Implement MatrixInverse on HLSL.

Copy-paste implementation from MSL. I assume it's correct.
This commit is contained in:
Hans-Kristian Arntzen 2018-02-23 16:36:12 +01:00
parent 6066fe486e
commit b380a2113a
5 changed files with 455 additions and 2 deletions

View File

@ -0,0 +1,122 @@
RWByteAddressBuffer _15 : register(u0);
ByteAddressBuffer _20 : register(t1);
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float2x2 SPIRV_Cross_Inverse(float2x2 m)
{
float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = m[1][1];
adj[0][1] = -m[0][1];
adj[1][0] = -m[1][0];
adj[1][1] = m[0][0];
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
// Returns the determinant of a 2x2 matrix.
float SPIRV_Cross_Det2x2(float a1, float a2, float b1, float b2)
{
return a1 * b2 - b1 * a2;
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float3x3 SPIRV_Cross_Inverse(float3x3 m)
{
float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = SPIRV_Cross_Det2x2(m[1][1], m[1][2], m[2][1], m[2][2]);
adj[0][1] = -SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[2][1], m[2][2]);
adj[0][2] = SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[1][1], m[1][2]);
adj[1][0] = -SPIRV_Cross_Det2x2(m[1][0], m[1][2], m[2][0], m[2][2]);
adj[1][1] = SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[2][0], m[2][2]);
adj[1][2] = -SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[1][0], m[1][2]);
adj[2][0] = SPIRV_Cross_Det2x2(m[1][0], m[1][1], m[2][0], m[2][1]);
adj[2][1] = -SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[2][0], m[2][1]);
adj[2][2] = SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[1][0], m[1][1]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
// Returns the determinant of a 3x3 matrix.
float SPIRV_Cross_Det3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
return a1 * SPIRV_Cross_Det2x2(b2, b3, c2, c3) - b1 * SPIRV_Cross_Det2x2(a2, a3, c2, c3) + c1 * SPIRV_Cross_Det2x2(a2, a3, b2, b3);
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float4x4 SPIRV_Cross_Inverse(float4x4 m)
{
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = SPIRV_Cross_Det3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][1] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][2] = SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
adj[0][3] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
adj[1][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
adj[1][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
adj[2][0] = SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][1] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][2] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
adj[2][3] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
adj[3][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
adj[3][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
void comp_main()
{
float2x2 _23 = asfloat(uint2x2(_20.Load2(0), _20.Load2(8)));
float2x2 _24 = SPIRV_Cross_Inverse(_23);
_15.Store2(0, asuint(_24[0]));
_15.Store2(8, asuint(_24[1]));
float3x3 _29 = asfloat(uint3x3(_20.Load3(16), _20.Load3(32), _20.Load3(48)));
float3x3 _30 = SPIRV_Cross_Inverse(_29);
_15.Store3(16, asuint(_30[0]));
_15.Store3(32, asuint(_30[1]));
_15.Store3(48, asuint(_30[2]));
float4x4 _35 = asfloat(uint4x4(_20.Load4(64), _20.Load4(80), _20.Load4(96), _20.Load4(112)));
float4x4 _36 = SPIRV_Cross_Inverse(_35);
_15.Store4(64, asuint(_36[0]));
_15.Store4(80, asuint(_36[1]));
_15.Store4(96, asuint(_36[2]));
_15.Store4(112, asuint(_36[3]));
}
[numthreads(1, 1, 1)]
void main()
{
comp_main();
}

View File

@ -0,0 +1,122 @@
RWByteAddressBuffer _15 : register(u0);
ByteAddressBuffer _20 : register(t1);
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float2x2 SPIRV_Cross_Inverse(float2x2 m)
{
float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = m[1][1];
adj[0][1] = -m[0][1];
adj[1][0] = -m[1][0];
adj[1][1] = m[0][0];
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
// Returns the determinant of a 2x2 matrix.
float SPIRV_Cross_Det2x2(float a1, float a2, float b1, float b2)
{
return a1 * b2 - b1 * a2;
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float3x3 SPIRV_Cross_Inverse(float3x3 m)
{
float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = SPIRV_Cross_Det2x2(m[1][1], m[1][2], m[2][1], m[2][2]);
adj[0][1] = -SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[2][1], m[2][2]);
adj[0][2] = SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[1][1], m[1][2]);
adj[1][0] = -SPIRV_Cross_Det2x2(m[1][0], m[1][2], m[2][0], m[2][2]);
adj[1][1] = SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[2][0], m[2][2]);
adj[1][2] = -SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[1][0], m[1][2]);
adj[2][0] = SPIRV_Cross_Det2x2(m[1][0], m[1][1], m[2][0], m[2][1]);
adj[2][1] = -SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[2][0], m[2][1]);
adj[2][2] = SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[1][0], m[1][1]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
// Returns the determinant of a 3x3 matrix.
float SPIRV_Cross_Det3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
return a1 * SPIRV_Cross_Det2x2(b2, b3, c2, c3) - b1 * SPIRV_Cross_Det2x2(a2, a3, c2, c3) + c1 * SPIRV_Cross_Det2x2(a2, a3, b2, b3);
}
// Returns the inverse of a matrix, by using the algorithm of calculating the classical
// adjoint and dividing by the determinant. The contents of the matrix are changed.
float4x4 SPIRV_Cross_Inverse(float4x4 m)
{
float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)
// Create the transpose of the cofactors, as the classical adjoint of the matrix.
adj[0][0] = SPIRV_Cross_Det3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][1] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], m[3][3]);
adj[0][2] = SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], m[3][3]);
adj[0][3] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3]);
adj[1][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], m[3][3]);
adj[1][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], m[3][3]);
adj[1][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3]);
adj[2][0] = SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][1] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], m[3][3]);
adj[2][2] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], m[3][3]);
adj[2][3] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3]);
adj[3][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], m[3][2]);
adj[3][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], m[3][2]);
adj[3][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2]);
// Calculate the determinant as a combination of the cofactors of the first row.
float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] * m[3][0]);
// Divide the classical adjoint matrix by the determinant.
// If determinant is zero, matrix is not invertable, so leave it unchanged.
return (det != 0.0f) ? (adj * (1.0f / det)) : m;
}
void comp_main()
{
float2x2 _23 = asfloat(uint2x2(_20.Load2(0), _20.Load2(8)));
float2x2 _24 = SPIRV_Cross_Inverse(_23);
_15.Store2(0, asuint(_24[0]));
_15.Store2(8, asuint(_24[1]));
float3x3 _29 = asfloat(uint3x3(_20.Load3(16), _20.Load3(32), _20.Load3(48)));
float3x3 _30 = SPIRV_Cross_Inverse(_29);
_15.Store3(16, asuint(_30[0]));
_15.Store3(32, asuint(_30[1]));
_15.Store3(48, asuint(_30[2]));
float4x4 _35 = asfloat(uint4x4(_20.Load4(64), _20.Load4(80), _20.Load4(96), _20.Load4(112)));
float4x4 _36 = SPIRV_Cross_Inverse(_35);
_15.Store4(64, asuint(_36[0]));
_15.Store4(80, asuint(_36[1]));
_15.Store4(96, asuint(_36[2]));
_15.Store4(112, asuint(_36[3]));
}
[numthreads(1, 1, 1)]
void main()
{
comp_main();
}

View File

@ -0,0 +1,23 @@
#version 450
layout(local_size_x = 1) in;
layout(std430, binding = 0) writeonly buffer MatrixOut
{
mat2 m2out;
mat3 m3out;
mat4 m4out;
};
layout(std430, binding = 1) readonly buffer MatrixIn
{
mat2 m2in;
mat3 m3in;
mat4 m4in;
};
void main()
{
m2out = inverse(m2in);
m3out = inverse(m3in);
m4out = inverse(m4in);
}

View File

@ -1225,8 +1225,7 @@ void CompilerHLSL::emit_resources()
return name1.compare(name2) < 0; return name1.compare(name2) < 0;
}; };
static const uint64_t implicit_builtins = (1ull << BuiltInNumWorkgroups) | static const uint64_t implicit_builtins = (1ull << BuiltInNumWorkgroups) | (1ull << BuiltInPointCoord);
(1ull << BuiltInPointCoord);
if (!input_variables.empty() || (active_input_builtins & ~implicit_builtins)) if (!input_variables.empty() || (active_input_builtins & ~implicit_builtins))
{ {
require_input = true; require_input = true;
@ -1540,6 +1539,159 @@ void CompilerHLSL::emit_resources()
statement(""); statement("");
} }
} }
if (requires_inverse_2x2)
{
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float2x2 SPIRV_Cross_Inverse(float2x2 m)");
begin_scope();
statement("float2x2 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = m[1][1];");
statement("adj[0][1] = -m[0][1];");
statement_no_indent("");
statement("adj[1][0] = -m[1][0];");
statement("adj[1][1] = m[0][0];");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
}
if (requires_inverse_3x3)
{
statement("// Returns the determinant of a 2x2 matrix.");
statement("float SPIRV_Cross_Det2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement_no_indent("");
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float3x3 SPIRV_Cross_Inverse(float3x3 m)");
begin_scope();
statement("float3x3 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement("adj[0][0] = SPIRV_Cross_Det2x2(m[1][1], m[1][2], m[2][1], m[2][2]);");
statement("adj[0][1] = -SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[2][1], m[2][2]);");
statement("adj[0][2] = SPIRV_Cross_Det2x2(m[0][1], m[0][2], m[1][1], m[1][2]);");
statement_no_indent("");
statement("adj[1][0] = -SPIRV_Cross_Det2x2(m[1][0], m[1][2], m[2][0], m[2][2]);");
statement("adj[1][1] = SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[2][0], m[2][2]);");
statement("adj[1][2] = -SPIRV_Cross_Det2x2(m[0][0], m[0][2], m[1][0], m[1][2]);");
statement_no_indent("");
statement("adj[2][0] = SPIRV_Cross_Det2x2(m[1][0], m[1][1], m[2][0], m[2][1]);");
statement("adj[2][1] = -SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[2][0], m[2][1]);");
statement("adj[2][2] = SPIRV_Cross_Det2x2(m[0][0], m[0][1], m[1][0], m[1][1]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
}
if (requires_inverse_4x4)
{
if (!requires_inverse_3x3)
{
statement("// Returns the determinant of a 2x2 matrix.");
statement("float SPIRV_Cross_Det2x2(float a1, float a2, float b1, float b2)");
begin_scope();
statement("return a1 * b2 - b1 * a2;");
end_scope();
statement("");
}
statement("// Returns the determinant of a 3x3 matrix.");
statement("float SPIRV_Cross_Det3x3(float a1, float a2, float a3, float b1, float b2, float b3, float c1, "
"float c2, float c3)");
begin_scope();
statement("return a1 * SPIRV_Cross_Det2x2(b2, b3, c2, c3) - b1 * SPIRV_Cross_Det2x2(a2, a3, c2, c3) + c1 * "
"SPIRV_Cross_Det2x2(a2, a3, "
"b2, b3);");
end_scope();
statement_no_indent("");
statement("// Returns the inverse of a matrix, by using the algorithm of calculating the classical");
statement("// adjoint and dividing by the determinant. The contents of the matrix are changed.");
statement("float4x4 SPIRV_Cross_Inverse(float4x4 m)");
begin_scope();
statement("float4x4 adj; // The adjoint matrix (inverse after dividing by determinant)");
statement_no_indent("");
statement("// Create the transpose of the cofactors, as the classical adjoint of the matrix.");
statement(
"adj[0][0] = SPIRV_Cross_Det3x3(m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement(
"adj[0][1] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[2][1], m[2][2], m[2][3], m[3][1], m[3][2], "
"m[3][3]);");
statement(
"adj[0][2] = SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[3][1], m[3][2], "
"m[3][3]);");
statement(
"adj[0][3] = -SPIRV_Cross_Det3x3(m[0][1], m[0][2], m[0][3], m[1][1], m[1][2], m[1][3], m[2][1], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement(
"adj[1][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement(
"adj[1][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[2][0], m[2][2], m[2][3], m[3][0], m[3][2], "
"m[3][3]);");
statement(
"adj[1][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[3][0], m[3][2], "
"m[3][3]);");
statement(
"adj[1][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][2], m[0][3], m[1][0], m[1][2], m[1][3], m[2][0], m[2][2], "
"m[2][3]);");
statement_no_indent("");
statement(
"adj[2][0] = SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement(
"adj[2][1] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[2][0], m[2][1], m[2][3], m[3][0], m[3][1], "
"m[3][3]);");
statement(
"adj[2][2] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[3][0], m[3][1], "
"m[3][3]);");
statement(
"adj[2][3] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][3], m[1][0], m[1][1], m[1][3], m[2][0], m[2][1], "
"m[2][3]);");
statement_no_indent("");
statement(
"adj[3][0] = -SPIRV_Cross_Det3x3(m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement(
"adj[3][1] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[2][0], m[2][1], m[2][2], m[3][0], m[3][1], "
"m[3][2]);");
statement(
"adj[3][2] = -SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[3][0], m[3][1], "
"m[3][2]);");
statement(
"adj[3][3] = SPIRV_Cross_Det3x3(m[0][0], m[0][1], m[0][2], m[1][0], m[1][1], m[1][2], m[2][0], m[2][1], "
"m[2][2]);");
statement_no_indent("");
statement("// Calculate the determinant as a combination of the cofactors of the first row.");
statement("float det = (adj[0][0] * m[0][0]) + (adj[0][1] * m[1][0]) + (adj[0][2] * m[2][0]) + (adj[0][3] "
"* m[3][0]);");
statement_no_indent("");
statement("// Divide the classical adjoint matrix by the determinant.");
statement("// If determinant is zero, matrix is not invertable, so leave it unchanged.");
statement("return (det != 0.0f) ? (adj * (1.0f / det)) : m;");
end_scope();
statement("");
}
} }
string CompilerHLSL::layout_for_member(const SPIRType &type, uint32_t index) string CompilerHLSL::layout_for_member(const SPIRType &type, uint32_t index)
@ -2830,6 +2982,37 @@ void CompilerHLSL::emit_glsl_op(uint32_t result_type, uint32_t id, uint32_t eop,
emit_unary_func_op(result_type, id, args[0], "firstbithigh"); emit_unary_func_op(result_type, id, args[0], "firstbithigh");
break; break;
case GLSLstd450MatrixInverse:
{
auto &type = get<SPIRType>(result_type);
if (type.vecsize == 2 && type.columns == 2)
{
if (!requires_inverse_2x2)
{
requires_inverse_2x2 = true;
force_recompile = true;
}
}
else if (type.vecsize == 3 && type.columns == 3)
{
if (!requires_inverse_3x3)
{
requires_inverse_3x3 = true;
force_recompile = true;
}
}
else if (type.vecsize == 4 && type.columns == 4)
{
if (!requires_inverse_4x4)
{
requires_inverse_4x4 = true;
force_recompile = true;
}
}
emit_unary_func_op(result_type, id, args[0], "SPIRV_Cross_Inverse");
break;
}
default: default:
CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count); CompilerGLSL::emit_glsl_op(result_type, id, eop, args, count);
break; break;

View File

@ -161,6 +161,9 @@ private:
bool requires_snorm16_packing = false; bool requires_snorm16_packing = false;
bool requires_bitfield_insert = false; bool requires_bitfield_insert = false;
bool requires_bitfield_extract = false; bool requires_bitfield_extract = false;
bool requires_inverse_2x2 = false;
bool requires_inverse_3x3 = false;
bool requires_inverse_4x4 = false;
uint64_t required_textureSizeVariants = 0; uint64_t required_textureSizeVariants = 0;
void require_texture_query_variant(const SPIRType &type); void require_texture_query_variant(const SPIRType &type);