SPIRV-Cross/reference/shaders-msl/vert/functions.vert

123 lines
4.5 KiB
GLSL
Raw Normal View History

#pragma clang diagnostic ignored "-Wmissing-prototypes"
#include <metal_stdlib>
#include <simd/simd.h>
using namespace metal;
struct UBO
{
float4x4 uMVP;
float3 rotDeg;
float3 rotRad;
int2 bits;
};
struct main0_out
{
float3 vNormal [[user(locn0)]];
float3 vRotDeg [[user(locn1)]];
float3 vRotRad [[user(locn2)]];
int2 vLSB [[user(locn3)]];
int2 vMSB [[user(locn4)]];
float4 gl_Position [[position]];
};
struct main0_in
{
float4 aVertex [[attribute(0)]];
float3 aNormal [[attribute(1)]];
};
// Implementation of the GLSL radians() function
template<typename T>
2019-09-23 22:05:04 +00:00
inline T radians(T d)
{
2018-03-07 09:24:21 +00:00
return d * T(0.01745329251);
}
// Implementation of the GLSL degrees() function
template<typename T>
2019-09-23 22:05:04 +00:00
inline T degrees(T r)
{
2018-03-07 09:24:21 +00:00
return r * T(57.2957795131);
}
// Implementation of the GLSL findLSB() function
template<typename T>
2019-09-23 22:05:04 +00:00
inline T spvFindLSB(T x)
{
return select(ctz(x), T(-1), x == T(0));
}
// Implementation of the signed GLSL findMSB() function
template<typename T>
2019-09-23 22:05:04 +00:00
inline T spvFindSMSB(T x)
{
T v = select(x, T(-1) - x, x < T(0));
return select(clz(T(0)) - (clz(v) + T(1)), T(-1), v == T(0));
}
// Returns the determinant of a 2x2 matrix.
static inline __attribute__((always_inline))
float spvDet2x2(float a1, float a2, float b1, float b2)
{
return a1 * b2 - b1 * a2;
}
// Returns the determinant of a 3x3 matrix.
static inline __attribute__((always_inline))
float spvDet3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
return a1 * spvDet2x2(b2, b3, c2, c3) - b1 * spvDet2x2(a2, a3, c2, c3) + c1 * spvDet2x2(a2, a3, b2, b3);
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
static inline __attribute__((always_inline))
float4x4 spvInverse4x4(float4x4 m)
{
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = spvDet3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][1] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][2] = spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
adj[0][3] = -spvDet3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
adj[1][0] = -spvDet3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][1] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][2] = -spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
adj[1][3] = spvDet3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
adj[2][0] = spvDet3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][1] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][2] = spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
adj[2][3] = -spvDet3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
adj[3][0] = -spvDet3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][1] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][2] = -spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
adj[3][3] = spvDet3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
vertex main0_out main0(main0_in in [[stage_in]], constant UBO& _18 [[buffer(0)]])
{
main0_out out = {};
out.gl_Position = spvInverse4x4(_18.uMVP) * in.aVertex;
out.vNormal = in.aNormal;
out.vRotDeg = degrees(_18.rotRad);
out.vRotRad = radians(_18.rotDeg);
out.vLSB = spvFindLSB(_18.bits);
out.vMSB = spvFindSMSB(_18.bits);
return out;
}