode = static_cast<Op>(instruction.op);
|
|
|
|
switch (opcode)
|
|
{
|
|
|
|
// Comparisons
|
|
case OpIEqual:
|
|
case OpLogicalEqual:
|
|
case OpFOrdEqual:
|
|
BOP(==);
|
|
break;
|
|
|
|
case OpINotEqual:
|
|
case OpLogicalNotEqual:
|
|
case OpFOrdNotEqual:
|
|
BOP(!=);
|
|
break;
|
|
|
|
case OpUGreaterThan:
|
|
case OpSGreaterThan:
|
|
case OpFOrdGreaterThan:
|
|
BOP(>);
|
|
break;
|
|
|
|
case OpUGreaterThanEqual:
|
|
case OpSGreaterThanEqual:
|
|
case OpFOrdGreaterThanEqual:
|
|
BOP(>=);
|
|
break;
|
|
|
|
case OpULessThan:
|
|
case OpSLessThan:
|
|
case OpFOrdLessThan:
|
|
BOP(<);
|
|
break;
|
|
|
|
case OpULessThanEqual:
|
|
case OpSLessThanEqual:
|
|
case OpFOrdLessThanEqual:
|
|
BOP(<=);
|
|
break;
|
|
|
|
// Derivatives
|
|
case OpDPdx:
|
|
case OpDPdxFine:
|
|
case OpDPdxCoarse:
|
|
UFOP(dfdx);
|
|
break;
|
|
|
|
case OpDPdy:
|
|
case OpDPdyFine:
|
|
case OpDPdyCoarse:
|
|
UFOP(dfdy);
|
|
break;
|
|
|
|
// Bitfield
|
|
case OpBitFieldInsert:
|
|
QFOP(insert_bits);
|
|
break;
|
|
|
|
case OpBitFieldSExtract:
|
|
case OpBitFieldUExtract:
|
|
TFOP(extract_bits);
|
|
break;
|
|
|
|
case OpBitReverse:
|
|
UFOP(reverse_bits);
|
|
break;
|
|
|
|
case OpBitCount:
|
|
UFOP(popcount);
|
|
break;
|
|
|
|
// Atomics
|
|
case OpAtomicExchange:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t ptr = ops[2];
|
|
uint32_t mem_sem = ops[4];
|
|
uint32_t val = ops[5];
|
|
emit_atomic_func_op(result_type, id, "atomic_exchange_explicit", mem_sem, mem_sem, false, ptr, val);
|
|
break;
|
|
}
|
|
|
|
case OpAtomicCompareExchange:
|
|
case OpAtomicCompareExchangeWeak:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t ptr = ops[2];
|
|
uint32_t mem_sem_pass = ops[4];
|
|
uint32_t mem_sem_fail = ops[5];
|
|
uint32_t val = ops[6];
|
|
uint32_t comp = ops[7];
|
|
emit_atomic_func_op(result_type, id, "atomic_compare_exchange_weak_explicit", mem_sem_pass, mem_sem_fail, true,
|
|
ptr, comp, true, val);
|
|
break;
|
|
}
|
|
|
|
case OpAtomicLoad:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t ptr = ops[2];
|
|
uint32_t mem_sem = ops[4];
|
|
emit_atomic_func_op(result_type, id, "atomic_load_explicit", mem_sem, mem_sem, false, ptr, 0);
|
|
break;
|
|
}
|
|
|
|
case OpAtomicStore:
|
|
{
|
|
uint32_t result_type = expression_type(ops[0]).self;
|
|
uint32_t id = ops[0];
|
|
uint32_t ptr = ops[0];
|
|
uint32_t mem_sem = ops[2];
|
|
uint32_t val = ops[3];
|
|
emit_atomic_func_op(result_type, id, "atomic_store_explicit", mem_sem, mem_sem, false, ptr, val);
|
|
break;
|
|
}
|
|
|
|
#define AFMOImpl(op, valsrc) \
|
|
do \
|
|
{ \
|
|
uint32_t result_type = ops[0]; \
|
|
uint32_t id = ops[1]; \
|
|
uint32_t ptr = ops[2]; \
|
|
uint32_t mem_sem = ops[4]; \
|
|
uint32_t val = valsrc; \
|
|
emit_atomic_func_op(result_type, id, "atomic_fetch_" #op "_explicit", mem_sem, mem_sem, false, ptr, val); \
|
|
} while (false)
|
|
|
|
#define AFMO(op) AFMOImpl(op, ops[5])
|
|
#define AFMIO(op) AFMOImpl(op, 1)
|
|
|
|
case OpAtomicIIncrement:
|
|
AFMIO(add);
|
|
break;
|
|
|
|
case OpAtomicIDecrement:
|
|
AFMIO(sub);
|
|
break;
|
|
|
|
case OpAtomicIAdd:
|
|
AFMO(add);
|
|
break;
|
|
|
|
case OpAtomicISub:
|
|
AFMO(sub);
|
|
break;
|
|
|
|
case OpAtomicSMin:
|
|
case OpAtomicUMin:
|
|
AFMO(min);
|
|
break;
|
|
|
|
case OpAtomicSMax:
|
|
case OpAtomicUMax:
|
|
AFMO(max);
|
|
break;
|
|
|
|
case OpAtomicAnd:
|
|
AFMO(and);
|
|
break;
|
|
|
|
case OpAtomicOr:
|
|
AFMO(or);
|
|
break;
|
|
|
|
case OpAtomicXor:
|
|
AFMO (xor);
|
|
break;
|
|
|
|
// Images
|
|
|
|
// Reads == Fetches in Metal
|
|
case OpImageRead:
|
|
{
|
|
// Mark that this shader reads from this image
|
|
uint32_t img_id = ops[2];
|
|
auto *p_var = maybe_get_backing_variable(img_id);
|
|
if (p_var)
|
|
unset_decoration(p_var->self, DecorationNonReadable);
|
|
|
|
emit_texture_op(instruction);
|
|
break;
|
|
}
|
|
|
|
case OpImageWrite:
|
|
{
|
|
uint32_t img_id = ops[0];
|
|
uint32_t coord_id = ops[1];
|
|
uint32_t texel_id = ops[2];
|
|
const uint32_t *opt = &ops[3];
|
|
uint32_t length = instruction.length - 4;
|
|
|
|
// Bypass pointers because we need the real image struct
|
|
auto &type = expression_type(img_id);
|
|
auto &img_type = get<SPIRType>(type.self);
|
|
|
|
// Ensure this image has been marked as being written to and force a
|
|
// recommpile so that the image type output will include write access
|
|
auto *p_var = maybe_get_backing_variable(img_id);
|
|
if (p_var && has_decoration(p_var->self, DecorationNonWritable))
|
|
{
|
|
unset_decoration(p_var->self, DecorationNonWritable);
|
|
force_recompile = true;
|
|
}
|
|
|
|
bool forward = false;
|
|
uint32_t bias = 0;
|
|
uint32_t lod = 0;
|
|
uint32_t flags = 0;
|
|
|
|
if (length)
|
|
{
|
|
flags = *opt++;
|
|
length--;
|
|
}
|
|
|
|
auto test = [&](uint32_t &v, uint32_t flag) {
|
|
if (length && (flags & flag))
|
|
{
|
|
v = *opt++;
|
|
length--;
|
|
}
|
|
};
|
|
|
|
test(bias, ImageOperandsBiasMask);
|
|
test(lod, ImageOperandsLodMask);
|
|
|
|
statement(join(
|
|
to_expression(img_id), ".write(", to_expression(texel_id), ", ",
|
|
to_function_args(img_id, img_type, true, false, false, coord_id, 0, 0, 0, 0, lod, 0, 0, 0, 0, 0, &forward),
|
|
");"));
|
|
|
|
if (p_var && variable_storage_is_aliased(*p_var))
|
|
flush_all_aliased_variables();
|
|
|
|
break;
|
|
}
|
|
|
|
case OpImageQuerySize:
|
|
case OpImageQuerySizeLod:
|
|
{
|
|
uint32_t rslt_type_id = ops[0];
|
|
auto &rslt_type = get<SPIRType>(rslt_type_id);
|
|
|
|
uint32_t id = ops[1];
|
|
|
|
uint32_t img_id = ops[2];
|
|
string img_exp = to_expression(img_id);
|
|
auto &img_type = expression_type(img_id);
|
|
Dim img_dim = img_type.image.dim;
|
|
bool is_array = img_type.image.arrayed;
|
|
|
|
if (img_type.basetype != SPIRType::Image)
|
|
SPIRV_CROSS_THROW("Invalid type for OpImageQuerySize.");
|
|
|
|
string lod;
|
|
if (opcode == OpImageQuerySizeLod)
|
|
{
|
|
// LOD index defaults to zero, so don't bother outputing level zero index
|
|
string decl_lod = to_expression(ops[3]);
|
|
if (decl_lod != "0")
|
|
lod = decl_lod;
|
|
}
|
|
|
|
string expr = type_to_glsl(rslt_type) + "(";
|
|
expr += img_exp + ".get_width(" + lod + ")";
|
|
|
|
if (img_dim == Dim2D || img_dim == DimCube || img_dim == Dim3D)
|
|
expr += ", " + img_exp + ".get_height(" + lod + ")";
|
|
|
|
if (img_dim == Dim3D)
|
|
expr += ", " + img_exp + ".get_depth(" + lod + ")";
|
|
|
|
if (is_array)
|
|
expr += ", " + img_exp + ".get_array_size()";
|
|
|
|
expr += ")";
|
|
|
|
emit_op(rslt_type_id, id, expr, should_forward(img_id));
|
|
|
|
break;
|
|
}
|
|
|
|
#define ImgQry(qrytype) \
|
|
do \
|
|
{ \
|
|
uint32_t rslt_type_id = ops[0]; \
|
|
auto &rslt_type = get<SPIRType>(rslt_type_id); \
|
|
uint32_t id = ops[1]; \
|
|
uint32_t img_id = ops[2]; \
|
|
string img_exp = to_expression(img_id); \
|
|
string expr = type_to_glsl(rslt_type) + "(" + img_exp + ".get_num_" #qrytype "())"; \
|
|
emit_op(rslt_type_id, id, expr, should_forward(img_id)); \
|
|
} while (false)
|
|
|
|
case OpImageQueryLevels:
|
|
ImgQry(mip_levels);
|
|
break;
|
|
|
|
case OpImageQuerySamples:
|
|
ImgQry(samples);
|
|
break;
|
|
|
|
// Casting
|
|
case OpQuantizeToF16:
|
|
{
|
|
uint32_t result_type = ops[0];
|
|
uint32_t id = ops[1];
|
|
uint32_t arg = ops[2];
|
|
|
|
string exp;
|
|
auto &type = get<SPIRType>(result_type);
|
|
|
|
switch (type.vecsize)
|
|
{
|
|
case 1:
|
|
exp = join("float(half(", to_expression(arg), "))");
|
|
break;
|
|
case 2:
|
|
exp = join("float2(half2(", to_expression(arg), "))");
|
|
break;
|
|
case 3:
|
|
exp = join("float3(half3(", to_expression(arg), "))");
|
|
break;
|
|
case 4:
|
|
exp = join("float4(half4(", to_expression(arg), "))");
|
|
break;
|
|
default:
|
|
SPIRV_CROSS_THROW("Illegal argument to OpQuantizeToF16.");
|
|
}
|
|
|
|
emit_op(result_type, id, exp, should_forward(arg));
|
|
break;
|
|
}
|
|
|
|
case OpStore:
|
|
{
|
|
if (!maybe_emit_input_struct_assignment(ops[0], ops[1]))
|
|
CompilerGLSL::emit_instruction(instruction);
|
|
|
|
break;
|
|
}
|
|
|
|
// OpOuterProduct
|
|
|
|
default:
|
|
CompilerGLSL::emit_instruction(instruction);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Since MSL does not allow structs to be nested within the stage_in struct, the original
|
|
// input structs are flattened into a single stage_in struct by add_interface_block.
|
|
// As a result, if the LHS and RHS represent an assignment of an entire input struct,
|
|
// we must perform this member-by-member, mapping to the flattened stage_in struct.
|
|
// Returns whether the struct assignment was emitted.
|
|
bool CompilerMSL::maybe_emit_input_struct_assignment(uint32_t id_lhs, uint32_t id_rhs)
|
|
{
|
|
auto *p_v_lhs = maybe_get_backing_variable(id_lhs);
|
|
auto *p_v_rhs = maybe_get_backing_variable(id_rhs);
|
|
|
|
if (p_v_lhs && p_v_rhs && p_v_rhs->storage == StorageClassInput)
|
|
{
|
|
uint32_t tid_lhs = p_v_lhs->basetype;
|
|
uint32_t tid_rhs = p_v_rhs->basetype;
|
|
|
|
auto &t_lhs = get<SPIRType>(tid_lhs);
|
|
auto &t_rhs = get<SPIRType>(tid_rhs);
|
|
|
|
if (t_lhs.basetype == SPIRType::Struct && t_rhs.basetype == SPIRType::Struct)
|
|
{
|
|
size_t mbr_cnt = t_rhs.member_types.size();
|
|
assert(t_lhs.member_types.size() == mbr_cnt);
|
|
|
|
flush_variable_declaration(p_v_lhs->self);
|
|
|
|
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
|
|
{
|
|
string expr;
|
|
|
|
//LHS
|
|
expr += to_name(id_lhs);
|
|
expr += ".";
|
|
expr += to_member_name(t_lhs, mbr_idx);
|
|
|
|
expr += " = ";
|
|
|
|
//RHS
|
|
string qual_mbr_name = get_member_qualified_name(tid_rhs, mbr_idx);
|
|
if (qual_mbr_name.empty())
|
|
{
|
|
expr += to_name(id_rhs);
|
|
expr += ".";
|
|
expr += to_member_name(t_rhs, mbr_idx);
|
|
}
|
|
else
|
|
expr += qual_mbr_name;
|
|
|
|
statement(expr, ";");
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Emits one of the atomic functions. In MSL, the atomic functions operate on pointers
|
|
void CompilerMSL::emit_atomic_func_op(uint32_t result_type, uint32_t result_id, const char *op, uint32_t mem_order_1,
|
|
uint32_t mem_order_2, bool has_mem_order_2, uint32_t obj, uint32_t op1,
|
|
bool op1_is_pointer, uint32_t op2)
|
|
{
|
|
forced_temporaries.insert(result_id);
|
|
|
|
bool fwd_obj = should_forward(obj);
|
|
bool fwd_op1 = op1 ? should_forward(op1) : true;
|
|
bool fwd_op2 = op2 ? should_forward(op2) : true;
|
|
|
|
bool forward = fwd_obj && fwd_op1 && fwd_op2;
|
|
|
|
string exp = string(op) + "(";
|
|
|
|
auto &type = expression_type(obj);
|
|
exp += "(volatile ";
|
|
exp += "device";
|
|
exp += " atomic_";
|
|
exp += type_to_glsl(type);
|
|
exp += "*)";
|
|
|
|
exp += "&(";
|
|
exp += to_expression(obj);
|
|
exp += ")";
|
|
|
|
if (op1)
|
|
{
|
|
if (op1_is_pointer)
|
|
{
|
|
statement(declare_temporary(expression_type(op2).self, op1), to_expression(op1), ";");
|
|
exp += ", &(" + to_name(op1) + ")";
|
|
}
|
|
else
|
|
exp += ", " + to_expression(op1);
|
|
}
|
|
|
|
if (op2)
|
|
exp += ", " + to_expression(op2);
|
|
|
|
exp += string(", ") + get_memory_order(mem_order_1);
|
|
|
|
if (has_mem_order_2)
|
|
exp += string(", ") + get_memory_order(mem_order_2);
|
|
|
|
exp += ")";
|
|
emit_op(result_type, result_id, exp, forward);
|
|
|
|
inherit_expression_dependencies(result_id, obj);
|
|
if (op1)
|
|
inherit_expression_dependencies(result_id, op1);
|
|
if (op2)
|
|
inherit_expression_dependencies(result_id, op2);
|
|
|
|
flush_all_atomic_capable_variables();
|
|
}
|
|
|
|
// Metal only supports relaxed memory order for now
|
|
const char *CompilerMSL::get_memory_order(uint32_t)
|
|
{
|
|
return "memory_order_relaxed";
|
|
}
|
|
|
|
// Override for MSL-specific extension syntax instructions
|
|
void CompilerMSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop, const uint32_t *args, uint32_t count)
|
|
{
|
|
GLSLstd450 op = static_cast<GLSLstd450>(eop);
|
|
|
|
switch (op)
|
|
{
|
|
case GLSLstd450Atan2:
|
|
emit_binary_func_op(result_type, id, args[0], args[1], "atan2");
|
|
break;
|
|
case GLSLstd450InverseSqrt:
|
|
emit_unary_func_op(result_type, id, args[0], "rsqrt");
|
|
break;
|
|
case GLSLstd450RoundEven:
|
|
emit_unary_func_op(result_type, id, args[0], "rint");
|
|
break;
|
|
|
|
case GLSLstd450FindSMsb:
|
|
emit_unary_func_op(result_type, id, args[0], "findSMSB");
|
|
break;
|
|
case GLSLstd450FindUMsb:
|
|
emit_unary_func_op(result_type, id, args[0], "findUMSB");
|
|
break;
|
|
|
|
case GLSLstd450PackSnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm4x8");
|
|
break;
|
|
case GLSLstd450PackUnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm4x8");
|
|
break;
|
|
case GLSLstd450PackSnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_snorm2x16");
|
|
break;
|
|
case GLSLstd450PackUnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_float_to_unorm2x16");
|
|
break;
|
|
case GLSLstd450PackHalf2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "pack_half_to_snorm2x16");
|
|
break;
|
|
|
|
case GLSLstd450UnpackSnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_snorm4x8_to_float");
|
|
break;
|
|
case GLSLstd450UnpackUnorm4x8:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_unorm4x8_to_float");
|
|
break;
|
|
case GLSLstd450UnpackSnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_float");
|
|
break;
|
|
case GLSLstd450UnpackUnorm2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_unorm2x16_to_float");
|
|
break;
|
|
case GLSLstd450UnpackHalf2x16:
|
|
emit_unary_func_op(result_type, id, args[0], "unpack_snorm2x16_to_half");
|
|
break;
|
|
|
|
case GLSLstd450PackDouble2x32:
|
|
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450PackDouble2x32"); // Currently unsupported
|
|
break;
|
|
case GLSLstd450UnpackDouble2x32:
|
|
emit_unary_func_op(result_type, id, args[0], "unsupported_GLSLstd450UnpackDouble2x32"); // Currently unsupported
|
|
break;
|
|
|
|
case GLSLstd450MatrixInverse:
|
|
{
|
|
auto &mat_type = get<SPIRType>(result_type);
|
|
switch (mat_type.columns)
|
|
{
|
|
case 2:
|
|
emit_unary_func_op(result_type, id, args[0], "spvInverse2x2");
|
|
break;
|
|
case 3:
|
|
emit_unary_func_op(result_type, id, args[0], "spvInverse3x3");
|
|
break;
|
|
case 4:
|
|
emit_unary_func_op(result_type, id, args[0], "spvInverse4x4");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// TODO:
|
|
// GLSLstd450InterpolateAtCentroid (centroid_no_perspective qualifier)
|
|
// GLSLstd450InterpolateAtSample (sample_no_perspective qualifier)
|
|
// GLSLstd450InterpolateAtOffset
|
|
|
|
default:
|
|
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Emit a structure declaration for the specified interface variable.
|
|
void CompilerMSL::emit_interface_block(uint32_t ib_var_id)
|
|
{
|
|
if (ib_var_id)
|
|
{
|
|
auto &ib_var = get<SPIRVariable>(ib_var_id);
|
|
auto &ib_type = get<SPIRType>(ib_var.basetype);
|
|
auto &m = meta.at(ib_type.self);
|
|
if (m.members.size() > 0)
|
|
emit_struct(ib_type);
|
|
}
|
|
}
|
|
|
|
// Emits the declaration signature of the specified function.
|
|
// If this is the entry point function, Metal-specific return value and function arguments are added.
|
|
void CompilerMSL::emit_function_prototype(SPIRFunction &func, uint64_t)
|
|
{
|
|
local_variable_names = resource_names;
|
|
string decl;
|
|
|
|
processing_entry_point = (func.self == entry_point);
|
|
|
|
auto &type = get<SPIRType>(func.return_type);
|
|
decl += func_type_decl(type);
|
|
decl += " ";
|
|
decl += clean_func_name(to_name(func.self));
|
|
|
|
decl += "(";
|
|
|
|
if (processing_entry_point)
|
|
{
|
|
decl += entry_point_args(!func.arguments.empty());
|
|
|
|
// If entry point function has a output interface struct, set its initializer.
|
|
// This is done at this late stage because the initialization expression is
|
|
// cleared after each compilation pass.
|
|
if (stage_out_var_id)
|
|
{
|
|
auto &so_var = get<SPIRVariable>(stage_out_var_id);
|
|
auto &so_type = get<SPIRType>(so_var.basetype);
|
|
set<SPIRExpression>(so_var.initializer, "{}", so_type.self, true);
|
|
}
|
|
}
|
|
|
|
for (auto &arg : func.arguments)
|
|
{
|
|
add_local_variable_name(arg.id);
|
|
|
|
string address_space = "thread";
|
|
|
|
auto *var = maybe_get<SPIRVariable>(arg.id);
|
|
if (var)
|
|
{
|
|
var->parameter = &arg; // Hold a pointer to the parameter so we can invalidate the readonly field if needed.
|
|
address_space = get_argument_address_space(*var);
|
|
}
|
|
|
|
decl += address_space + " ";
|
|
decl += argument_decl(arg);
|
|
|
|
// Manufacture automatic sampler arg for SampledImage texture
|
|
auto &arg_type = get<SPIRType>(arg.type);
|
|
if (arg_type.basetype == SPIRType::SampledImage)
|
|
decl += ", thread const sampler& " + to_sampler_expression(arg.id);
|
|
|
|
if (&arg != &func.arguments.back())
|
|
decl += ", ";
|
|
}
|
|
|
|
decl += ")";
|
|
statement(decl);
|
|
}
|
|
|
|
// Returns the texture sampling function string for the specified image and sampling characteristics.
|
|
string CompilerMSL::to_function_name(uint32_t img, const SPIRType &, bool is_fetch, bool is_gather, bool, bool, bool,
|
|
bool, bool has_dref, uint32_t)
|
|
{
|
|
// Texture reference
|
|
string fname = to_expression(img) + ".";
|
|
|
|
// Texture function and sampler
|
|
if (is_fetch)
|
|
fname += "read";
|
|
else if (is_gather)
|
|
fname += "gather";
|
|
else
|
|
fname += "sample";
|
|
|
|
if (has_dref)
|
|
fname += "_compare";
|
|
|
|
return fname;
|
|
}
|
|
|
|
// Returns the function args for a texture sampling function for the specified image and sampling characteristics.
|
|
string CompilerMSL::to_function_args(uint32_t img, const SPIRType &imgtype, bool is_fetch, bool, bool is_proj,
|
|
uint32_t coord, uint32_t, uint32_t dref, uint32_t grad_x, uint32_t grad_y,
|
|
uint32_t lod, uint32_t coffset, uint32_t offset, uint32_t bias, uint32_t comp,
|
|
uint32_t sample, bool *p_forward)
|
|
{
|
|
string farg_str;
|
|
if (!is_fetch)
|
|
farg_str += to_sampler_expression(img);
|
|
|
|
// Texture coordinates
|
|
bool forward = should_forward(coord);
|
|
auto coord_expr = to_enclosed_expression(coord);
|
|
auto &coord_type = expression_type(coord);
|
|
bool coord_is_fp = (coord_type.basetype == SPIRType::Float) || (coord_type.basetype == SPIRType::Double);
|
|
bool is_cube_fetch = false;
|
|
|
|
string tex_coords = coord_expr;
|
|
const char *alt_coord = "";
|
|
|
|
switch (imgtype.image.dim)
|
|
{
|
|
|
|
case Dim1D:
|
|
if (coord_type.vecsize > 1)
|
|
tex_coords += ".x";
|
|
|
|
if (is_fetch)
|
|
tex_coords = "uint(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
|
|
alt_coord = ".y";
|
|
|
|
break;
|
|
|
|
case DimBuffer:
|
|
if (coord_type.vecsize > 1)
|
|
tex_coords += ".x";
|
|
|
|
if (is_fetch)
|
|
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ", 0)"; // Metal textures are 2D
|
|
|
|
alt_coord = ".y";
|
|
|
|
break;
|
|
|
|
case Dim2D:
|
|
if (coord_type.vecsize > 2)
|
|
tex_coords += ".xy";
|
|
|
|
if (is_fetch)
|
|
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
|
|
alt_coord = ".z";
|
|
|
|
break;
|
|
|
|
case Dim3D:
|
|
if (coord_type.vecsize > 3)
|
|
tex_coords += ".xyz";
|
|
|
|
if (is_fetch)
|
|
tex_coords = "uint3(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
|
|
alt_coord = ".w";
|
|
|
|
break;
|
|
|
|
case DimCube:
|
|
if (is_fetch)
|
|
{
|
|
is_cube_fetch = true;
|
|
tex_coords += ".xy";
|
|
tex_coords = "uint2(" + round_fp_tex_coords(tex_coords, coord_is_fp) + ")";
|
|
}
|
|
else
|
|
{
|
|
if (coord_type.vecsize > 3)
|
|
tex_coords += ".xyz";
|
|
}
|
|
|
|
alt_coord = ".w";
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If projection, use alt coord as divisor
|
|
if (is_proj)
|
|
tex_coords += " / " + coord_expr + alt_coord;
|
|
|
|
if (!farg_str.empty())
|
|
farg_str += ", ";
|
|
farg_str += tex_coords;
|
|
|
|
// If fetch from cube, add face explicitly
|
|
if (is_cube_fetch)
|
|
farg_str += ", uint(" + round_fp_tex_coords(coord_expr + ".z", coord_is_fp) + ")";
|
|
|
|
// If array, use alt coord
|
|
if (imgtype.image.arrayed)
|
|
farg_str += ", uint(" + round_fp_tex_coords(coord_expr + alt_coord, coord_is_fp) + ")";
|
|
|
|
// Depth compare reference value
|
|
if (dref)
|
|
{
|
|
forward = forward && should_forward(dref);
|
|
farg_str += ", ";
|
|
farg_str += to_expression(dref);
|
|
}
|
|
|
|
// LOD Options
|
|
if (bias)
|
|
{
|
|
forward = forward && should_forward(bias);
|
|
farg_str += ", bias(" + to_expression(bias) + ")";
|
|
}
|
|
|
|
if (lod)
|
|
{
|
|
forward = forward && should_forward(lod);
|
|
if (is_fetch)
|
|
{
|
|
farg_str += ", " + to_expression(lod);
|
|
}
|
|
else
|
|
{
|
|
farg_str += ", level(" + to_expression(lod) + ")";
|
|
}
|
|
}
|
|
|
|
if (grad_x || grad_y)
|
|
{
|
|
forward = forward && should_forward(grad_x);
|
|
forward = forward && should_forward(grad_y);
|
|
string grad_opt;
|
|
switch (imgtype.image.dim)
|
|
{
|
|
case Dim2D:
|
|
grad_opt = "2d";
|
|
break;
|
|
case Dim3D:
|
|
grad_opt = "3d";
|
|
break;
|
|
case DimCube:
|
|
grad_opt = "cube";
|
|
break;
|
|
default:
|
|
grad_opt = "unsupported_gradient_dimension";
|
|
break;
|
|
}
|
|
farg_str += ", gradient" + grad_opt + "(" + to_expression(grad_x) + ", " + to_expression(grad_y) + ")";
|
|
}
|
|
|
|
// Add offsets
|
|
string offset_expr;
|
|
if (coffset)
|
|
{
|
|
forward = forward && should_forward(coffset);
|
|
offset_expr = to_expression(coffset);
|
|
}
|
|
else if (offset)
|
|
{
|
|
forward = forward && should_forward(offset);
|
|
offset_expr = to_expression(offset);
|
|
}
|
|
|
|
if (!offset_expr.empty())
|
|
{
|
|
switch (imgtype.image.dim)
|
|
{
|
|
case Dim2D:
|
|
if (coord_type.vecsize > 2)
|
|
offset_expr += ".xy";
|
|
|
|
farg_str += ", " + offset_expr;
|
|
break;
|
|
|
|
case Dim3D:
|
|
if (coord_type.vecsize > 3)
|
|
offset_expr += ".xyz";
|
|
|
|
farg_str += ", " + offset_expr;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (comp)
|
|
{
|
|
forward = forward && should_forward(comp);
|
|
farg_str += ", " + to_component_argument(comp);
|
|
}
|
|
|
|
if (sample)
|
|
{
|
|
farg_str += ", ";
|
|
farg_str += to_expression(sample);
|
|
}
|
|
|
|
*p_forward = forward;
|
|
|
|
return farg_str;
|
|
}
|
|
|
|
// If the texture coordinates are floating point, invokes MSL round() function to round them.
|
|
string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
|
|
{
|
|
return coord_is_fp ? ("round(" + tex_coords + ")") : tex_coords;
|
|
}
|
|
|
|
// Returns a string to use in an image sampling function argument.
|
|
// The ID must be a scalar constant.
|
|
string CompilerMSL::to_component_argument(uint32_t id)
|
|
{
|
|
if (ids[id].get_type() != TypeConstant)
|
|
{
|
|
SPIRV_CROSS_THROW("ID " + to_string(id) + " is not an OpConstant.");
|
|
return "component::x";
|
|
}
|
|
|
|
uint32_t component_index = get<SPIRConstant>(id).scalar();
|
|
switch (component_index)
|
|
{
|
|
case 0:
|
|
return "component::x";
|
|
case 1:
|
|
return "component::y";
|
|
case 2:
|
|
return "component::z";
|
|
case 3:
|
|
return "component::w";
|
|
|
|
default:
|
|
SPIRV_CROSS_THROW("The value (" + to_string(component_index) + ") of OpConstant ID " + to_string(id) +
|
|
" is not a valid Component index, which must be one of 0, 1, 2, or 3.");
|
|
return "component::x";
|
|
}
|
|
}
|
|
|
|
// Establish sampled image as expression object and assign the sampler to it.
|
|
void CompilerMSL::emit_sampled_image_op(uint32_t result_type, uint32_t result_id, uint32_t image_id, uint32_t samp_id)
|
|
{
|
|
set<SPIRExpression>(result_id, to_expression(image_id), result_type, true);
|
|
meta[result_id].sampler = samp_id;
|
|
}
|
|
|
|
// Returns a string representation of the ID, usable as a function arg.
|
|
// Manufacture automatic sampler arg for SampledImage texture.
|
|
string CompilerMSL::to_func_call_arg(uint32_t id)
|
|
{
|
|
string arg_str = CompilerGLSL::to_func_call_arg(id);
|
|
|
|
// Manufacture automatic sampler arg if the arg is a SampledImage texture.
|
|
Variant &id_v = ids[id];
|
|
if (id_v.get_type() == TypeVariable)
|
|
{
|
|
auto &var = id_v.get<SPIRVariable>();
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
if (type.basetype == SPIRType::SampledImage)
|
|
arg_str += ", " + to_sampler_expression(id);
|
|
}
|
|
|
|
return arg_str;
|
|
}
|
|
|
|
// If the ID represents a sampled image that has been assigned a sampler already,
|
|
// generate an expression for the sampler, otherwise generate a fake sampler name
|
|
// by appending a suffix to the expression constructed from the ID.
|
|
string CompilerMSL::to_sampler_expression(uint32_t id)
|
|
{
|
|
uint32_t samp_id = meta[id].sampler;
|
|
return samp_id ? to_expression(samp_id) : to_expression(id) + sampler_name_suffix;
|
|
}
|
|
|
|
// Called automatically at the end of the entry point function
|
|
void CompilerMSL::emit_fixup()
|
|
{
|
|
auto &execution = get_entry_point();
|
|
|
|
if ((execution.model == ExecutionModelVertex) && stage_out_var_id && !qual_pos_var_name.empty())
|
|
{
|
|
if (CompilerGLSL::options.vertex.fixup_clipspace)
|
|
{
|
|
statement(qual_pos_var_name, ".z = (", qual_pos_var_name, ".z + ", qual_pos_var_name,
|
|
".w) * 0.5; // Adjust clip-space for Metal");
|
|
}
|
|
|
|
if (CompilerGLSL::options.vertex.flip_vert_y)
|
|
statement(qual_pos_var_name, ".y = -(", qual_pos_var_name, ".y);", " // Invert Y-axis for Metal");
|
|
}
|
|
}
|
|
|
|
// Emit a structure member, padding and packing to maintain the correct memeber alignments.
|
|
void CompilerMSL::emit_struct_member(const SPIRType &type, uint32_t member_type_id, uint32_t index,
|
|
const string &qualifier)
|
|
{
|
|
auto &membertype = get<SPIRType>(member_type_id);
|
|
|
|
// If this member requires padding to maintain alignment, emit a dummy padding member.
|
|
MSLStructMemberKey key = get_struct_member_key(type.self, index);
|
|
uint32_t pad_len = struct_member_padding[key];
|
|
if (pad_len > 0)
|
|
statement("char pad", to_string(index), "[", to_string(pad_len), "];");
|
|
|
|
// If this member is packed, mark it as so.
|
|
string pack_pfx = member_is_packed_type(type, index) ? "packed_" : "";
|
|
|
|
statement(pack_pfx, type_to_glsl(membertype), " ", qualifier, to_member_name(type, index),
|
|
member_attribute_qualifier(type, index), type_to_array_glsl(membertype), ";");
|
|
}
|
|
|
|
// Return a MSL qualifier for the specified function attribute member
|
|
string CompilerMSL::member_attribute_qualifier(const SPIRType &type, uint32_t index)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
|
|
uint32_t mbr_type_id = type.member_types[index];
|
|
auto &mbr_type = get<SPIRType>(mbr_type_id);
|
|
|
|
BuiltIn builtin;
|
|
bool is_builtin = is_member_builtin(type, index, &builtin);
|
|
|
|
// Vertex function inputs
|
|
if (execution.model == ExecutionModelVertex && type.storage == StorageClassInput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInVertexId:
|
|
case BuiltInVertexIndex:
|
|
case BuiltInInstanceId:
|
|
case BuiltInInstanceIndex:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location)
|
|
return string(" [[attribute(") + convert_to_string(locn) + ")]]";
|
|
}
|
|
|
|
// Vertex function outputs
|
|
if (execution.model == ExecutionModelVertex && type.storage == StorageClassOutput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInPointSize:
|
|
// Only mark the PointSize builtin if really rendering points.
|
|
// Some shaders may include a PointSize builtin even when used to render
|
|
// non-point topologies, and Metal will reject this builtin when compiling
|
|
// the shader into a render pipeline that uses a non-point topology.
|
|
return options.enable_point_size_builtin ? (string(" [[") + builtin_qualifier(builtin) + "]]") : "";
|
|
|
|
case BuiltInPosition:
|
|
case BuiltInLayer:
|
|
case BuiltInClipDistance:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]" + (mbr_type.array.empty() ? "" : " ");
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location)
|
|
return string(" [[user(locn") + convert_to_string(locn) + ")]]";
|
|
}
|
|
|
|
// Fragment function inputs
|
|
if (execution.model == ExecutionModelFragment && type.storage == StorageClassInput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInFrontFacing:
|
|
case BuiltInPointCoord:
|
|
case BuiltInFragCoord:
|
|
case BuiltInSampleId:
|
|
case BuiltInSampleMask:
|
|
case BuiltInLayer:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location)
|
|
return string(" [[user(locn") + convert_to_string(locn) + ")]]";
|
|
}
|
|
|
|
// Fragment function outputs
|
|
if (execution.model == ExecutionModelFragment && type.storage == StorageClassOutput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInSampleMask:
|
|
case BuiltInFragDepth:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
uint32_t locn = get_ordered_member_location(type.self, index);
|
|
if (locn != k_unknown_location)
|
|
return string(" [[color(") + convert_to_string(locn) + ")]]";
|
|
}
|
|
|
|
// Compute function inputs
|
|
if (execution.model == ExecutionModelGLCompute && type.storage == StorageClassInput)
|
|
{
|
|
if (is_builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
case BuiltInGlobalInvocationId:
|
|
case BuiltInWorkgroupId:
|
|
case BuiltInNumWorkgroups:
|
|
case BuiltInLocalInvocationId:
|
|
case BuiltInLocalInvocationIndex:
|
|
return string(" [[") + builtin_qualifier(builtin) + "]]";
|
|
|
|
default:
|
|
return "";
|
|
}
|
|
}
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
// Returns the location decoration of the member with the specified index in the specified type.
|
|
// If the location of the member has been explicitly set, that location is used. If not, this
|
|
// function assumes the members are ordered in their location order, and simply returns the
|
|
// index as the location.
|
|
uint32_t CompilerMSL::get_ordered_member_location(uint32_t type_id, uint32_t index)
|
|
{
|
|
auto &m = meta.at(type_id);
|
|
if (index < m.members.size())
|
|
{
|
|
auto &dec = m.members[index];
|
|
if (dec.decoration_flags & (1ull << DecorationLocation))
|
|
return dec.location;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
string CompilerMSL::constant_expression(const SPIRConstant &c)
|
|
{
|
|
if (!c.subconstants.empty())
|
|
{
|
|
// Handles Arrays and structures.
|
|
string res = "{";
|
|
for (auto &elem : c.subconstants)
|
|
{
|
|
res += constant_expression(get<SPIRConstant>(elem));
|
|
if (&elem != &c.subconstants.back())
|
|
res += ", ";
|
|
}
|
|
res += "}";
|
|
return res;
|
|
}
|
|
else if (c.columns() == 1)
|
|
{
|
|
return constant_expression_vector(c, 0);
|
|
}
|
|
else
|
|
{
|
|
string res = type_to_glsl(get<SPIRType>(c.constant_type)) + "(";
|
|
for (uint32_t col = 0; col < c.columns(); col++)
|
|
{
|
|
res += constant_expression_vector(c, col);
|
|
if (col + 1 < c.columns())
|
|
res += ", ";
|
|
}
|
|
res += ")";
|
|
return res;
|
|
}
|
|
}
|
|
|
|
// Returns the type declaration for a function, including the
|
|
// entry type if the current function is the entry point function
|
|
string CompilerMSL::func_type_decl(SPIRType &type)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
// The regular function return type. If not processing the entry point function, that's all we need
|
|
string return_type = type_to_glsl(type);
|
|
if (!processing_entry_point)
|
|
return return_type;
|
|
|
|
// If an outgoing interface block has been defined, override the entry point return type
|
|
if (stage_out_var_id)
|
|
{
|
|
auto &so_var = get<SPIRVariable>(stage_out_var_id);
|
|
auto &so_type = get<SPIRType>(so_var.basetype);
|
|
return_type = type_to_glsl(so_type);
|
|
}
|
|
|
|
// Prepend a entry type, based on the execution model
|
|
string entry_type;
|
|
switch (execution.model)
|
|
{
|
|
case ExecutionModelVertex:
|
|
entry_type = "vertex";
|
|
break;
|
|
case ExecutionModelFragment:
|
|
entry_type = (execution.flags & (1ull << ExecutionModeEarlyFragmentTests)) ?
|
|
"fragment [[ early_fragment_tests ]]" :
|
|
"fragment";
|
|
break;
|
|
case ExecutionModelGLCompute:
|
|
case ExecutionModelKernel:
|
|
entry_type = "kernel";
|
|
break;
|
|
default:
|
|
entry_type = "unknown";
|
|
break;
|
|
}
|
|
|
|
return entry_type + " " + return_type;
|
|
}
|
|
|
|
// Ensures the function name is not "main", which is illegal in MSL
|
|
string CompilerMSL::clean_func_name(string func_name)
|
|
{
|
|
auto iter = func_name_overrides.find(func_name);
|
|
return (iter != func_name_overrides.end()) ? iter->second : func_name;
|
|
}
|
|
|
|
// In MSL address space qualifiers are required for all pointer or reference arguments
|
|
string CompilerMSL::get_argument_address_space(const SPIRVariable &argument)
|
|
{
|
|
const auto &type = get<SPIRType>(argument.basetype);
|
|
|
|
if ((type.basetype == SPIRType::Struct) &&
|
|
(type.storage == StorageClassUniform || type.storage == StorageClassUniformConstant ||
|
|
type.storage == StorageClassPushConstant || type.storage == StorageClassStorageBuffer))
|
|
{
|
|
if (type.storage == StorageClassStorageBuffer)
|
|
return "device";
|
|
else
|
|
{
|
|
return ((meta[type.self].decoration.decoration_flags & (1ull << DecorationBufferBlock)) != 0 &&
|
|
(meta[argument.self].decoration.decoration_flags & (1ull << DecorationNonWritable)) == 0) ?
|
|
"device" :
|
|
"constant";
|
|
}
|
|
}
|
|
|
|
return "thread";
|
|
}
|
|
|
|
// Returns a string containing a comma-delimited list of args for the entry point function
|
|
string CompilerMSL::entry_point_args(bool append_comma)
|
|
{
|
|
string ep_args;
|
|
|
|
// Stage-in structure
|
|
if (stage_in_var_id)
|
|
{
|
|
auto &var = get<SPIRVariable>(stage_in_var_id);
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
|
|
ep_args += type_to_glsl(type) + " " + to_name(var.self) + " [[stage_in]]";
|
|
}
|
|
|
|
// Non-stage-in vertex attribute structures
|
|
for (auto &nsi_var : non_stage_in_input_var_ids)
|
|
{
|
|
auto &var = get<SPIRVariable>(nsi_var.second);
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
|
|
ep_args += "device " + type_to_glsl(type) + "* " + to_name(var.self) + " [[buffer(" +
|
|
convert_to_string(nsi_var.first) + ")]]";
|
|
}
|
|
|
|
// Uniforms
|
|
for (auto &id : ids)
|
|
{
|
|
if (id.get_type() == TypeVariable)
|
|
{
|
|
auto &var = id.get<SPIRVariable>();
|
|
auto &type = get<SPIRType>(var.basetype);
|
|
|
|
uint32_t var_id = var.self;
|
|
|
|
if ((var.storage == StorageClassUniform || var.storage == StorageClassUniformConstant ||
|
|
var.storage == StorageClassPushConstant || var.storage == StorageClassStorageBuffer) &&
|
|
!is_hidden_variable(var))
|
|
{
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
{
|
|
auto &m = meta.at(type.self);
|
|
if (m.members.size() == 0)
|
|
break;
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += get_argument_address_space(var) + " " + type_to_glsl(type) + "& " + to_name(var_id);
|
|
ep_args += " [[buffer(" + convert_to_string(get_metal_resource_index(var, type.basetype)) + ")]]";
|
|
break;
|
|
}
|
|
case SPIRType::Sampler:
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += type_to_glsl(type) + " " + to_name(var_id);
|
|
ep_args += " [[sampler(" + convert_to_string(get_metal_resource_index(var, type.basetype)) + ")]]";
|
|
break;
|
|
case SPIRType::Image:
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += type_to_glsl(type, var_id) + " " + to_name(var_id);
|
|
ep_args += " [[texture(" + convert_to_string(get_metal_resource_index(var, type.basetype)) + ")]]";
|
|
break;
|
|
case SPIRType::SampledImage:
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
ep_args += type_to_glsl(type, var_id) + " " + to_name(var_id);
|
|
ep_args +=
|
|
" [[texture(" + convert_to_string(get_metal_resource_index(var, SPIRType::Image)) + ")]]";
|
|
if (type.image.dim != DimBuffer)
|
|
{
|
|
ep_args += ", sampler " + to_sampler_expression(var_id);
|
|
ep_args +=
|
|
" [[sampler(" + convert_to_string(get_metal_resource_index(var, SPIRType::Sampler)) + ")]]";
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if (var.storage == StorageClassInput && is_builtin_variable(var))
|
|
{
|
|
if (!ep_args.empty())
|
|
ep_args += ", ";
|
|
BuiltIn bi_type = meta[var_id].decoration.builtin_type;
|
|
ep_args += builtin_type_decl(bi_type) + " " + to_expression(var_id);
|
|
ep_args += " [[" + builtin_qualifier(bi_type) + "]]";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Vertex and instance index built-ins
|
|
if (needs_vertex_idx_arg)
|
|
ep_args += built_in_func_arg(BuiltInVertexIndex, !ep_args.empty());
|
|
|
|
if (needs_instance_idx_arg)
|
|
ep_args += built_in_func_arg(BuiltInInstanceIndex, !ep_args.empty());
|
|
|
|
if (!ep_args.empty() && append_comma)
|
|
ep_args += ", ";
|
|
|
|
return ep_args;
|
|
}
|
|
|
|
// Returns the Metal index of the resource of the specified type as used by the specified variable.
|
|
uint32_t CompilerMSL::get_metal_resource_index(SPIRVariable &var, SPIRType::BaseType basetype)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
auto &var_dec = meta[var.self].decoration;
|
|
uint32_t var_desc_set = (var.storage == StorageClassPushConstant) ? kPushConstDescSet : var_dec.set;
|
|
uint32_t var_binding = (var.storage == StorageClassPushConstant) ? kPushConstBinding : var_dec.binding;
|
|
|
|
// If a matching binding has been specified, find and use it
|
|
for (auto p_res_bind : resource_bindings)
|
|
{
|
|
if (p_res_bind->stage == execution.model && p_res_bind->desc_set == var_desc_set &&
|
|
p_res_bind->binding == var_binding)
|
|
{
|
|
|
|
p_res_bind->used_by_shader = true;
|
|
switch (basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
return p_res_bind->msl_buffer;
|
|
case SPIRType::Image:
|
|
return p_res_bind->msl_texture;
|
|
case SPIRType::Sampler:
|
|
return p_res_bind->msl_sampler;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If a binding has not been specified, revert to incrementing resource indices
|
|
switch (basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
return next_metal_resource_index.msl_buffer++;
|
|
case SPIRType::Image:
|
|
return next_metal_resource_index.msl_texture++;
|
|
case SPIRType::Sampler:
|
|
return next_metal_resource_index.msl_sampler++;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Returns the name of the entry point of this shader
|
|
string CompilerMSL::get_entry_point_name()
|
|
{
|
|
return clean_func_name(to_name(entry_point));
|
|
}
|
|
|
|
string CompilerMSL::argument_decl(const SPIRFunction::Parameter &arg)
|
|
{
|
|
auto &type = expression_type(arg.id);
|
|
bool constref = !arg.alias_global_variable && (!type.pointer || arg.write_count == 0);
|
|
|
|
// TODO: Check if this arg is an uniform pointer
|
|
bool pointer = type.storage == StorageClassUniformConstant;
|
|
|
|
auto &var = get<SPIRVariable>(arg.id);
|
|
return join(constref ? "const " : "", type_to_glsl(type), pointer ? " " : "& ", to_name(var.self),
|
|
type_to_array_glsl(type));
|
|
}
|
|
|
|
// If we're currently in the entry point function, and the object
|
|
// has a qualified name, use it, otherwise use the standard name.
|
|
string CompilerMSL::to_name(uint32_t id, bool allow_alias) const
|
|
{
|
|
if (current_function && (current_function->self == entry_point))
|
|
{
|
|
string qual_name = meta.at(id).decoration.qualified_alias;
|
|
if (!qual_name.empty())
|
|
return qual_name;
|
|
}
|
|
return Compiler::to_name(id, allow_alias);
|
|
}
|
|
|
|
// Returns a name that combines the name of the struct with the name of the member, except for Builtins
|
|
string CompilerMSL::to_qualified_member_name(const SPIRType &type, uint32_t index)
|
|
{
|
|
// Don't qualify Builtin names because they are unique and are treated as such when building expressions
|
|
BuiltIn builtin;
|
|
if (is_member_builtin(type, index, &builtin))
|
|
return builtin_to_glsl(builtin, type.storage);
|
|
|
|
// Strip any underscore prefix from member name
|
|
string mbr_name = to_member_name(type, index);
|
|
size_t startPos = mbr_name.find_first_not_of("_");
|
|
mbr_name = (startPos != string::npos) ? mbr_name.substr(startPos) : "";
|
|
return join(to_name(type.self), "_", mbr_name);
|
|
}
|
|
|
|
// Ensures that the specified name is permanently usable by prepending a prefix
|
|
// if the first chars are _ and a digit, which indicate a transient name.
|
|
string CompilerMSL::ensure_valid_name(string name, string pfx)
|
|
{
|
|
if (name.size() >= 2 && name[0] == '_' && isdigit(name[1]))
|
|
{
|
|
return join(pfx, name);
|
|
}
|
|
else
|
|
{
|
|
auto iter = var_name_overrides.find(name);
|
|
return (iter != var_name_overrides.end()) ? iter->second : name;
|
|
}
|
|
}
|
|
|
|
// The optional id parameter indicates the object whose type we are trying
|
|
// to find the description for. It is optional. Most type descriptions do not
|
|
// depend on a specific object's use of that type.
|
|
string CompilerMSL::type_to_glsl(const SPIRType &type, uint32_t id)
|
|
{
|
|
// Ignore the pointer type since GLSL doesn't have pointers.
|
|
|
|
string type_name;
|
|
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Struct:
|
|
// Need OpName lookup here to get a "sensible" name for a struct.
|
|
return to_name(type.self);
|
|
|
|
case SPIRType::Image:
|
|
case SPIRType::SampledImage:
|
|
return image_type_glsl(type, id);
|
|
|
|
case SPIRType::Sampler:
|
|
return "sampler";
|
|
|
|
case SPIRType::Void:
|
|
return "void";
|
|
|
|
case SPIRType::AtomicCounter:
|
|
return "atomic_uint";
|
|
|
|
// Scalars
|
|
case SPIRType::Boolean:
|
|
type_name = "bool";
|
|
break;
|
|
case SPIRType::Char:
|
|
type_name = "char";
|
|
break;
|
|
case SPIRType::Int:
|
|
type_name = (type.width == 16 ? "short" : "int");
|
|
break;
|
|
case SPIRType::UInt:
|
|
type_name = (type.width == 16 ? "ushort" : "uint");
|
|
break;
|
|
case SPIRType::Int64:
|
|
type_name = "long"; // Currently unsupported
|
|
break;
|
|
case SPIRType::UInt64:
|
|
type_name = "size_t";
|
|
break;
|
|
case SPIRType::Float:
|
|
type_name = (type.width == 16 ? "half" : "float");
|
|
break;
|
|
case SPIRType::Double:
|
|
type_name = "double"; // Currently unsupported
|
|
break;
|
|
|
|
default:
|
|
return "unknown_type";
|
|
}
|
|
|
|
// Matrix?
|
|
if (type.columns > 1)
|
|
type_name += to_string(type.columns) + "x";
|
|
|
|
// Vector or Matrix?
|
|
if (type.vecsize > 1)
|
|
type_name += to_string(type.vecsize);
|
|
|
|
return type_name;
|
|
}
|
|
|
|
// Returns an MSL string describing the SPIR-V image type
|
|
string CompilerMSL::image_type_glsl(const SPIRType &type, uint32_t id)
|
|
{
|
|
string img_type_name;
|
|
|
|
// Bypass pointers because we need the real image struct
|
|
auto &img_type = get<SPIRType>(type.self).image;
|
|
|
|
if (img_type.depth)
|
|
{
|
|
switch (img_type.dim)
|
|
{
|
|
case Dim1D:
|
|
img_type_name += "depth1d_unsupported_by_metal";
|
|
break;
|
|
case Dim2D:
|
|
img_type_name += (img_type.ms ? "depth2d_ms" : (img_type.arrayed ? "depth2d_array" : "depth2d"));
|
|
break;
|
|
case Dim3D:
|
|
img_type_name += "depth3d_unsupported_by_metal";
|
|
break;
|
|
case DimCube:
|
|
img_type_name += (img_type.arrayed ? "depthcube_array" : "depthcube");
|
|
break;
|
|
default:
|
|
img_type_name += "unknown_depth_texture_type";
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (img_type.dim)
|
|
{
|
|
case Dim1D:
|
|
img_type_name += (img_type.arrayed ? "texture1d_array" : "texture1d");
|
|
break;
|
|
case DimBuffer:
|
|
case Dim2D:
|
|
img_type_name += (img_type.ms ? "texture2d_ms" : (img_type.arrayed ? "texture2d_array" : "texture2d"));
|
|
break;
|
|
case Dim3D:
|
|
img_type_name += "texture3d";
|
|
break;
|
|
case DimCube:
|
|
img_type_name += (img_type.arrayed ? "texturecube_array" : "texturecube");
|
|
break;
|
|
default:
|
|
img_type_name += "unknown_texture_type";
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Append the pixel type
|
|
img_type_name += "<";
|
|
img_type_name += type_to_glsl(get<SPIRType>(img_type.type));
|
|
|
|
// For unsampled images, append the sample/read/write access qualifier.
|
|
// For kernel images, the access qualifier my be supplied directly by SPIR-V.
|
|
// Otherwise it may be set based on whether the image is read from or written to within the shader.
|
|
if (type.basetype == SPIRType::Image && type.image.sampled == 2)
|
|
{
|
|
switch (img_type.access)
|
|
{
|
|
case AccessQualifierReadOnly:
|
|
img_type_name += ", access::read";
|
|
break;
|
|
|
|
case AccessQualifierWriteOnly:
|
|
img_type_name += ", access::write";
|
|
break;
|
|
|
|
case AccessQualifierReadWrite:
|
|
img_type_name += ", access::read_write";
|
|
break;
|
|
|
|
default:
|
|
{
|
|
auto *p_var = maybe_get_backing_variable(id);
|
|
if (p_var && !has_decoration(p_var->self, DecorationNonWritable))
|
|
{
|
|
img_type_name += ", access::";
|
|
|
|
if (!has_decoration(p_var->self, DecorationNonReadable))
|
|
img_type_name += "read_";
|
|
|
|
img_type_name += "write";
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
img_type_name += ">";
|
|
|
|
return img_type_name;
|
|
}
|
|
|
|
string CompilerMSL::bitcast_glsl_op(const SPIRType &out_type, const SPIRType &in_type)
|
|
{
|
|
if ((out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Int) ||
|
|
(out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::UInt) ||
|
|
(out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Int64) ||
|
|
(out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::UInt64))
|
|
return type_to_glsl(out_type);
|
|
|
|
if ((out_type.basetype == SPIRType::UInt && in_type.basetype == SPIRType::Float) ||
|
|
(out_type.basetype == SPIRType::Int && in_type.basetype == SPIRType::Float) ||
|
|
(out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::UInt) ||
|
|
(out_type.basetype == SPIRType::Float && in_type.basetype == SPIRType::Int) ||
|
|
(out_type.basetype == SPIRType::Int64 && in_type.basetype == SPIRType::Double) ||
|
|
(out_type.basetype == SPIRType::UInt64 && in_type.basetype == SPIRType::Double) ||
|
|
(out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::Int64) ||
|
|
(out_type.basetype == SPIRType::Double && in_type.basetype == SPIRType::UInt64))
|
|
return "as_type<" + type_to_glsl(out_type) + ">";
|
|
|
|
return "";
|
|
}
|
|
|
|
// Returns an MSL string identifying the name of a SPIR-V builtin.
|
|
// Output builtins are qualified with the name of the stage out structure.
|
|
string CompilerMSL::builtin_to_glsl(BuiltIn builtin, StorageClass storage)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
|
|
// Override GLSL compiler strictness
|
|
case BuiltInVertexId:
|
|
return "gl_VertexID";
|
|
case BuiltInInstanceId:
|
|
return "gl_InstanceID";
|
|
case BuiltInVertexIndex:
|
|
return "gl_VertexIndex";
|
|
case BuiltInInstanceIndex:
|
|
return "gl_InstanceIndex";
|
|
|
|
// When used in the entry function, output builtins are qualified with output struct name.
|
|
case BuiltInPosition:
|
|
case BuiltInPointSize:
|
|
case BuiltInClipDistance:
|
|
case BuiltInLayer:
|
|
case BuiltInFragDepth:
|
|
if (current_function && (current_function->self == entry_point))
|
|
return stage_out_var_name + "." + CompilerGLSL::builtin_to_glsl(builtin, storage);
|
|
else
|
|
return CompilerGLSL::builtin_to_glsl(builtin, storage);
|
|
|
|
default:
|
|
return CompilerGLSL::builtin_to_glsl(builtin, storage);
|
|
}
|
|
}
|
|
|
|
// Returns an MSL string attribute qualifer for a SPIR-V builtin
|
|
string CompilerMSL::builtin_qualifier(BuiltIn builtin)
|
|
{
|
|
auto &execution = get_entry_point();
|
|
|
|
switch (builtin)
|
|
{
|
|
// Vertex function in
|
|
case BuiltInVertexId:
|
|
return "vertex_id";
|
|
case BuiltInVertexIndex:
|
|
return "vertex_id";
|
|
case BuiltInInstanceId:
|
|
return "instance_id";
|
|
case BuiltInInstanceIndex:
|
|
return "instance_id";
|
|
|
|
// Vertex function out
|
|
case BuiltInClipDistance:
|
|
return "clip_distance";
|
|
case BuiltInPointSize:
|
|
return "point_size";
|
|
case BuiltInPosition:
|
|
return "position";
|
|
case BuiltInLayer:
|
|
return "render_target_array_index";
|
|
|
|
// Fragment function in
|
|
case BuiltInFrontFacing:
|
|
return "front_facing";
|
|
case BuiltInPointCoord:
|
|
return "point_coord";
|
|
case BuiltInFragCoord:
|
|
return "position";
|
|
case BuiltInSampleId:
|
|
return "sample_id";
|
|
case BuiltInSampleMask:
|
|
return "sample_mask";
|
|
|
|
// Fragment function out
|
|
case BuiltInFragDepth:
|
|
if (execution.flags & (1ull << ExecutionModeDepthGreater))
|
|
return "depth(greater)";
|
|
else if (execution.flags & (1ull << ExecutionModeDepthLess))
|
|
return "depth(less)";
|
|
else
|
|
return "depth(any)";
|
|
|
|
// Compute function in
|
|
case BuiltInGlobalInvocationId:
|
|
return "thread_position_in_grid";
|
|
|
|
case BuiltInWorkgroupId:
|
|
return "threadgroup_position_in_grid";
|
|
|
|
case BuiltInNumWorkgroups:
|
|
return "threadgroups_per_grid";
|
|
|
|
case BuiltInLocalInvocationId:
|
|
return "thread_position_in_threadgroup";
|
|
|
|
case BuiltInLocalInvocationIndex:
|
|
return "thread_index_in_threadgroup";
|
|
|
|
default:
|
|
return "unsupported-built-in";
|
|
}
|
|
}
|
|
|
|
// Returns an MSL string type declaration for a SPIR-V builtin
|
|
string CompilerMSL::builtin_type_decl(BuiltIn builtin)
|
|
{
|
|
switch (builtin)
|
|
{
|
|
// Vertex function in
|
|
case BuiltInVertexId:
|
|
return "uint";
|
|
case BuiltInVertexIndex:
|
|
return "uint";
|
|
case BuiltInInstanceId:
|
|
return "uint";
|
|
case BuiltInInstanceIndex:
|
|
return "uint";
|
|
|
|
// Vertex function out
|
|
case BuiltInClipDistance:
|
|
return "float";
|
|
case BuiltInPointSize:
|
|
return "float";
|
|
case BuiltInPosition:
|
|
return "float4";
|
|
|
|
// Fragment function in
|
|
case BuiltInFrontFacing:
|
|
return "bool";
|
|
case BuiltInPointCoord:
|
|
return "float2";
|
|
case BuiltInFragCoord:
|
|
return "float4";
|
|
case BuiltInSampleId:
|
|
return "uint";
|
|
case BuiltInSampleMask:
|
|
return "uint";
|
|
|
|
// Compute function in
|
|
case BuiltInGlobalInvocationId:
|
|
case BuiltInLocalInvocationId:
|
|
case BuiltInNumWorkgroups:
|
|
case BuiltInWorkgroupId:
|
|
return "uint3";
|
|
case BuiltInLocalInvocationIndex:
|
|
return "uint";
|
|
|
|
default:
|
|
return "unsupported-built-in-type";
|
|
}
|
|
}
|
|
|
|
// Returns the declaration of a built-in argument to a function
|
|
string CompilerMSL::built_in_func_arg(BuiltIn builtin, bool prefix_comma)
|
|
{
|
|
string bi_arg;
|
|
if (prefix_comma)
|
|
bi_arg += ", ";
|
|
bi_arg += builtin_type_decl(builtin);
|
|
|
|
assert(builtin == BuiltInVertexIndex || builtin == BuiltInInstanceIndex);
|
|
bi_arg += " " + builtin_to_glsl(builtin, StorageClassInput);
|
|
|
|
bi_arg += " [[" + builtin_qualifier(builtin) + "]]";
|
|
return bi_arg;
|
|
}
|
|
|
|
// Returns the byte size of a struct member.
|
|
size_t CompilerMSL::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
|
|
{
|
|
auto dec_mask = get_member_decoration_mask(struct_type.self, index);
|
|
auto &type = get<SPIRType>(struct_type.member_types[index]);
|
|
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Unknown:
|
|
case SPIRType::Void:
|
|
case SPIRType::AtomicCounter:
|
|
case SPIRType::Image:
|
|
case SPIRType::SampledImage:
|
|
case SPIRType::Sampler:
|
|
SPIRV_CROSS_THROW("Querying size of opaque object.");
|
|
|
|
case SPIRType::Struct:
|
|
return get_declared_struct_size(type);
|
|
|
|
default:
|
|
{
|
|
size_t component_size = type.width / 8;
|
|
unsigned vecsize = type.vecsize;
|
|
unsigned columns = type.columns;
|
|
|
|
// For arrays, we can use ArrayStride to get an easy check.
|
|
if (!type.array.empty())
|
|
return type_struct_member_array_stride(struct_type, index) * type.array.back();
|
|
|
|
if (columns == 1) // An unpacked 3-element vector is the same size as a 4-element vector.
|
|
{
|
|
if (!(dec_mask & (1ull << DecorationCPacked)))
|
|
{
|
|
if (vecsize == 3)
|
|
vecsize = 4;
|
|
}
|
|
}
|
|
else // For matrices, a 3-element column is the same size as a 4-element column.
|
|
{
|
|
if (dec_mask & (1ull << DecorationColMajor))
|
|
{
|
|
if (vecsize == 3)
|
|
vecsize = 4;
|
|
}
|
|
else if (dec_mask & (1ull << DecorationRowMajor))
|
|
{
|
|
if (columns == 3)
|
|
columns = 4;
|
|
}
|
|
}
|
|
|
|
return vecsize * columns * component_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the byte alignment of a struct member.
|
|
size_t CompilerMSL::get_declared_struct_member_alignment(const SPIRType &struct_type, uint32_t index) const
|
|
{
|
|
auto &type = get<SPIRType>(struct_type.member_types[index]);
|
|
|
|
switch (type.basetype)
|
|
{
|
|
case SPIRType::Unknown:
|
|
case SPIRType::Void:
|
|
case SPIRType::AtomicCounter:
|
|
case SPIRType::Image:
|
|
case SPIRType::SampledImage:
|
|
case SPIRType::Sampler:
|
|
SPIRV_CROSS_THROW("Querying alignment of opaque object.");
|
|
|
|
case SPIRType::Struct:
|
|
return 16; // Per Vulkan spec section 14.5.4
|
|
|
|
default:
|
|
{
|
|
// Alignment of packed type is the same as the underlying component size.
|
|
// Alignment of unpacked type is the same as the type size (or one matrix column).
|
|
auto dec_mask = get_member_decoration_mask(struct_type.self, index);
|
|
if (dec_mask & (1ull << DecorationCPacked))
|
|
return type.width / 8;
|
|
else
|
|
return get_declared_struct_member_size(struct_type, index) / type.columns;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool CompilerMSL::skip_argument(uint32_t) const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool CompilerMSL::OpCodePreprocessor::handle(Op opcode, const uint32_t *args, uint32_t /*length*/)
|
|
{
|
|
// Since MSL exists in a single execution scope, function prototype declarations are not
|
|
// needed, and clutter the output. If secondary functions are output (either as a SPIR-V
|
|
// function implementation or as indicated by the presence of OpFunctionCall), then set
|
|
// suppress_missing_prototypes to suppress compiler warnings of missing function prototypes.
|
|
|
|
// Mark if the input requires the implementation of an SPIR-V function that does not exist in Metal.
|
|
SPVFuncImpl spv_func = compiler.get_spv_func_impl(opcode, args);
|
|
if (spv_func != SPVFuncImplNone)
|
|
{
|
|
compiler.spv_function_implementations.insert(spv_func);
|
|
suppress_missing_prototypes = true;
|
|
return true;
|
|
}
|
|
|
|
switch (opcode)
|
|
{
|
|
|
|
case OpFunctionCall:
|
|
suppress_missing_prototypes = true;
|
|
break;
|
|
|
|
case OpAtomicExchange:
|
|
case OpAtomicCompareExchange:
|
|
case OpAtomicCompareExchangeWeak:
|
|
case OpAtomicLoad:
|
|
case OpAtomicIIncrement:
|
|
case OpAtomicIDecrement:
|
|
case OpAtomicIAdd:
|
|
case OpAtomicISub:
|
|
case OpAtomicSMin:
|
|
case OpAtomicUMin:
|
|
case OpAtomicSMax:
|
|
case OpAtomicUMax:
|
|
case OpAtomicAnd:
|
|
case OpAtomicOr:
|
|
case OpAtomicXor:
|
|
uses_atomics = true;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns an enumeration of a SPIR-V function that needs to be output for certain Op codes.
|
|
CompilerMSL::SPVFuncImpl CompilerMSL::get_spv_func_impl(Op opcode, const uint32_t *args)
|
|
{
|
|
switch (opcode)
|
|
{
|
|
case OpFMod:
|
|
return SPVFuncImplMod;
|
|
|
|
case OpExtInst:
|
|
{
|
|
uint32_t extension_set = args[2];
|
|
if (get<SPIRExtension>(extension_set).ext == SPIRExtension::GLSL)
|
|
{
|
|
GLSLstd450 op_450 = static_cast<GLSLstd450>(args[3]);
|
|
switch (op_450)
|
|
{
|
|
case GLSLstd450Radians:
|
|
return SPVFuncImplRadians;
|
|
case GLSLstd450Degrees:
|
|
return SPVFuncImplDegrees;
|
|
case GLSLstd450FindILsb:
|
|
return SPVFuncImplFindILsb;
|
|
case GLSLstd450FindSMsb:
|
|
return SPVFuncImplFindSMsb;
|
|
case GLSLstd450FindUMsb:
|
|
return SPVFuncImplFindUMsb;
|
|
case GLSLstd450MatrixInverse:
|
|
{
|
|
auto &mat_type = get<SPIRType>(args[0]);
|
|
switch (mat_type.columns)
|
|
{
|
|
case 2:
|
|
return SPVFuncImplInverse2x2;
|
|
case 3:
|
|
return SPVFuncImplInverse3x3;
|
|
case 4:
|
|
return SPVFuncImplInverse4x4;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return SPVFuncImplNone;
|
|
}
|
|
|
|
// Sort both type and meta member content based on builtin status (put builtins at end),
|
|
// then by the required sorting aspect.
|
|
void CompilerMSL::MemberSorter::sort()
|
|
{
|
|
// Create a temporary array of consecutive member indices and sort it based on how
|
|
// the members should be reordered, based on builtin and sorting aspect meta info.
|
|
size_t mbr_cnt = type.member_types.size();
|
|
vector<uint32_t> mbr_idxs(mbr_cnt);
|
|
iota(mbr_idxs.begin(), mbr_idxs.end(), 0); // Fill with consecutive indices
|
|
std::sort(mbr_idxs.begin(), mbr_idxs.end(), *this); // Sort member indices based on sorting aspect
|
|
|
|
// Move type and meta member info to the order defined by the sorted member indices.
|
|
// This is done by creating temporary copies of both member types and meta, and then
|
|
// copying back to the original content at the sorted indices.
|
|
auto mbr_types_cpy = type.member_types;
|
|
auto mbr_meta_cpy = meta.members;
|
|
for (uint32_t mbr_idx = 0; mbr_idx < mbr_cnt; mbr_idx++)
|
|
{
|
|
type.member_types[mbr_idx] = mbr_types_cpy[mbr_idxs[mbr_idx]];
|
|
meta.members[mbr_idx] = mbr_meta_cpy[mbr_idxs[mbr_idx]];
|
|
}
|
|
}
|
|
|
|
// Sort first by builtin status (put builtins at end), then by the sorting aspect.
|
|
bool CompilerMSL::MemberSorter::operator()(uint32_t mbr_idx1, uint32_t mbr_idx2)
|
|
{
|
|
auto &mbr_meta1 = meta.members[mbr_idx1];
|
|
auto &mbr_meta2 = meta.members[mbr_idx2];
|
|
if (mbr_meta1.builtin != mbr_meta2.builtin)
|
|
return mbr_meta2.builtin;
|
|
else
|
|
switch (sort_aspect)
|
|
{
|
|
case Location:
|
|
return mbr_meta1.location < mbr_meta2.location;
|
|
case LocationReverse:
|
|
return mbr_meta1.location > mbr_meta2.location;
|
|
case Offset:
|
|
return mbr_meta1.offset < mbr_meta2.offset;
|
|
case OffsetThenLocationReverse:
|
|
return (mbr_meta1.offset < mbr_meta2.offset) ||
|
|
((mbr_meta1.offset == mbr_meta2.offset) && (mbr_meta1.location > mbr_meta2.location));
|
|
case Alphabetical:
|
|
return mbr_meta1.alias < mbr_meta2.alias;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
CompilerMSL::MemberSorter::MemberSorter(SPIRType &t, Meta &m, SortAspect sa)
|
|
: type(t)
|
|
, meta(m)
|
|
, sort_aspect(sa)
|
|
{
|
|
// Ensure enough meta info is available
|
|
meta.members.resize(max(type.member_types.size(), meta.members.size()));
|
|
}
|