Implement a simple evaluator of specialization constants.

In some cases, we need to get a literal value from a spec constant op.
Mostly relevant when emitting buffers, so implement a 32-bit integer
scalar subset of the evaluator. Can be extended as needed to support
evaluating any specialization constant operation.
This commit is contained in:
Hans-Kristian Arntzen 2020-09-14 10:42:31 +02:00
parent bdbef7b1f3
commit 66afe8c499
7 changed files with 623 additions and 48 deletions

View File

@ -0,0 +1,321 @@
#version 450
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
#ifndef SPIRV_CROSS_CONSTANT_ID_2
#define SPIRV_CROSS_CONSTANT_ID_2 1
#endif
const int SONE = SPIRV_CROSS_CONSTANT_ID_2;
#ifndef SPIRV_CROSS_CONSTANT_ID_3
#define SPIRV_CROSS_CONSTANT_ID_3 2
#endif
const int STWO = SPIRV_CROSS_CONSTANT_ID_3;
const int _10 = (SONE + STWO);
const uint _13 = (uint(_10) + 0u);
#ifndef SPIRV_CROSS_CONSTANT_ID_5
#define SPIRV_CROSS_CONSTANT_ID_5 1u
#endif
const uint UONE = SPIRV_CROSS_CONSTANT_ID_5;
const uint _15 = (_13 + UONE);
#ifndef SPIRV_CROSS_CONSTANT_ID_6
#define SPIRV_CROSS_CONSTANT_ID_6 2u
#endif
const uint UTWO = SPIRV_CROSS_CONSTANT_ID_6;
const uint IADD = (_15 + UTWO);
const uint _19 = (IADD - 5u);
const uint _28 = (uint(SONE) + 0u);
const uint ISUB = (UTWO - _28);
const uint IMUL = (UTWO * UTWO);
const uint _37 = (IMUL - 3u);
const uint UDIV = (UTWO / UTWO);
#ifndef SPIRV_CROSS_CONSTANT_ID_4
#define SPIRV_CROSS_CONSTANT_ID_4 -2
#endif
const int SNEG_TWO = SPIRV_CROSS_CONSTANT_ID_4;
const int SDIV = (STWO / SNEG_TWO);
const int _52 = (SDIV + 2);
#ifndef SPIRV_CROSS_CONSTANT_ID_7
#define SPIRV_CROSS_CONSTANT_ID_7 -3
#endif
const int SNEG_THREE = SPIRV_CROSS_CONSTANT_ID_7;
const int SMOD = (STWO % SNEG_THREE);
const int _66 = (SMOD + 2);
const uint UMOD = (IADD % IMUL);
const uint _73 = (UMOD - 1u);
const uint LSHL = (IADD << ISUB);
const uint _81 = (LSHL - 11u);
const uint RSHL = (IADD >> ISUB);
const uint _89 = (RSHL - 2u);
const int _95 = int(IADD + 0u);
const int _96 = (-_95);
const int _97 = (-SDIV);
const int RSHA = (_96 >> _97);
const int _100 = (RSHA + 4);
const bool IEQ = (IADD == ISUB);
const int _109 = IEQ ? 2 : 1;
const bool INEQ = (IADD != ISUB);
const int _116 = INEQ ? 1 : 2;
const bool ULT = (IADD < ISUB);
const int _123 = ULT ? 2 : 1;
const bool ULE = (IADD <= ISUB);
const int _130 = ULE ? 2 : 1;
const bool UGT = (IADD > ISUB);
const int _137 = UGT ? 1 : 2;
const bool UGE = (IADD >= ISUB);
const int _144 = UGE ? 1 : 2;
const bool SLT = (SMOD < 1);
const int _151 = SLT ? 1 : 2;
const bool SLE = (SMOD <= 1);
const int _158 = SLE ? 1 : 2;
const bool SGT = (SMOD > 1);
const int _165 = SGT ? 2 : 1;
const bool SGE = (SMOD >= 1);
const int _172 = SGE ? 2 : 1;
const bool LOR = (IEQ || SLT);
const int _179 = LOR ? 1 : 2;
const bool LAND = (IEQ && SLT);
const int _186 = LAND ? 2 : 1;
const bool LNOT = (!LOR);
const int _193 = LNOT ? 2 : 1;
const uint AND = (IADD & IADD);
const uint _200 = (AND - 5u);
const uint OR = (IADD | ISUB);
const uint _208 = (OR - 6u);
const uint XOR = (IADD ^ IADD);
const uint _215 = (XOR + 1u);
const uint NOT = (~XOR);
const uint _223 = (NOT - 4294967294u);
const bool LEQ = (LAND == LNOT);
const int _230 = LEQ ? 1 : 2;
const bool LNEQ = (LAND != LNOT);
const int _237 = LNEQ ? 2 : 1;
const uint SEL = IEQ ? IADD : ISUB;
#ifndef SPIRV_CROSS_CONSTANT_ID_0
#define SPIRV_CROSS_CONSTANT_ID_0 true
#endif
const bool TRUE = SPIRV_CROSS_CONSTANT_ID_0;
#ifndef SPIRV_CROSS_CONSTANT_ID_1
#define SPIRV_CROSS_CONSTANT_ID_1 false
#endif
const bool FALSE = SPIRV_CROSS_CONSTANT_ID_1;
layout(binding = 0, std430) buffer SSBO_IAdd
{
float val[_19];
float dummy;
} IAdd;
layout(binding = 1, std430) buffer SSBO_ISub
{
float val[ISUB];
float dummy;
} ISub;
layout(binding = 2, std430) buffer SSBO_IMul
{
float val[_37];
float dummy;
} IMul;
layout(binding = 3, std430) buffer SSBO_UDiv
{
float val[UDIV];
float dummy;
} UDiv;
layout(binding = 4, std430) buffer SSBO_SDiv
{
float val[_52];
float dummy;
} SDiv;
layout(binding = 5, std430) buffer SSBO_SRem
{
float val[1];
float dummy;
} SRem;
layout(binding = 6, std430) buffer SSBO_SMod
{
float val[_66];
float dummy;
} SMod;
layout(binding = 7, std430) buffer SSBO_UMod
{
float val[_73];
float dummy;
} UMod;
layout(binding = 8, std430) buffer SSBO_LShl
{
float val[_81];
float dummy;
} LShl;
layout(binding = 9, std430) buffer SSBO_RShl
{
float val[_89];
float dummy;
} RShl;
layout(binding = 10, std430) buffer SSBO_RSha
{
float val[_100];
float dummy;
} RSha;
layout(binding = 11, std430) buffer SSBO_IEq
{
float val[_109];
float dummy;
} IEq;
layout(binding = 12, std430) buffer SSBO_INeq
{
float val[_116];
float dummy;
} INeq;
layout(binding = 13, std430) buffer SSBO_Ult
{
float val[_123];
float dummy;
} Ult;
layout(binding = 14, std430) buffer SSBO_Ule
{
float val[_130];
float dummy;
} Ule;
layout(binding = 15, std430) buffer SSBO_Ugt
{
float val[_137];
float dummy;
} Ugt;
layout(binding = 16, std430) buffer SSBO_Uge
{
float val[_144];
float dummy;
} Uge;
layout(binding = 17, std430) buffer SSBO_Slt
{
float val[_151];
float dummy;
} Slt;
layout(binding = 18, std430) buffer SSBO_Sle
{
float val[_158];
float dummy;
} Sle;
layout(binding = 19, std430) buffer SSBO_Sgt
{
float val[_165];
float dummy;
} Sgt;
layout(binding = 20, std430) buffer SSBO_Sge
{
float val[_172];
float dummy;
} Sge;
layout(binding = 21, std430) buffer SSBO_Lor
{
float val[_179];
float dummy;
} Lor;
layout(binding = 22, std430) buffer SSBO_Land
{
float val[_186];
float dummy;
} Land;
layout(binding = 23, std430) buffer SSBO_Lnot
{
float val[_193];
float dummy;
} Lnot;
layout(binding = 24, std430) buffer SSBO_And
{
float val[_200];
float dummy;
} And;
layout(binding = 24, std430) buffer SSBO_Or
{
float val[_208];
float dummy;
} Or;
layout(binding = 24, std430) buffer SSBO_Xor
{
float val[_215];
float dummy;
} Xor;
layout(binding = 25, std430) buffer SSBO_Not
{
float val[_223];
float dummy;
} Not;
layout(binding = 26, std430) buffer SSBO_Leq
{
float val[_230];
float dummy;
} Leq;
layout(binding = 27, std430) buffer SSBO_Lneq
{
float val[_237];
float dummy;
} Lneq;
layout(binding = 28, std430) buffer SSBO_Sel
{
float val[SEL];
float dummy;
} Sel;
void main()
{
IAdd.val[0] = 0.0;
ISub.val[0] = 0.0;
IMul.val[0] = 0.0;
UDiv.val[0] = 0.0;
SDiv.val[0] = 0.0;
SRem.val[0] = 0.0;
SMod.val[0] = 0.0;
UMod.val[0] = 0.0;
LShl.val[0] = 0.0;
RShl.val[0] = 0.0;
RSha.val[0] = 0.0;
IEq.val[0] = 0.0;
INeq.val[0] = 0.0;
Ult.val[0] = 0.0;
Ule.val[0] = 0.0;
Ugt.val[0] = 0.0;
Uge.val[0] = 0.0;
Slt.val[0] = 0.0;
Sle.val[0] = 0.0;
Sgt.val[0] = 0.0;
Sge.val[0] = 0.0;
Lor.val[0] = 0.0;
Land.val[0] = 0.0;
Lnot.val[0] = 0.0;
And.val[0] = 0.0;
Or.val[0] = 0.0;
Xor.val[0] = 0.0;
Not.val[0] = 0.0;
Leq.val[0] = 0.0;
Lneq.val[0] = 0.0;
Sel.val[0] = 0.0;
}

View File

@ -0,0 +1,123 @@
#version 450
layout(local_size_x = 1) in;
layout(constant_id = 0) const bool TRUE = true;
layout(constant_id = 1) const bool FALSE = false;
layout(constant_id = 2) const int SONE = 1;
layout(constant_id = 3) const int STWO = 2;
layout(constant_id = 4) const int SNEG_TWO = -2;
layout(constant_id = 5) const uint UONE = 1;
layout(constant_id = 6) const uint UTWO = 2;
layout(constant_id = 7) const int SNEG_THREE = -3;
const uint IADD = SONE + STWO + UONE + UTWO; // 6
const uint ISUB = UTWO - SONE; // 1
const uint IMUL = UTWO * UTWO; // 4
const uint UDIV = UTWO / UTWO; // 1
const int SDIV = STWO / SNEG_TWO; // -1
//const int SREM = STWO % SNEG_THREE; // 1
const int SREM = 1;
const int SMOD = STWO % SNEG_THREE; // -1
const uint UMOD = IADD % IMUL; // 2
const uint LSHL = IADD << ISUB; // 12
const uint RSHL = IADD >> ISUB; // 3
const int RSHA = (-int(IADD)) >> (-SDIV); // -3
const bool IEQ = IADD == ISUB; // false
const bool INEQ = IADD != ISUB; // true
const bool ULT = IADD < ISUB; // false
const bool ULE = IADD <= ISUB; // false
const bool UGT = IADD > ISUB; // true
const bool UGE = IADD >= ISUB; // true
const bool SLT = SMOD < SREM; // true
const bool SLE = SMOD <= SREM; // true
const bool SGT = SMOD > SREM; // false
const bool SGE = SMOD >= SREM; // false
const bool LOR = IEQ || SLT; // true
const bool LAND = IEQ && SLT; // false
const bool LNOT = !LOR; // false
const uint AND = IADD & IADD; // 6
const uint OR = IADD | ISUB; // 7
const uint XOR = IADD ^ IADD; // 0
const uint NOT = ~XOR; // UINT_MAX
const bool LEQ = LAND == LNOT; // true
const bool LNEQ = LAND != LNOT; // false
const uint SEL = IEQ ? IADD : ISUB; // 1
#define DUMMY_SSBO(name, bind, size) layout(std430, set = 0, binding = bind) buffer SSBO_##name { float val[size]; float dummy; } name
// Normalize all sizes to 1 element so that the default offsets in glslang matches up with what we should be computing.
// If we do it right, we should get no layout(offset = N) expressions.
DUMMY_SSBO(IAdd, 0, IADD - 5);
DUMMY_SSBO(ISub, 1, ISUB);
DUMMY_SSBO(IMul, 2, IMUL - 3);
DUMMY_SSBO(UDiv, 3, UDIV);
DUMMY_SSBO(SDiv, 4, SDIV + 2);
DUMMY_SSBO(SRem, 5, SREM);
DUMMY_SSBO(SMod, 6, SMOD + 2);
DUMMY_SSBO(UMod, 7, UMOD - 1);
DUMMY_SSBO(LShl, 8, LSHL - 11);
DUMMY_SSBO(RShl, 9, RSHL - 2);
DUMMY_SSBO(RSha, 10, RSHA + 4);
DUMMY_SSBO(IEq, 11, IEQ ? 2 : 1);
DUMMY_SSBO(INeq, 12, INEQ ? 1 : 2);
DUMMY_SSBO(Ult, 13, ULT ? 2 : 1);
DUMMY_SSBO(Ule, 14, ULE ? 2 : 1);
DUMMY_SSBO(Ugt, 15, UGT ? 1 : 2);
DUMMY_SSBO(Uge, 16, UGE ? 1 : 2);
DUMMY_SSBO(Slt, 17, SLT ? 1 : 2);
DUMMY_SSBO(Sle, 18, SLE ? 1 : 2);
DUMMY_SSBO(Sgt, 19, SGT ? 2 : 1);
DUMMY_SSBO(Sge, 20, SGE ? 2 : 1);
DUMMY_SSBO(Lor, 21, LOR ? 1 : 2);
DUMMY_SSBO(Land, 22, LAND ? 2 : 1);
DUMMY_SSBO(Lnot, 23, LNOT ? 2 : 1);
DUMMY_SSBO(And, 24, AND - 5);
DUMMY_SSBO(Or, 24, OR - 6);
DUMMY_SSBO(Xor, 24, XOR + 1);
DUMMY_SSBO(Not, 25, NOT - 0xfffffffeu);
DUMMY_SSBO(Leq, 26, LEQ ? 1 : 2);
DUMMY_SSBO(Lneq, 27, LNEQ ? 2 : 1);
DUMMY_SSBO(Sel, 28, SEL);
void main()
{
IAdd.val[0] = 0.0;
ISub.val[0] = 0.0;
IMul.val[0] = 0.0;
UDiv.val[0] = 0.0;
SDiv.val[0] = 0.0;
SRem.val[0] = 0.0;
SMod.val[0] = 0.0;
UMod.val[0] = 0.0;
LShl.val[0] = 0.0;
RShl.val[0] = 0.0;
RSha.val[0] = 0.0;
IEq.val[0] = 0.0;
INeq.val[0] = 0.0;
Ult.val[0] = 0.0;
Ule.val[0] = 0.0;
Ugt.val[0] = 0.0;
Uge.val[0] = 0.0;
Slt.val[0] = 0.0;
Sle.val[0] = 0.0;
Sgt.val[0] = 0.0;
Sge.val[0] = 0.0;
Lor.val[0] = 0.0;
Land.val[0] = 0.0;
Lnot.val[0] = 0.0;
And.val[0] = 0.0;
Or.val[0] = 0.0;
Xor.val[0] = 0.0;
Not.val[0] = 0.0;
Leq.val[0] = 0.0;
Lneq.val[0] = 0.0;
Sel.val[0] = 0.0;
}

View File

@ -1652,6 +1652,148 @@ size_t Compiler::get_declared_struct_size_runtime_array(const SPIRType &type, si
return size;
}
uint32_t Compiler::evaluate_spec_constant_u32(const SPIRConstantOp &spec) const
{
auto &result_type = get<SPIRType>(spec.basetype);
if (result_type.basetype != SPIRType::UInt && result_type.basetype != SPIRType::Int && result_type.basetype != SPIRType::Boolean)
SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n");
if (!is_scalar(result_type))
SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
uint32_t value = 0;
const auto eval_u32 = [&](uint32_t id) -> uint32_t {
auto &type = expression_type(id);
if (type.basetype != SPIRType::UInt && type.basetype != SPIRType::Int && type.basetype != SPIRType::Boolean)
SPIRV_CROSS_THROW("Only 32-bit integers and booleans are currently supported when evaluating specialization constants.\n");
if (!is_scalar(type))
SPIRV_CROSS_THROW("Spec constant evaluation must be a scalar.\n");
if (const auto *c = this->maybe_get<SPIRConstant>(id))
return c->scalar();
else
return evaluate_spec_constant_u32(this->get<SPIRConstantOp>(id));
};
#define binary_spec_op(op, binary_op) \
case Op##op: value = eval_u32(spec.arguments[0]) binary_op eval_u32(spec.arguments[1]); break
#define binary_spec_op_cast(op, binary_op, type) \
case Op##op: value = uint32_t(type(eval_u32(spec.arguments[0])) binary_op type(eval_u32(spec.arguments[1]))); break
// Support the basic opcodes which are typically used when computing array sizes.
switch (spec.opcode)
{
binary_spec_op(IAdd, +);
binary_spec_op(ISub, -);
binary_spec_op(IMul, *);
binary_spec_op(BitwiseAnd, &);
binary_spec_op(BitwiseOr, |);
binary_spec_op(BitwiseXor, ^);
binary_spec_op(LogicalAnd, &);
binary_spec_op(LogicalOr, |);
binary_spec_op(ShiftLeftLogical, <<);
binary_spec_op(ShiftRightLogical, >>);
binary_spec_op_cast(ShiftRightArithmetic, >>, int32_t);
binary_spec_op(LogicalEqual, ==);
binary_spec_op(LogicalNotEqual, !=);
binary_spec_op(IEqual, ==);
binary_spec_op(INotEqual, !=);
binary_spec_op(ULessThan, <);
binary_spec_op(ULessThanEqual, <=);
binary_spec_op(UGreaterThan, >);
binary_spec_op(UGreaterThanEqual, >=);
binary_spec_op_cast(SLessThan, <, int32_t);
binary_spec_op_cast(SLessThanEqual, <=, int32_t);
binary_spec_op_cast(SGreaterThan, >, int32_t);
binary_spec_op_cast(SGreaterThanEqual, >=, int32_t);
#undef binary_spec_op
#undef binary_spec_op_cast
case OpLogicalNot:
value = uint32_t(!eval_u32(spec.arguments[0]));
break;
case OpNot:
value = ~eval_u32(spec.arguments[0]);
break;
case OpSNegate:
value = -eval_u32(spec.arguments[0]);
break;
case OpSelect:
value = eval_u32(spec.arguments[0]) ? eval_u32(spec.arguments[1]) : eval_u32(spec.arguments[2]);
break;
case OpUMod:
{
uint32_t a = eval_u32(spec.arguments[0]);
uint32_t b = eval_u32(spec.arguments[1]);
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in UMod, b == 0.\n");
value = a % b;
break;
}
case OpSRem:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SRem, b == 0.\n");
value = a % b;
break;
}
case OpSMod:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SMod, b == 0.\n");
auto v = a % b;
// Makes sure we match the sign of b, not a.
if ((b < 0 && v > 0) || (b > 0 && v < 0))
v += b;
value = v;
break;
}
case OpUDiv:
{
uint32_t a = eval_u32(spec.arguments[0]);
uint32_t b = eval_u32(spec.arguments[1]);
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in UDiv, b == 0.\n");
value = a / b;
break;
}
case OpSDiv:
{
auto a = int32_t(eval_u32(spec.arguments[0]));
auto b = int32_t(eval_u32(spec.arguments[1]));
if (b == 0)
SPIRV_CROSS_THROW("Undefined behavior in SDiv, b == 0.\n");
value = a / b;
break;
}
default:
SPIRV_CROSS_THROW("Unsupported spec constant opcode for evaluation.\n");
}
return value;
}
uint32_t Compiler::evaluate_constant_u32(uint32_t id) const
{
if (const auto *c = maybe_get<SPIRConstant>(id))
return c->scalar();
else
return evaluate_spec_constant_u32(get<SPIRConstantOp>(id));
}
size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const
{
if (struct_type.member_types.empty())
@ -1686,7 +1828,7 @@ size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, ui
{
// For arrays, we can use ArrayStride to get an easy check.
bool array_size_literal = type.array_size_literal.back();
uint32_t array_size = array_size_literal ? type.array.back() : get<SPIRConstant>(type.array.back()).scalar();
uint32_t array_size = array_size_literal ? type.array.back() : evaluate_constant_u32(type.array.back());
return type_struct_member_array_stride(struct_type, index) * array_size;
}
else if (type.basetype == SPIRType::Struct)

View File

@ -1060,6 +1060,9 @@ protected:
bool flush_phi_required(BlockID from, BlockID to) const;
uint32_t evaluate_spec_constant_u32(const SPIRConstantOp &spec) const;
uint32_t evaluate_constant_u32(uint32_t id) const;
private:
// Used only to implement the old deprecated get_entry_point() interface.
const SPIREntryPoint &get_first_entry_point(const std::string &name) const;

View File

@ -6755,7 +6755,7 @@ void CompilerGLSL::emit_subgroup_op(const Instruction &i)
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto scope = static_cast<Scope>(get<SPIRConstant>(ops[2]).scalar());
auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
@ -6889,7 +6889,7 @@ case OpGroupNonUniform##op: \
case OpGroupNonUniformQuadSwap:
{
uint32_t direction = get<SPIRConstant>(ops[4]).scalar();
uint32_t direction = evaluate_constant_u32(ops[4]);
if (direction == 0)
emit_unary_func_op(result_type, id, ops[3], "subgroupQuadSwapHorizontal");
else if (direction == 1)
@ -7635,7 +7635,7 @@ string CompilerGLSL::access_chain_internal(uint32_t base, const uint32_t *indice
else if (type->basetype == SPIRType::Struct)
{
if (!is_literal)
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
if (index >= type->member_types.size())
SPIRV_CROSS_THROW("Member index is out of bounds!");
@ -8156,7 +8156,7 @@ std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
// We also check if this member is a builtin, since we then replace the entire expression with the builtin one.
else if (type->basetype == SPIRType::Struct)
{
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
if (index >= type->member_types.size())
SPIRV_CROSS_THROW("Member index is out of bounds!");
@ -8184,7 +8184,7 @@ std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
auto *constant = maybe_get<SPIRConstant>(index);
if (constant)
{
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
offset += index * (row_major_matrix_needs_conversion ? (type->width / 8) : matrix_stride);
}
else
@ -8213,7 +8213,7 @@ std::pair<std::string, uint32_t> CompilerGLSL::flattened_access_chain_offset(
auto *constant = maybe_get<SPIRConstant>(index);
if (constant)
{
index = get<SPIRConstant>(index).scalar();
index = evaluate_constant_u32(index);
offset += index * (row_major_matrix_needs_conversion ? matrix_stride : (type->width / 8));
}
else
@ -10805,14 +10805,14 @@ void CompilerGLSL::emit_instruction(const Instruction &instruction)
if (opcode == OpMemoryBarrier)
{
memory = get<SPIRConstant>(ops[0]).scalar();
semantics = get<SPIRConstant>(ops[1]).scalar();
memory = evaluate_constant_u32(ops[0]);
semantics = evaluate_constant_u32(ops[1]);
}
else
{
execution_scope = get<SPIRConstant>(ops[0]).scalar();
memory = get<SPIRConstant>(ops[1]).scalar();
semantics = get<SPIRConstant>(ops[2]).scalar();
execution_scope = evaluate_constant_u32(ops[0]);
memory = evaluate_constant_u32(ops[1]);
semantics = evaluate_constant_u32(ops[2]);
}
if (execution_scope == ScopeSubgroup || memory == ScopeSubgroup)
@ -10841,8 +10841,8 @@ void CompilerGLSL::emit_instruction(const Instruction &instruction)
if (next && next->op == OpControlBarrier)
{
auto *next_ops = stream(*next);
uint32_t next_memory = get<SPIRConstant>(next_ops[1]).scalar();
uint32_t next_semantics = get<SPIRConstant>(next_ops[2]).scalar();
uint32_t next_memory = evaluate_constant_u32(next_ops[1]);
uint32_t next_semantics = evaluate_constant_u32(next_ops[2]);
next_semantics = mask_relevant_memory_semantics(next_semantics);
bool memory_scope_covered = false;
@ -11795,15 +11795,7 @@ uint32_t CompilerGLSL::to_array_size_literal(const SPIRType &type, uint32_t inde
{
// Use the default spec constant value.
// This is the best we can do.
uint32_t array_size_id = type.array[index];
// Explicitly check for this case. The error message you would get (bad cast) makes no sense otherwise.
if (ir.ids[array_size_id].get_type() == TypeConstantOp)
SPIRV_CROSS_THROW("An array size was found to be an OpSpecConstantOp. This is not supported since "
"SPIRV-Cross cannot deduce the actual size here.");
uint32_t array_size = get<SPIRConstant>(array_size_id).scalar();
return array_size;
return evaluate_constant_u32(type.array[index]);
}
}

View File

@ -790,7 +790,7 @@ uint32_t CompilerHLSL::type_to_consumed_locations(const SPIRType &type) const
if (type.array_size_literal[i])
array_multiplier *= type.array[i];
else
array_multiplier *= get<SPIRConstant>(type.array[i]).scalar();
array_multiplier *= evaluate_constant_u32(type.array[i]);
}
elements += array_multiplier * type.columns;
}
@ -2860,7 +2860,7 @@ void CompilerHLSL::emit_texture_op(const Instruction &i, bool sparse)
}
else if (gather)
{
uint32_t comp_num = get<SPIRConstant>(comp).scalar();
uint32_t comp_num = evaluate_constant_u32(comp);
if (hlsl_options.shader_model >= 50)
{
switch (comp_num)
@ -4454,7 +4454,7 @@ void CompilerHLSL::emit_subgroup_op(const Instruction &i)
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto scope = static_cast<Scope>(get<SPIRConstant>(ops[2]).scalar());
auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
@ -4611,7 +4611,7 @@ case OpGroupNonUniform##op: \
case OpGroupNonUniformQuadSwap:
{
uint32_t direction = get<SPIRConstant>(ops[4]).scalar();
uint32_t direction = evaluate_constant_u32(ops[4]);
if (direction == 0)
emit_unary_func_op(result_type, id, ops[3], "QuadReadAcrossX");
else if (direction == 1)
@ -5269,13 +5269,13 @@ void CompilerHLSL::emit_instruction(const Instruction &instruction)
if (opcode == OpMemoryBarrier)
{
memory = get<SPIRConstant>(ops[0]).scalar();
semantics = get<SPIRConstant>(ops[1]).scalar();
memory = evaluate_constant_u32(ops[0]);
semantics = evaluate_constant_u32(ops[1]);
}
else
{
memory = get<SPIRConstant>(ops[1]).scalar();
semantics = get<SPIRConstant>(ops[2]).scalar();
memory = evaluate_constant_u32(ops[1]);
semantics = evaluate_constant_u32(ops[2]);
}
if (memory == ScopeSubgroup)
@ -5295,8 +5295,8 @@ void CompilerHLSL::emit_instruction(const Instruction &instruction)
if (next && next->op == OpControlBarrier)
{
auto *next_ops = stream(*next);
uint32_t next_memory = get<SPIRConstant>(next_ops[1]).scalar();
uint32_t next_semantics = get<SPIRConstant>(next_ops[2]).scalar();
uint32_t next_memory = evaluate_constant_u32(next_ops[1]);
uint32_t next_semantics = evaluate_constant_u32(next_ops[2]);
next_semantics = mask_relevant_memory_semantics(next_semantics);
// There is no "just execution barrier" in HLSL.

View File

@ -7175,8 +7175,8 @@ void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uin
if (get_execution_model() != ExecutionModelGLCompute && get_execution_model() != ExecutionModelTessellationControl)
return;
uint32_t exe_scope = id_exe_scope ? get<SPIRConstant>(id_exe_scope).scalar() : uint32_t(ScopeInvocation);
uint32_t mem_scope = id_mem_scope ? get<SPIRConstant>(id_mem_scope).scalar() : uint32_t(ScopeInvocation);
uint32_t exe_scope = id_exe_scope ? evaluate_constant_u32(id_exe_scope) : uint32_t(ScopeInvocation);
uint32_t mem_scope = id_mem_scope ? evaluate_constant_u32(id_mem_scope) : uint32_t(ScopeInvocation);
// Use the wider of the two scopes (smaller value)
exe_scope = min(exe_scope, mem_scope);
@ -7187,7 +7187,7 @@ void CompilerMSL::emit_barrier(uint32_t id_exe_scope, uint32_t id_mem_scope, uin
bar_stmt = "threadgroup_barrier";
bar_stmt += "(";
uint32_t mem_sem = id_mem_sem ? get<SPIRConstant>(id_mem_sem).scalar() : uint32_t(MemorySemanticsMaskNone);
uint32_t mem_sem = id_mem_sem ? evaluate_constant_u32(id_mem_sem) : uint32_t(MemorySemanticsMaskNone);
// Use the | operator to combine flags if we can.
if (msl_options.supports_msl_version(1, 2))
@ -8534,13 +8534,7 @@ string CompilerMSL::round_fp_tex_coords(string tex_coords, bool coord_is_fp)
// The ID must be a scalar constant.
string CompilerMSL::to_component_argument(uint32_t id)
{
if (ir.ids[id].get_type() != TypeConstant)
{
SPIRV_CROSS_THROW("ID " + to_string(id) + " is not an OpConstant.");
return "component::x";
}
uint32_t component_index = get<SPIRConstant>(id).scalar();
uint32_t component_index = evaluate_constant_u32(id);
switch (component_index)
{
case 0:
@ -11820,7 +11814,7 @@ void CompilerMSL::emit_subgroup_op(const Instruction &i)
uint32_t result_type = ops[0];
uint32_t id = ops[1];
auto scope = static_cast<Scope>(get<SPIRConstant>(ops[2]).scalar());
auto scope = static_cast<Scope>(evaluate_constant_u32(ops[2]));
if (scope != ScopeSubgroup)
SPIRV_CROSS_THROW("Only subgroup scope is supported.");
@ -11920,7 +11914,7 @@ case OpGroupNonUniform##op: \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = get<SPIRConstant>(ops[5]).scalar(); \
uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \
@ -11949,7 +11943,7 @@ case OpGroupNonUniform##op: \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = get<SPIRConstant>(ops[5]).scalar(); \
uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op(result_type, id, ops[4], "quad_" #msl_op); \
@ -11972,7 +11966,7 @@ case OpGroupNonUniform##op: \
else if (operation == GroupOperationClusteredReduce) \
{ \
/* Only cluster sizes of 4 are supported. */ \
uint32_t cluster_size = get<SPIRConstant>(ops[5]).scalar(); \
uint32_t cluster_size = evaluate_constant_u32(ops[5]); \
if (cluster_size != 4) \
SPIRV_CROSS_THROW("Metal only supports quad ClusteredReduce."); \
emit_unary_func_op_cast(result_type, id, ops[4], "quad_" #msl_op, type, type); \
@ -12010,7 +12004,7 @@ case OpGroupNonUniform##op: \
// n 2 | 3 0 1
// e 3 | 2 1 0
// Notice that target = source ^ (direction + 1).
uint32_t mask = get<SPIRConstant>(ops[4]).scalar() + 1;
uint32_t mask = evaluate_constant_u32(ops[4]) + 1;
uint32_t mask_id = ir.increase_bound_by(1);
set<SPIRConstant>(mask_id, expression_type_id(ops[4]), mask, false);
emit_binary_func_op(result_type, id, ops[3], mask_id, "quad_shuffle_xor");